Journal of Geophysics https://journal.geophysicsjournal.com/JofG <div style="height: 100px;"> <div class="noselect" style="font-size: 0.9em;">The <strong>Journal of Geophysics</strong> (<em>J. Geophys.</em>) is the world's oldest and premier geophysical journal. It publishes research of great importance to geosciences, primarily in any areas of classical (theoretical) geophysics — including planetary physics, geodynamics, tectonophysics, seismology, physical and mathematical geodesy, atmosphere physics, and <a href="/JofG/about#nav-menu">more...</a></div> <p>&nbsp;</p> <div style="text-align: right; margin-top: -30px;"> <p class="responsiveimg3"><img src="/public/site/images/JoGeoph/openbook.png" alt="Journal of Geophysics"><a href="/JofG/about#nav-menu"><img class="flip" src="/public/site/images/JoGeoph/openbook-flip.png" alt="Journal of Geophysics"></a></p> </div> </div> en-US <div class="noselect"> <p style="text-align: center;"><img class="responsiveimg" style="width: 100%; height: auto;" src="/public/site/images/JoGeoph/Copyright.png" alt="Journal of Geophysics"></p> <p>Authors who publish with this journal as of Vol. 63 agree to the following terms:</p> <p>a. Authors share the copyright with this journal in equal parts (50% to the journal, 50% to the lead author), and grant the journal right of first publication, with the work after publication simultaneously licensed under <a style="color: #00bfff;" href="https://creativecommons.org/licenses/by-nc-nd/4.0/" target="_blank" rel="noopener">Creative Commons Attribution License CC BY-NC-ND 4.0</a> that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.</p> <p>b. Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal, and a reference to this copyright notice.</p> <p>c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) during the submission process, as this can lead to productive exchanges&nbsp; and earlier and greater citation of published work and better sales of the copyright.</p> <h3>Author Self-archiving</h3> <p>Authors retain copyright and grant the <strong>Journal of Geophysics</strong> right of first publication, with the work three years after publication simultaneously licensed under the <a href="https://creativecommons.org/licenses/by-nc-nd/4.0/" target="_blank" rel="noopener">Creative Commons BY-NC-ND 4.0 License</a> that allows others to share the work (with an acknowledgment of the work's authorship and initial publication in this journal), except for commercial purposes and for creating derivatives.</p> <p>Authors can enter into separate, additional, but non-commercial contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository, but not publish it in a book), with an acknowledgment of its initial publication in this journal.</p> <p>Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) before and during the submission process, as that can lead to productive exchanges, as well as earlier and greater citation of published work (See <a href="http://opcit.eprints.org/oacitation-biblio.html" target="_blank" rel="noopener"> The Effect of Open Access</a>).</p> <h3>Additional Notes</h3> <p>This journal is one of a handful of scholarly journals that publish original scientific works under CC BY-NC-ND 4.0 - the only Creative Commons license affording the authors' intellectual property absolute worldwide protection.</p> <p><strong>Journal of Geophysics</strong> is published under the scholar-publishers model, meaning authors do not surrender their copyright to us. Instead, and unlike corporate publishers like&nbsp;<em>Elsevier</em>&nbsp;or&nbsp;<em>Springer Nature</em>&nbsp;that resell copyright to third-parties for up to&nbsp;<strong>$80,000</strong>&nbsp;(per paper, per transaction!), the Journal of Geophysics authors share copyright equally with this journal.</p> <p>Therefore, all the proceeds from reselling copyright to third parties get shared to equal parts (50% to the journal, 50% to the lead author). Under the Berne Convention, this protection is an inheritable right that lasts for as long as the rightsholder lives + 50 years.</p> <p>By submitting to this journal, the lead author, on behalf of all co-authors, grants permission to this journal to represent all co-authors in negotiating copyright sales and collecting proceeds. The lead author should negotiate with his/her co-authors the modalities of distributing the lead author's portion of the proceeds. Usually, this is per pre-agreed percentage of each co-author's contribution to creating the copyrighted work. (<a href="https://journal.geophysicsjournal.com/JofG/about#nav-menu">more</a>...)</p> </div> office@geophysicsjournal.com (Editorial Office) info@geophysics.online (North America & Europe) Mon, 13 Mar 2023 00:00:00 +0000 OJS 3.1.2.0 http://blogs.law.harvard.edu/tech/rss 60 Global coupling mechanism of Sun resonant forcing of Mars, Moon, and Earth seismicity https://journal.geophysicsjournal.com/JofG/article/view/321 <p>Global seismicity on all three solar system bodies with <em>in situ</em> measurements (Earth, Moon, and Mars) is mainly due to the mechanical Rieger resonance (RR) of macroscopic flapping of the solar wind, driven by the well-known P<sub>Rg</sub>=~154-day Rieger period and commonly detected in most heliophysical data types and the interplanetary magnetic field (IMF). Thus, InSight mission marsquakes rates are periodic with P<sub>Rg</sub> as characterized by a very high (≫12) fidelity Φ=2.8·10<sup>6</sup> and by being the only ≥99%-significant spectral peak in the 385.8–64.3-nHz (1–180-day) band of highest planetary energies; the longest-span (v.9) release of raw data revealed the entire RR, excluding a tectonically active Mars. To check this, I analyzed the rates of the October 2015–February 2019, M<sub>w</sub>5.6+ earthquakes, and all (1969–1977) Apollo program moonquakes. To decouple the magnetospheric and IMF effects, I analyzed the Earth and Moon seismicity during the traversals of the Earth’s magnetotail vs. IMF. The analysis showed with ≥99–67% confidence and Φ≫12 fidelity that (an unspecified majority of) moonquakes and M<sub>w</sub>5.6+ earthquakes also recur at RR periods. Approximately half of the spectral peaks split but also into clusters that average into the usual Rieger periodicities, where magnetotail reconnecting clears the signal. Moonquakes are mostly forced at times of solar-wind resonance and not just during tides, as previously and simplistically believed. There is no significant dependence of sun-driven seismicity recurrence on solar cycles. Earlier claims that solar plasma dynamics could be seismogenic due to electrical surging or magnetohydrodynamic interactions between magnetically trapped plasma and water molecules embedded within solid matter or for reasons unknown are corroborated. This first conclusive recovery of the global coupling mechanism of solar-planetary seismogenesis calls for a reinterpretation of the seismicity phenomenon and reliance on global seismic magnitude scales. The predictability of solar-wind macroscopic dynamics is now within reach, which paves the way for long-term, physics-based seismic and space weather prediction and the safety of space missions. Gauss–Vaníček Spectral Analysis revolutionizes geophysics by computing nonlinear global dynamics directly (renders approximating of dynamics obsolete).</p> <p><a href="https://scholar.google.com/scholar?cluster=454301274499984824" target="_blank" rel="noopener"><img class="scholar" title="Google Scholar" src="/public/site/images/JoGeoph/gs.png" alt="Google Scholar"></a> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <strong>ARK</strong>: <a title="ARK Identifier" href="https://n2t.net/ark:/88439/x040901" target="_blank" rel="noopener">https://n2t.net/ark:/88439/x040901</a></p> <p>Permalink: https://geophysicsjournal.com/article/321</p> <p><a rel="noopener"><img class="scholar" src="/public/site/images/JoGeoph/related.png" alt="Related article" width="152px"></a> &nbsp; <a title="Related article" href="https://n2t.net/ark:/88439/x050940" target="_blank" rel="noopener"><br>News Feature (2023) Scientists now know that (and how) the Sun paces strong quakes — and not just on Earth. <em>J. Geophys.</em> 65(1):47</a></p> <p><a rel="noopener"><img class="scholar" src="/public/site/images/JoGeoph/PR.png" alt="Related article" width="81px"></a> &nbsp; <a title="Press release" href="https://www.openpr.com/news/2982920.html" target="_blank" rel="noopener"> Read the <strong>press release</strong> for this article</a></p> <p><a target="_blank" rel="noopener"><img class="scholar" title="Copyright Clearance Center" src="/public/site/images/JoGeoph/ccc.png" alt="Copyright Clearance Center"></a> <a title="Copyright Clearance Center" href="https://www.copyright.com/openurl.action?issn=2643-2986&amp;WT.mc.id=Journal%20of%20Geophysics" target="_blank" rel="noopener">Reprints &amp; Permissions</a></p> <p>&nbsp;</p> M. Omerbashich Copyright (c) https://journal.geophysicsjournal.com/JofG/article/view/321 Mon, 13 Mar 2023 00:00:00 +0000 Scientists now know that (and how) the Sun paces strong quakes — and not just on Earth https://journal.geophysicsjournal.com/JofG/article/view/328 <p><em>The discovery of clocking between the Sun-emitted waving jets of gas (solar wind) and seismicity on Earth, Moon, and Mars rewrites seismology and the astrophysics of stars and stellar systems.</em></p> <p>&nbsp;</p> <p><a target="_blank" rel="noopener"><img class="scholar" title="Google Scholar" src="/public/site/images/JoGeoph/gs.png" alt="Google Scholar"></a> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <strong>ARK</strong>: <a title="ARK Identifier" href="https://n2t.net/ark:/88439/x050940" target="_blank" rel="noopener">https://n2t.net/ark:/88439/x050940</a></p> <p>Permalink: https://geophysicsjournal.com/article/328</p> <p><a rel="noopener"><img class="scholar" src="/public/site/images/JoGeoph/related.png" alt="Related article" width="152px"></a> &nbsp; <a title="Related article" href="https://n2t.net/ark:/88439/x040901" target="_blank" rel="noopener"><br>Omerbashich (2023) Global coupling mechanism of Sun resonant forcing of Mars, Moon, and Earth seismicity. <em>J. Geophys.</em> 65(1):1-46</a></p> <p><a rel="noopener"><img class="scholar" src="/public/site/images/JoGeoph/PR.png" alt="Related article" width="81px"></a> &nbsp; <a title="Press release" href="https://www.openpr.com/news/2982920.html" target="_blank" rel="noopener"> Read the <strong>press release</strong> for this article</a></p> <p>&nbsp;</p> Copyright (c) https://journal.geophysicsjournal.com/JofG/article/view/328 Tue, 21 Mar 2023 00:00:00 +0000