Interplanetary magnetic field power spectra with frequencies from 2.4 x 10 to the-5th Hz to 470 Hz from HELIOS-observations during solar minimum conditions

Main Article Content

K.U. Denskat
H.J. Beinroth
F.M. Neubauer


By using data from the Technical University of Braunschweig flux-gate and search-coil magnetometer experiments on board of Helios 2 we study the spectral properties of the interplanetary magnetic field over a frequency range from 2.4 x 10-5 Hz up to 470 Hz. Examples of power spectral density estimates at different heliocentric distances are shown as well as the change of the spectra during the progress of a high speed stream. A general feature of the spectra is that in a log-log spectral representation the steepness of the power spectral density estimates varies as a function of frequency. If we relate the spectral densities by a power law Pfα, the spectral index α increases with increasing frequency. At 1 AU α varies on average from 1.6 to 3.4 and at 0.3 AU from 1.0 to 3.4, the major changes in the spectral index occurring at low frequencies. In addition, just within the frequency gap between the two experiments, between 2Hz and 4.7 Hz, an inflexion point is inferred from the spectrum above and below this frequency range. This spectral feature can at least partly be attributed to the damping of the Alfven-mode waves near the proton and also α-particle cyclotron frequencies. The observed power spectra are compared with models of MHD turbulence and it is found that at least some of the properties of MHD turbulence fit the observations remarkably well.

Google Scholar         ARK:



Article Details

How to Cite
Denskat, K.U., H.J. Beinroth, and F.M. Neubauer. 1983. “Interplanetary Magnetic Field Power Spectra With Frequencies from 2.4 X 10 to the-5th Hz to 470 Hz from HELIOS-Observations During Solar Minimum Conditions”. Journal of Geophysics 54 (1), 60-67.
Bookmark and Share


Arunasalam, V. (1976) Quasilinear theory of ion-cyclotron-resonance heating of plasmas and associated longitudinal heating. Phys. Rev. Lett. 37:746-749

Barnes, A. (1979) Hydromagnetic waves and turbulence in the solar wind. Solar and solar wind plasma physics, Vol. 1, E.N. Parker, C. F. Kennel, and L.J. Lanzerotti (Eds.), pp. 249-319. North Holland Publ. Comp.

Bavassano, B., Dobrowolny, M., Mariani, F., Ness, N.F. (1982) Radial evolution of power spectra of interplanetary Alfvenic turbulence. J. Geophys. Res. 87:3617-3622

Behannon, K.W. (1976) Observations of the interplanetary magnetic field between 0.46 and 1 AU by the Mariner 10 spacecraft. NASA X-692-76-2

Behannon, K.W. (1978) Heliocentric distance dependence of the interplanetary magnetic field. Rev. Geophys. Space Phys. 16:125-146

Beinroth, H.J., Neubauer, F.M. (1981) Properties of whistler-mode waves between 0.3 and 1.0 AU from Helios observations. J. Geophys. Res. 86:7755-7760

Bendat, J.S., Piersol, A.G. (1971) Random data: Analysis and measurement procedures. New York: Wiley-Interscience

Burlaga, L.F., Turner, J.B. (1976) Microscale "Alfven waves" in the solar wind at 1 AU. J. Geophys. Res. 81:73-77

Busnardo-Neto, J., Dawson, J., Kaminura, T., Lin, A.T. (1976) Ion-cyclotron resonance heating of plasmas and associated longitudinal cooling. Phys. Rev. Lett. 36:28-31

Cohen, R.H., Dewar, R.L. (1974) On the backscatter instability of solar wind Alfven waves. J. Geophys. Res. 79:4174-4178

Coleman, P.J. Jr. (1968) Turbulence, viscosity, and dissipation in the solar wind plasma. Astrophys. J. 153:371-388

Cuperman, S., Sternlieb, A. (1975) The relaxation of strongly anisotropic magnetized plasmas by electromagnetic ion-cyclotron instability. Plasma Phys. 17:699-705

Davidson, R.C., Ogden, J.M. (1975) Electromagnetic ion-cyclotron instability driven by ion energy anisotropy in high-beta plasmas. Phys. Fluids 18:1045-1050

Dehmel, G., Neubauer, F.M., Lukoschus, D., Wawretzko, J., Lammers, E. (1975) Das Induktionsspulen-Magnetometer-Experiment (E4). Raumfahrtforschung 19:241-244

Denskat, K.U. (1975) Wellen im solaren Wind im Frequenzbereich des Helios-Induktionsspulenexperimentes E4 und deren Dopplerverschiebung. Forschungsbericht W 75-18 des Bundesministeriums ftir Forschung und Technologie

Denskat, K.U., Burlaga, L.F. (1977) Multispacecraft observations of microscale fluctuations in the solar wind. J. Geophys. Res. 82:2693-2704

Denskat, K.U., Neubauer, F.M., Schwenn, R. (1981) Properties of Alfvenic fluctuations near the sun: Helios-1 and Helios-2. Proc. of the 4th Solar Wind Conference, Burghausen, F.R.G., Rep. No. MPAE-W-100-81-31:392-397

Denskat, K.U., Neubauer, F.M. (1982) Statistical properties of low frequency magnetic field fluctuations in the solar wind from 0.29 to 1.0 AU during solar mm1mum conditions: Helios-1 and Helios-2. J. Geophys. Res. 87:2215-2223

Dobrowolny, M. (1977) Velocity shear instabilities in high-beta collisionless plasmas. II N uovo Cim. 37:113-130

Dobrowolny, M., Mangenay, A., Veltri, P. (1980a) Properties of magnetohydrodynamic turbulence in the solar wind. Astron. Astrophys. 83:26-32

Dobrowolny, M., Mangenay, A., Veltri, P. (1980b) Fully developed asymmetric hydromagnetic turbulence in the interplanetary space. Phys. Rev. Lett. 45:144-147

Gary, S.P., Feldman, W.C. (1978) A second order theory for k||B0 electromagnetic instabilities. Phys. Fluids 21:72-80

Gurnett, D.A., Frank, L.A. (1978) Ion acoustic waves in the solar wind. J. Geophys. Res. 83:58-74

Hedgecock, P.C. (1975a) A correlation technique for magnetometer zero level determination. Space Sci. lustrum. 1:83-90

Hedgecock, P.C. (1975b) Measurements of the interplanetary magnetic field in relation to the modulation of cosmic rays. Solar Phys. 42:497-527

Jenkins, G.M., Watts, D.G. (1968) Spectral analysis and its application. San Francisco, California, Holden-Day

Kraichnan R.H. (1965) Inertial-range spectrum of hydromagnetic turbulence. Phys. Fluids 8:1385-1387

Kurth, W.S., Gurnett, D.A., Scarf, F.L. (1979a) High-resolution spectrograms of ion acoustic waves in the solar wind, J. Geophys. Res. 84:3413

Kurth, W.S., Ashour-Abdalla, M., Frank, L.A., Kennel, C.F., Gurnett, D.A., Sentman, D.D., Burek, B.G. (1979b) A comparison of intense electrostatic waves near fUHR with linear instability theory. Geophys. Res. Lett. 6:487-490

Livshits, M.A., Tsytovich, V.N. (1970) The spectra of magnetohydrodynamic turbulence in collisionless plasma. Nucl. Fus. 10:241-250

Marsch, E., Muhlhauser, K.H., Schwenn, R., Rosenbauer, H., Philipp, W., Neubauer, F.M. (1982a) Solar wind protons: Threedimensional velocity distributions and derived plasma parameters measured between 0.3 and 1 AU. J. Geophys. Res. 87:52-71

Marsch, E., Muhlhauser, K.H., Rosenbauer, H., Schwenn, R., Neubauer, F.M. (1982b) Solar wind helium ions: Observations of the Helios probes between 0.3 and 1 AU. J. Geophys. Res. 87:35-51

Montgomery, D.C., Tidmann, D.A. (1964) Plasma kinetic theory. New York: McGraw-Hill

Musmann, G., Neubauer, F.M., Maier, A., Lammers, E. (1975) Das Forstersonden-Magnetfeldexperiment (E2). Raumfahrtforschung 19:232-237

Neubauer, F.M., Beinroth, H.J., Barnstorf, H., Dehmel, G. (1977a) Initial results from the Helios 1 search coil magnetometer experiment. J. Geophys. 42:599-614

Neubauer, F.M., Musmann, G., Dehmel, G. (1977b) Fast magnetic fluctuations in the solar wind: Helios 1. J. Geophys. Res. 82:3201-3212

Neubauer, F.M., Barnstorf, H., Beinroth, H.J., Denskat, K.U., Musmann, G., Ruprecht, H., Volkmer, P. (1981) Routineverarbeitung und physikalische Interpretation der MeBdaten des Fi:irstersondenmagnetometers (E2) und des Induktionsspulenmagnetometers (E4) der Raumsonden Helios 1 und Helios 2. Forschungsbericht W 81-039 des Bundesministeriums Forschung und Technologie

Sari, J.W., Valley, G.C. (1976) Interplanetary magnetic field power spectra: Mean field radial or perpendicular to radial. J. Geophys. Res. 81:5489-5499