Scaling relations for energy magnitudes

Main Article Content

Abstract

Homogenizing earthquake catalogs is an effort critical to fundamentally improving seismic studies for next-generation seismology. The preparation of a homogenous earthquake catalog for a seismic region requires scaling relations to convert different magnitude types, like the mb and Ms, to a homogenous magnitude, such as the seismic moment scale, Mwg, and energy magnitude scale, Me. Several recent studies addressed the preparation of homogenized earthquake catalogs, usually involving the estimation of proxies of moment magnitude Mw from local, ML, and teleseismic (Ms and mb) magnitude estimates. Instead of the standard least squares (SLR), most of such studies used the general orthogonal regression (GOR), while some used the Chi-square regression method. Here we critically discuss GOR and Chi-square regression theory and find that both are the same for the linear case — as expected since both stem from the same mathematical concept. Thus to foster an improved understanding of seismicity and seismic hazard, we used GOR methodology and derived global scaling relations individually between body, surface, energy, and seismic moment magnitude scales. For that purpose, we have compiled 13,576 and 13,282 events for Ms from ISC and NEIC, respectively, mb magnitude data for 1,266 events from ISC, 614 events from NEIC, and Mwg magnitude values for 6,690 events from NEIC and GCMT. We have also derived MS,ISC-to-Me and MS,NEIC-to-Me conversion relations in magnitude ranges of 4.7≤MS,ISC≤8.0 and 4.5≤MS,NEIC≤8.0, respectively. Likewise, we obtained mb,ISC-to-Me and mb,NEIC-to-Me conversion relations for ranges of 5.2≤mb,ISC≤6.2 and 5.3≤mb,NEIC≤6.5.  Since the number of data points was insufficient to derive the relations, we considered mb,NEIC up to M6.5.  Finally, we derived an MWg-to-Me conversion relation for the 5.2≤Mw≤8.2 range of magnitudes with focal depths <70 km.  Our scaling relations can be used for homogenizing earthquake catalogs and conducting seismicity and seismic hazard assessment studies with enhanced realism.


Google Scholar         ARK: https://n2t.net/ark:/88439/x063005


Permalink: https://geophysicsjournal.com/article/304


Copyright Clearance Center Reprints & Permissions


 

Article Details

How to Cite
Das, R., & Meneses, C. (2021). Scaling relations for energy magnitudes. Journal of Geophysics, 64(1), 1-11. Retrieved from https://journal.geophysicsjournal.com/JofG/article/view/304

References

Adcock, R.J. (1878) A problem in least squares. The Analyst 5:53–54

Beresnev, I.A. (2009) The reality of the scaling law of earthquake-source spectra. J. Seism. 13:433-436

Boatwright, J., Choy, G.L. (1986) Teleseismic estimates of the energy radiated by shallow earthquakes. J. Geophys. Res. 91:2095–2112

Bormann, P., Baumbach, M., Bock, M., Grosser, H., Choy, G.L., Boatwright, J. (2002) Seismic sources and source parameters. In: Bormann, P. (Ed.), in: IASPEI New Manual Seismological Observatory Practice, GeoForschungsZentrum Potsdam, Vol. 1, Chapter 3, 94 pp.

Bormann P, Liu, R., Xu., Z., Ren, K., Zhang, L., Wendt, S (2009) First application of the new IASPEI teleseismic magnitude standards to data of the China National Seismographic Network. Bull. Seism. Soc. Am. 99(3):1868-1891

Bormann, P., Saul, J. (2009) Earthquake Magnitude. Ency. Complex. Appl. Syst. Sci., 3, pp. 2473–2496

Bormann, P., Giacomo, D.D. (2010) The moment magnitude Mw and the energy magnitude Me: Common roots and differences, J. Seismol. 15:411–427

Bormann, P. (2020) Earthquake Magnitude. Encyclopedia of Solid Earth Geophysics, Encycl. Ea. Sci. Ser.

Carroll, R.J., Ruppert, D. (1996) The use and misuse of orthogonal regression estimation in linear errors-in-variables models. The Amer. Statis. 50(1):1–6

Choy, G.L., Boatwright, J. (1995) Global patterns of radiated seismic energy and apparent stress. J. Geophys. Res. 100:18205–18228

Choy, G.L., Kirby, S. (2004) Apparent stress, fault maturity and seismic hazard for normal-fault earthquakes at subduction zones. Geophys. J. Int. 159:991–1012

Castellaro, S., Mulargia, F., Kagan, Y.Y. (2006) Regression problems for magnitudes. Geophys. J. Int. 165:913-930

Das, R., Wason, H.R. (2010) Comment on "A homogenous and complete earthquake catalog for Northeast India and the adjoining region" by Yadav, R.B.S., Bormann, P., Rastogi, B.K., Das, M.C., Chopra, S., Seism. Res. Lett. 81(2):232-234

Das, R., Wason, H.R., Sharma, M.L. (2011) Global regression relations for conversion of surface wave and body wave magnitudes to moment magnitude. Natu. Haza. 59(2):801-810

Das, R., Wason, H.R., Sharma, M.L. (2012) Magnitude conversion to unified moment magnitude using orthogonal regression. Jour. Asi. Ear. Sci. 50(2):44-51

Das, R., Wason, H.R., Sharma, M.L. (2013) General Orthogonal Regression Relations between body wave and moment magnitudes, Seismol. Res. Lett. 84:219-224

Das, R., Wason, H.R., Sharma, M.L. (2014) Unbiased Estimation of Moment Magnitude from Body and Surface Wave Magnitude. Bull. Seism. Soc. Am. 104(4):1802-1811

Das, R., Wason, H.R., Gonzalez, G., Sharma, M.L., Choudhury, D., Narayan., R., Pablo, S. (2018) Earthquake Magnitude Conversion Problem. Bull. Seism. Soc. Am. 108(4):1995-2007

Das, R., Sharma, M.L., Wason, H.R., Choudhury, D., Gonzalez, G. (2019) A seismic moment magnitude scale. Bull. Seism. Soc. Am. 109(4):1542-1555

Fuller, W.A. (1987) Measurement Error Models. Wiley, New York, USA.

Giacomo, D, Parolai, D.S., Bormann, P., Grosser, H., Saul, J., Wang, R., Zschau, J. (2010) Suitability of rapid energy magnitude estimations for emergency response purposes. Geophys. J. Int. 180:361-374

Giacomo, D. (2011) Determination of the energy magnitude ME: application to rapid response purposes and insights to regional/local variabilities. University of Potsdam, Germany

Giacomo, D., Bondár, D.I., Storchak, D.A., Engdahl, E.R., Bormann, P., Harris, J. (2015) ISC-GEM: Global Instrumental Earthquake Catalogue (1900–2009): III. Recomputed Ms and mb, proxy Mw, final magnitude composition and completeness assessment. Phys. Earth Planet. In. 239:33–47

Gutenberg, B. (1945a) Amplitude of surface waves and magnitude of shallow earthquakes. Bull. Seism. Soc. Am. 35:3–12

Gutenberg, B. (1945b) Amplitudes of P, PP and S and magnitudes of shallow earthquakes. Bull. Seism. Soc. Am. 35:57-69

Gutenberg, B., Richter, C.F. (1956) Earthquake magnitude, intensity, energy, and acceleration (second paper). Bull. Seism. Soc. Am. 46(2):105–145

Hanks, T.C., Kanamori, H. (1979) A moment magnitude scale. J. Geophys. Res. 84:2348-2350

IASPEI (2013) Summary of Magnitude Working Group Recomms. on Standard Procedures for Determining Earthquake Magnitudes from Digital Data; www.iaspei.org/ commissions/CSOI/Summary_of_WG_recommendations.pdf

Kanamori, H. (1977) The energy release in great earthquakes. J. Geophys. Res. 82:2981-2987

Kendall, M.G., Stuart, A. (1979) The Advanced Theory of Statistics. Vol. 24th ed. Griffin, London, United Kingdom

Kummel, C.H. (1879) Reduction of Observed Equations Which Contain More Than One Observed Quantity. The Analyst 6:97-105

Lindley (1947) Regression lines and the linear functional relation. J. Roy. Statist. Soc. Suppl. 9:218-244

Madansky, A. (1959) The fitting of straight lines when both variables are subject to error. The Amer. Statis. 54(285):173-205

Nath, S.K., Thingbaijam, K.K.S. (2010) Comment on "Estimation of seismicity parameters for India". Seism. Res. Lett. 81:1001-1003

Petrova, N.V., Gabsatarova, P.I. (2019) Depth corrections to surface-wave magnitudes for intermediate and deep earthquakes in the regions of North Eurasia. J. Seismo. 24:203–219

Press, W.H., Teukolsky, S.A., Vetterling, W.T. (1992) Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, United Kingdom

Pearson, K. (1901) On Lines and Planes of Closest Fit to systems of Points in Space. Philos. Mag. 2:559-572

Richter, C.F. (1935) An instrumental earthquake magnitude scale. Bull. Seism. Soc. Am. 25(1):1-32

Ristau, J. (2009) Comparison of magnitude estimates for New Zealand earthquakes: moment magnitude, local magnitude, and teleseismic body-wave magnitude. Bull. Seism. Soc. Am. 99(3):1841-1852

Scordilis, E.M. (2006) Empirical global relations converting MS and mb to moment magnitude. J. Seism. 10:225-236

Stefanski, L.A. (2000) Measurement Error Models. Amer. Statist. Assoc. 95:452:1353-1358

Stein, S., Okal, E. (2005) Speed and size of the Sumatra earthquake. Nature 434:581–582

Stromeyer, D., Grünthal, G., Wahlström, R. (2004) Chi-square regression for seismic strength parameter relations, and their uncertainties, with application to an Mw based earthquake catalogue for central, northern and northwestern Europe. J. Seism. 8:143-153

Thingbaijam, K.K.S., Nath, S.K., Yadav, A., Raj, A., Walling, M.Y., Mohanty, W.K. (2008) Recent seismicity in Northeast India and its adjoining region. J. Seism. 12:107-123

Utsu, T. (2002) Relations between magnitude scales. In: International Handbook of Earthquake and Engineering Seismology, Part A, W. H. K. Lee, H. Kanamori, P. C .Jennings and C. Kisslinger (Eds.). Academic Press, Amsterdam, the Netherlands, 81(A):733-746

Vanek, J., Zatopek, A., Karnik, V., Kondorskaya, N.V., Riznichenko, Y.V., Savarensky, E.F., Soloviev, S.L., Shebalin, N.V. (1962) Standardization of magnitude scales. Bull. Acad. Sci. USSR Geophys Ser. 108-111

Wason, H.R., Das, R., Sharma, M.L. (2012) Magnitude conversion problem using general orthogonal regression. Geophys. J. Int. 190(2):1091-1096

Yadav, R.B.S., Bormann, P., Rastogi, B.K., Das, M.C., Chopra, S. (2009) A homogeneous and complete earthquake catalog for northeast India and the adjoining region. Seismol. Res. Lett. 80(4):609-627.