Lg wave attenuation of Northeast India Archaean as a new standard for Earth's most seismic regions
Article Sidebar
Vols. 1-18 (1924-1944), ISSN 0044-2801
Main Article Content
Abstract
Physical modeling of Lg-wave attenuation is used in designing resilient and safer civil engineering structures and is thus vital for seismic hazard mitigation. I here report an attenuation model for one of the most active seismic sources of Himalayas-determined Northeastern region (NER) of India—the Eastern Shillong Plateau–Mikir Hills (ESPMH) tectonic domain—based on four well-constrained regional crustal earthquakes between 2007–2011. Frequency-dependent attenuation of Lg wave has crustal quality factor QLg≈48.92±1.08 and its frequency dependency of η≈0.97±0.16. The model is strictly high-frequency dependent (η=0.97), indicating that Lg attenuates dominantly by the scattering mechanism. The attenuation becomes critically high around the frequency of 0.5 Hz, the same as in the most tectonically active regions of the world. The extra low value of Qo=48.92 is the lowest reported from any continental part of our planet, which reveals a most attenuative Earth's crust posing a high seismic threat. As the results imply an extensive, seismically potentially destructive presence of melts/aqueous phases in Earth's crust, the probability of a damaging earthquake in and around ESPMH is non-negligible. Multiple additional factors contribute to the gross attenuation of Lg, as it is reasonable to account for the anomalously high attenuation in the NER Archaean as dominantly lithologically hardest and Earth-oldest terrane, making the new model pertinent to Earth's tectonically most active regions.
ARK: https://n2t.net/ark:/88439/x055006
Permalink: https://geophysicsjournal.com/article/357
Article Details
References
Aki, K.T. (1980b) Scattering and attenuation of shear-waves in the lithosphere. J. Geophys. Res. 5:6496–6504. https://doi.org/10.1029/JB085iB11p06496
Angelier, J., Baruah, S. (2009) Seismotectonics in Northeast India: a stress analysis of focal mechanism solutions of earthquakes and its kinematic implications. Geophys. J. Int. 178:303–326. https://doi.org/10.1111/j.1365-246X.2009.04107.x
Ashish, Padhi, A., Rai, S.S., Gupta, S. (2009) Seismological evidence for shallow crustal melt beneath the Garhwal High Himalaya, India: Implications for the Himalayan channel flow. Geophys. J. Int. 177:1111–1120. https://doi.org/10.1111/j.1365-246X.2009.04112.x
Baruah, S., Hazarika, D. (2008) A GIS based tectonic map of northeastern India. Curr. Sci. 95:176–177. https://www.jstor.org/stable/24103042
Baumgardt, D.R. (2001) Sedimentary basins and the blockage of Lg wave propagation in the continents. Pure Appl. Geophys. 158:1207–1250. https://doi.org/10.1007/PL00001221
Bhattacharya, P.M., Pujol, J., Mazumdar, R.K., Kayal, J.R. (2005) Relocation of earthquakes in the Northeast India region using joint Hypocenter determination method. Current Sci. 89:1404–1413. https://www.jstor.org/stable/24110847
Bilham, R., England, P. (2001) Plateau ‘pop-up’ in the great 1897 Assam earthquake. Nature 410:806–809. https://doi.org/10.1038/35071057
BMPTC (2003) Vulnerability atlas. 2nd Edition; peer group MOH and UPA; seismic zones of India IS: 1983–2002, BIS, GOI, Seismotectonic atlas of India and its environs, GSI, GOI. Building Materials and Technology Promotion Council (BMPTC) of India.
Bora, D.K., Baruah, S. (2012a) Mapping the crustal thickness in Shillong–Mikir Hills Plateau and its adjoining region of north-eastern India using Moho reflected waves. J. Asian Earth Sci. 48:83–92. https://doi.org/10.1016/j.jseaes.2011.12.007
Borah, K., Bora, D.K., Goyal, A., Kumar, R. (2016) Crustal structure beneath northeast India inferred from receiver function modelling. Phys. Earth Planet. Int. 258:15–27. https://doi.org/10.1016/j.pepi.2016.07.005
Bowman J.R., Kennett, B.L.N. (1991) Propagation of Lg waves in the North Australian craton: influence of crustal velocity gradients. Bull. Seism. Soc. Am. 81:592–610. https://doi.org/10.1785/BSSA0810020592
Campillo M. (1987) Lg wave propagation in a laterally varying crust and the distribution of the apparent quality factor in Central France. J. Geophys. Res. 92:12604–12614. https://doi.org/10.1029/JB092iB12p12604
Campillo, M., Bard,P.–Y., Nicollin, F., Sánchez–Seesma, F. (1988) The Mexico earthquake of September 19, 1985 the incident wavefield in Mexico City during the great Michoacán earthquake and its interpretation with the deep basin. Earthq. Spectra 4:591–608. https://doi.org/10.1193/1.1585492
Campillo M., Plantet, J.L. (1991) Frequency dependence and spatial distribution of seismic attenuation in France: experimental results and possible interpretations. Phys. Earth planet. Int. 67:48–64. https://doi.org/10.1016/0031-9201(91)90059-Q
Campillo, M., Feignier, B., Bouchon, M., Béthoux, N. (1993) Attenuation of crustal waves across the Alpine Range. J. Geophys. Res. 98(B2):1987–1996. https://doi.org/10.1029/92JB02357
Choudhury, B.K. (2020) Attenuation of regional seismic Lg waves and its spectral characteristics in and around the Indo‑Burman Ranges of North Eastern region of India. Acta Geod. Geophys. 55(1):133–150. https://doi.org/10.1007/s40328-020-00286-5
Choudhury, B.K. (2022) Attenuation of Regional Seismic Lg Waves in the Eastern Himalayan Mobile Belt (EHMB) and the Mishmi Block of Arunachal Pradesh in the North–Eastern Region (NER) of India. Phys. Chem. Earth A/B/C 126:103129. https://doi.org/10.1016/j.pce.2022.103129
Dainty, A. (1981) A scattering model to explain seismic Q observations in the lithosphere between 1 and 30 Hz. Geophys. Res. Lett. 8:1126–1128. https://doi.org/10.1029/GL008i011p01126
Dwyer, J.J, Herrmann Y.R.B., Nuttli, O.W. (1983) Spatial Attenuation of the Lg Wave in the Central United States. Bull. Seism. Soc. Am. 73:781–796. https://doi.org/10.1785/BSSA0730030781
Fan, G.–W., Lay, T. (2002) Characteristics of Lg attenuation in the Tibetan Plateau. J. Geophys. Res. 107(B10):2256. https://doi.org/10.1029/2001JB000804
Fan, G.–W., Lay, T. (2003) Strong Lg attenuation in the Tibetan Plateau. Bull. Seism. Soc. Am. 93:2264–2272. https://doi.org/10.1785/0120030052
Fedotov, S.A., Boldyrev, S.A. (1969) Frequency dependence of the body-wave absorption in the crust and the upper mantle of the Kuril-island chain. Izv. Acad. Sci. USSR Solid Earth 1:553–562.
Furumura, T., Kennett, B.L.N. (1998) On the nature of regional seismic phases, III, The influence of crustal heterogeneity on the wavefield for subduction earthquakes: The 1985 Michoacan and 1995 Copala, Mexico earthquakes. Geophys. J. Int. 135:1060–1084. https://doi.org/10.1046/j.1365-246X.1998.00698.x
García–Fernández, M., Canas, J.A. (1992) Regional Lg-wave attenuation and estimation of peak ground acceleration in the Iberian Peninsula. Earthquake Engineering, Tenth World Conference, Balkema, Rotterdam. https://www.iitk.ac.in/nicee/wcee/article/10_vol1_439.pdf
Haberland, C., Rietbrock, A. (2001) Attenuation tomography in the western central Andes: a detailed insight into the structure of a magmatic arc. J. Geophys. Res. 106:11151–11167. https://doi.org/10.1029/2000JB900472
Havskov, J., Ottemöller, L. (2010) Routine data processing in earthquake seismology. With sample data, exercises and software. Springer, pp.347. ISBN 9789048186969. https://doi.org/10.1007/978-90-481-8697-6
Havskov, J., Voss, P.H. Ottemöller, L. (2020). Seismological observatory software: 30 yr of SEISAN. Seismol. Res. Lett. 91(3):1846–1852. https://seisan.info https://doi.org/10.1785/0220190313
Hazarika, D., Baruah, S., Gogoi, N.K. (2009) Attenuation of coda waves in the Northeastern Region of India. J. Seismol. 13:141–160. https://doi.org/10.1007/s10950-008-9132-0
Herrmann, R.B., Kijko, A. (1983a) Modeling some empirical vertical component Lg relations. Bull. Seism. Soc. Am. 73:157–171. https://doi.org/10.1785/BSSA0730010157
Herrmann, R.B., Kijko, A. (1983b) Short-period Lg magnitudes: instrument, attenuation and source effects. Bull. Seism. Soc. Am. 73:1835–1850. https://core.ac.uk/download/216196743.pdf
Hong, T.–K. (2010) Lg Attenuation in a Region with Both Continental and Oceanic Environments. Bull. Seism. Soc. Am. 100(2):851–858. https://doi.org/10.1785/0120090057
Hosseini, M., Pezeshk, S., Soltani, A.H., Chapman, M. (2015) Investigation of Attenuation of the Lg-Wave Amplitude in the Caribbean Region. Bull. Seism. Soc. Am. 105(2A):734–744. https://doi.org/10.1785/0120140006
Jin, A., Aki, K. (1986) Temporal change in coda Q before the Tangshen earthquake of 1976 and the Haicheng earthquake of 1975. J. Geophys. Res. 91:665–673. https://doi.org/10.1029/JB091iB01p00665
Kayal, J.R. (2008) Microearthquake Seismology and Seismotectonics of South Asia. Capital Publishing Company. New Delhi. Springer Germany, 503 pp. ISBN 9781402081798. https://doi.org/10.1007/978-1-4020-8180-4
Kennett, B.L.N. (1986) Lg waves and structural boundaries. Bull. Seism. Soc. Am. 76:1133–1141. https://doi.org/10.1785/BSSA0760041133
Kennett, B.L.N., Furumura, T. (2001) Regional phases in continental and oceanic environments. Geophys. J. Int. 146(2):562–568. https://doi.org/10.1046/j.1365-246x.2001.01467.x
Kuwahara, Y., Mamada, Y., Ito, H. (2003) Low-velocity zones along Subducting oceanic plates: their implications in the subduction-zone seismogenesis and a method to detect them. Bull. Earthq. Res. Inst. Univ. Tokyo 78:197–203. http://dx.doi.org/10.15083/0000032563
Lienert, B.R., Berg, E., Frazer, L.N. (1986) Hypocentre: An earthquake location method using corrected, scaled and adaptively damped least squares. Bull. Seism. Soc. Am. 76:771–783. https://doi.org/10.1785/BSSA0760030771
Mayeda, K., Koyanagi, S., Hoshiba, M., Aki, K., Zeng, Y. (1992) A comparative study of scattering, intrinsic, and coda Q-1 for Hawaii, Long Valley and Central California between 1.5 and 15.0 Hz. J. Geophys. Res. 97:6643–6659. https://doi.org/10.1029/91JB03094
Miguel, F.De., Ibáñez, J.M., Alguacil, G., Canas, et al. (1992) 1–18 Hz Lg attenuation in the Granada Basin (southern Spain). Geophys. J. Int. 111:270–280. https://doi.org/10.1111/j.1365-246X.1992.tb00576.x
Mitchell, B.J., Hwang, H.J. (1987) Effect of low Q sediments and crustal Q on Lg attenuation in the United States. Bull. Seism. Soc. Am. 77:1197–1210. https://doi.org/10.1785/BSSA0770041197
Mitchell, B.J. (1995) Anelastic structure and evolution of the continental crust and upper mantle from seismic surface wave attenuation. Rev. Geophys. 33:441–462. https://doi.org/10.1029/95RG02074
Mitchell B.J., Baqer, S., Akinci, A., L. Cong, L. (1998) Lg coda Q in Australia and its relation to crustal structure and evolution. Pure Appl. Geophys. 153:639–653. https://doi.org/10.1007/s000240050211
Mitra, S., Pristley, K., Gaur, V.K., Rai, S.S. (2006) Frequency-dependent Lg attenuation in the Indian Shield. Bull. Seism. Soc. Am. 96(6):2449–2456. https://doi.org/10.1785/0120050152
Nandy, D.R. (2001) Geodynamics of Northeastern India and the Adjoining Region. ACB Publications, Kolkata India, pp.209.
Nayak, G.K., Rao, V.K., Rambabu, H.V., Kayal, J.R. (2008) Pop-up tectonics of the Shillong Plateau in the great 1897 earthquake (Ms8.7): insights from the gravity in conjunction with the recent seismological results. Tectonics 27:1–8. https://doi.org/10.1029/2006TC002027
Nuttli, O.W. (1973) Seismic wave attenuation and magnitude relation for eastern North America. J. Geophys. Res. 78:876–885. https://doi.org/10.1029/JB078i005p00876
Nuttli, O.W. (1978) A Time-domain study of the attenuation of 10 Hz waves in the New Madrid seismic zone. Bull. Seism. Soc. Am. 68:343–355. https://doi.org/10.1785/BSSA0680020343
Ojeda, A., Ottemöller, L. (2002) QLg tomography in Colombia. Phys. Earth Planet. Int. 130:253–270. https://doi.org/10.1016/S0031-9201(02)00010-9
Ottemöller, L. (2002) Lg wave Q tomography in Central America. Geophys. J. Int. 150:295–302. https://doi.org/10.1046/j.1365-246X.2002.01715.x
Ottemöller, L., Shapiro, N.M., Singh, S.K., Pacheco, J.F. (2002) Lateral variation of Lg wave propagation in southern Mexico. J. Geophys. Res. 107(B1) https://doi.org/10.1029/2001JB000206
Rai, S.S., Ashish, Padhi, A., Sharma, P.R. (2009) High crustal seismic attenuation in Ladakh–Karakoram. Bull. Seism. Soc. Am. 99(1):407–415. https://doi.org/10.1785/0120070261
Sargeant, S., Ottemöller, L. (2009) Lg wave attenuation in Britain. Geophys. J. Int. 179:1593–1606. https://doi.org/10.1111/j.1365-246X.2009.04325.x
Sarkar, S., Singh, C., Tiwari, A.K., Kumar, M.R., Dubey, A.K., et al. (2024) 2-D Sn wave attenuation tomography beneath the Eastern Himalaya. Geophys. J. Int. 237:1490–1504. https://doi.org/10.1093/gji/ggae123
Satyabala, S.P. (2003) Oblique Plate Convergence in the Indo–Burma (Myanmar) Subduction Region. Pure Appl. Geophys. 160:1611–1650. https://doi.org/10.1007/s00024-003-2378-0
Sato, H., Sacks, I.S. (1990) Magma generation in the upper mantle inferred from seismic measurements in peridotite at high pressure and temperature. In: Ryan, M.P. (Ed.) Magma Transport and Storage. Wiley, New York, 277–292. https://search.worldcat.org/title/Magma-transport-and-storage/oclc/21298523
Shi, J., Kim, W.–Y., Richards, P.G. (1996) Variability of crustal attenuation in the northeastern United States from Lg waves. J. Geophys. Res. 101:25231–25242. (Erratum: 102:11899, 1997)
Shin, T.–C., Herrmann, R.B. (1987) Lg attenuation and source studies using 1982 Miramichi data. Bull. Seism. Soc. Am. 77(2):384–397. https://doi.org/10.1785/BSSA0770020384
Singh, C., Mondal, P., Singh, S., Mohanty, D.D., Jaiswal, et al. (2015) Lg attenuation tomographic models of Himalaya and southern Tibet. Tectonophysics 664:176–181. https://doi.org/10.1016/j.tecto.2015.09.009
Srivastava, R.K., Heaman, L.M., Sinha, A.K., Shihua, S. (2005) Emplacement age and isotope geochemistry of Sung Valley alkaline-carbonatite complex, Shillong Plateau, northeastern India: Implication for primary carbonate melt and genesis of the associated silicate rocks. Lithos. 81:33–54. https://doi.org/10.1016/j.lithos.2004.09.017
Stixrude, L., Lithgow–Bertelloni, C. (2005) Mineralogy and elasticity of the oceanic upper mantle: Origin of the low-velocity zone. J. Geophys. Res. 110(B03204). https://doi.org/10.1029/2004JB002965
Thatcher, W., England, P.C. (1998) Ductile shear zones beneath strike–slip faults: Implications for the thermomechanics of the San Andreas fault zone. J. Geophys. Res. 103(B1):891–905. https://doi.org/10.1029/97JB02274
Veena, K., Pandey, B.K., Krishnamurthy, P., Gupta, J.N. (1998) Pb, Sr and Nd isotropic systematics of the carbonatites of Sung valley, Meghalaya, Northeast India: Implications for contemporary plume-related mantle source characteristics. J. Petrol. 39(11–12):1875–1884. https://doi.org/10.1093/petroj/39.11-12.1875
Wang, S., Hearn, T., Pei, S., Xu, Z., Ni, J., et al. (2005). Amplitude tomography from ML-magnitude data beneath China. Meeting Notes- T41 A MCC: Level 2., AGU Fall meeting, 85(52).
Xie, J., Mitchell, B.J. (1990) A back-projection method for imaging large-scale lateral variation of Lg Coda Q with application to continental Africa. Geophys. J. Int. 100(2):161–181. https://doi.org/10.1111/j.1365-246X.1990.tb02477.x
Xie, J., Gok, R., Ni, J., Aoki, Y. (2004) Lateral variations of crustal seismic attenuation along the INDEPTH profiles in Tibet from Lg Q inversion. J. Geophys. Res. 109(B10308). https://doi.org/10.1029/2004JB002988
Yang, Y., Forsyth, D.W., Weeraratne, D.S. (2007) Seismic attenuation near the East Pacific Rise and the origin of the low-velocity zone. Earth Planet. Sci. Lett. 258(1–2):260–268. https://doi.org/10.1016/j.epsl.2007.03.040
Yang, H., Zhu, L. (2010) Shallow low-velocity zone of the San Jacinto fault from local earthquake waveform modelling. Geophys. J. Int. 183(1):421–432. https://doi.org/10.1111/j.1365-246X.2010.04744.x
Zhang, T.R., Lay, T. (1995) Why the Lg phase does not traverse oceanic crust. Bull. Seism. Soc. Am. 85(6):1665–1678. https://doi.org/10.1785/BSSA0850061665
Zhang, H. (2006) Seismic Attenuation from seismic wave travel times to amplitude. Lecture Notes. home.ustc.edu.cn/~ly2014/Advances_in_Geosciences/week%2013/Attenuation%20Imaging.pdf
Zhou, L., Zhao, C., Chen, Z., Zheng, S. (2011) Amplitude tomography of Lg waves in Xinjiang and its adjacent regions. Bull. Seism. Soc. Am. 101(3):1302–1314. https://doi.org/10.1785/0120100267
Zhu, X.–Y. (2014) An inversion of Lg-wave attenuation and site response from seismic spectral ratios in the eastern China region. Bull. Seism. Soc. Am. 104(3):1389–1399. https://doi.org/10.1785/0120120359