Sun dims as failed star Jupiter tries to go full-on pulsar
A shut–vent magnetism buffer against incoming stars cuts stellar multiplicity, kills dwarf binaries
Article Sidebar
Vols. 1-18 (1924-1944), ISSN 0044-2801
Main Article Content
Abstract
A Sun–Jupiter decade-scale magnetic tangling appears from Wilcox Solar Observatory 1975–2021, N–S≲150 μT mean field data as a global response of solar magnetic fields to the recently discovered pulsar-like varying evolution of Jupiter global magnetoactivity in the 385.8–64.3 nHz (1–180-day) band of Rieger resonance of the solar wind since 2001. The Jovian sudden deviation has been so high at an extreme ≲20% field variance that it appears to have forced solar magnetoactivity devolution into an inverse-matching response at an effectively moderate ≲1.5% mean field variance. Thus, as Jupiter's decadal magnetoactivity evolved in a rare, increasingly sinusoidal fashion, seen in astronomy not only in magnetars but dwarf-novae as well, the Sun began reducing its magnetoactivity in a decreasingly sinusoidal fashion ~2002 (the epoch of Abbe number drop) to the solar cycle 24 extreme minimum. For a check, 2004–2021 WIND spacecraft data revealed a <0.5-var% (<5-dB) calm ≲50 nT interplanetary magnetic field at L1, slightly undulated by the Jupiter evolution. This revelation excluded the solar wind or the Sun as impulse sources, which agrees with the statistical fidelity waning down Jupiter–L1–Sun diffusion vector spaces, as 107–103–102. Magnetic tangling of stars with their hot (<0.1 AU) Jupiters was blamed in the past for observed star pulsation and superflaring 102–107 times more energetic than the strongest solar flare. Accordingly, the Sun's apparent ante-impulse locking creates a shock-absorbing mechanism—a routine Sun shutter response to Jupiter's remnant yet recurrent attempted phasing into the flare-brown-dwarf state—with which the Sun enters a grand minimum (sleep mode). I then propose that, since the mechanism must be primordial, Jupiter intermittently becomes an indirect driver of climate on Earth as the Sun prepares to discharge the mechanism-stored energy as a non-extinction ~1032-erg superflare (currently overdue). At the same time, this shutting-venting magnetism buffer represents a universal stellar defense mechanism by which stars repel other (active and inactive) incoming stars. The discovery explains Milky Way observations of the ~1:3 relative scarcity of companion-stars systems and why binaries, and progressively multinaries, occur more often with the stellar mass increase, i.e., as this sifting mechanism—remarkably efficient in dwarfs as predominant yet less massive star type—naturally weakens, yielding to gravity. The mechanism could be vital to our understanding of the origin of Jupiter, star formation processes, and the nature of gravity.
ARK: https://n2t.net/ark:/88439/x010002
Permalink: https://geophysicsjournal.com/article/322
Omerbashich (2024) Jupiter's primordial beat of superoutbursting stars. J. Geophys. 66(1):1-14
Article Details
References
Alfvén, H. (1942) Existence of electromagnetic-hydrodynamic waves. Nature 150(3805):405–406. https://doi.org/10.1038%2F150405d0
Aulbach, S., Heaman, L.M., Stachel, T. (2018) The Diamondiferous Mantle Root Beneath the Central Slave Craton. Geoscience and Exploration of the Argyle, Bunder, Diavik, and Murowa Diamond Deposits. ISBN 9781629496399. https://doi.org/10.5382/SP.20.15
Bai, T. (2003) Hot Spots for Solar Flares Persisting for Decades: Longitude Distributions of Flares of Cycles 19-23. Astrophys. J. 585:1114–1123. https://dx.doi.org/10.1086/346152
Bai T., Cliver E.W. (1990) A 154 day periodicity in the occurrence rate of proton flares. Astrophys. J. 363:299–309. https://doi.org/10.1086/169342
Basu, S. (2013) The peculiar solar cycle 24—where do we stand? J. Phys. 440:012001. https://doi.org/10.1088/1742-6596/440/1/012001
Bose, S., Nagaraju, K. (2018) On the variability of the Solar Mean Magnetic Field: contributions from various magnetic features on the surface of the Sun. Astrophys. J. 862:35. https://doi.org/10.3847/1538-4357/aaccf1
Cane, H.V., Richardson, I.G., von Rosenvinge, T.T. (1998) Interplanetary magnetic field periodicity of ∼153 days. Geophys. Res. Lett. 25(24):4437–4440. https://doi.org/10.1029/1998GL900208
Carbonell, M., Oliver, R., Ballester, J.L. (1992) Power spectra of gapped time series: a comparison of several methods. Astron. & Astrophys. 264:350–360. https://ui.adsabs.harvard.edu/#abs/1992A&A...264..350C
Danilović, S., Vince, I., Vitas, N., Jovanović, P. (2005) Time series analysis of long term full disk observations of the Mn I 539.4 nm solar line. Serb. Astron. J. 170:79–88. https://doi.org/10.2298/SAJ0570079D
Gonzalez, M.E., Dib, R., Kaspi, V.M., Woods, P.M., Tam, C.R., et al. (2010) Long-term X-ray changes in the emission from the anomalous X-ray pulsar 4U 0142+61. Astrophys. J. 716:1345–1355. https://dx.doi.org/10.1088/0004-637X/716/2/1345
Gratton, R., Squicciarini, V., Nascimbeni, V., Janson, M., Reffert, S., et al. (2023) Multiples among B stars in the Scorpius-Centaurus association. Astron. Astrophys. 678:A93. https://doi.org/10.1051/0004-6361/202346806
Griesmeier, J.-M., Stadelmann, A., Penz, T., Lammer, H., Selsis, F., et al. (2004) The effect of tidal locking on the magnetospheric and atmospheric evolution of “Hot Jupiters”. Astron. Astrophys. 425(2):753–762. https://doi.org/10.1051/0004-6361:2003568
Gurgenashvili, E., Zaqarashvili, T.V., Kukhianidze, V., Oliver, R., Ballester, J.L., et al. (2017) North–South Asymmetry in Rieger-type Periodicity during Solar Cycles 19–23. Astrophys. J. 845(2):137–148. https://dx.doi.org/10.3847/1538-4357/aa830a
Gurgenashvili, E., Zaqarashvili, T.V., Kukhianidze, V., Oliver, R., Ballester, J.L., et al. (2016) Rieger-type periodicity during solar cycles 14–24: estimation of dynamo magnetic field strength in the solar interior. Astrophys. J. 826(1):55. https://doi.org/10.3847/0004-637X/826/1/55
Kuznetsova, Yu.G., Pavlenko, E.P., Sharipova, L.M., Shugarov, S.Yu. (1999) Observations of Typical, Rare and Unique Phenomena in Close Binaries with Extremal Mass Ratio. Odessa Astron. Pub. 12:197–200. https://ui.adsabs.harvard.edu/#abs/1999OAP....12..197K
Lada, C.J. (2006) Stellar Multiplicity and the Initial Mass Function: Most Stars Are Single. Astrophys. J. 640(1):L63. https://doi.org/10.1086/503158
Lalitha S., Schmitt, J.H., Dash S. (2018) Atmospheric mass-loss of extrasolar planets orbiting magnetically active host stars. Mon. Not. R. Astron. Soc. 477(1):808–815. https://doi.org/10.1093/mnras/sty732
Lepping, R.P., Acũna, M.H., Burlaga, L.F., Farrell, W.M., Slavin, J.A., et al. (1995) The WIND magnetic field investigation. Space Sci. Rev. 71:207–229. https://doi.org/10.1007/BF00751330
Lockwood, M., Stamper, R. Wild, M. (1999) A doubling of the Sun's coronal magnetic field during the past 100 years. Nature 399:437–439. https://doi.org/10.1038/20867
Maehara, H., Shibayama, T., Notsu, Y., Notsu, S., Honda, S., et al. (2015) Statistical properties of superflares on solar-type stars based on 1-min cadence data. Earth Planets Space 67:59. https://doi.org/10.1186/s40623-015-0217-z
Maehara, H., Shibayama, T., Notsu, S., Notsu, Y., Nagao, T., et al. (2012) Superflares on solar-type stars. Nature 485:478–481. https://doi.org/10.1038/nature11063
von Neumann, J. (1942) A Further Remark Concerning the Distribution of the Ratio of the Mean Square Successive Difference to the Variance. Ann. Math. Statist. 13(1):86–88. https://doi.org/10.1214/aoms/1177731645
von Neumann, J. (1941) Distribution of the Ratio of the Mean Square Successive Difference to the Variance. Ann. Math. Statist. 12(4):367–395. https://doi.org/10.1214/aoms/1177731677
Niroma, T. (2009) Understanding Solar Behaviour and its Influence on Climate. In: Natural drivers of weather and climate. Special Issue of Energy & Environment 20(1/2):145–159. https://doi.org/10.1260%2F095830509787689114
Omerbashich, M. (2024) Jupiter's primordial beat of superoutbursting stars. J. Geophys. 66(1):1–14. https://n2t.net/ark:/88439/x001607
Omerbashich, M. (2023a) The Sun as a revolving-field magnetic alternator with a wobbling-core rotator from real data. J. Geophys. 65(1):48–77. https://n2t.net/ark:/88439/x080008
Omerbashich, M. (2023b) Global coupling mechanism of Sun resonant forcing of Mars, Moon, and Earth seismicity. J. Geophys. 65(1):1–46. https://n2t.net/ark:/88439/x040901
Omerbashich, M. (2021) Non-marine tetrapod extinctions solve extinction periodicity mystery. Hist. Biol. 34(1):188–191. https://doi.org/10.1080/08912963.2021.1907367
Omerbashich, M. (2009) Method for Measuring Field Dynamics. US Patent #20090192741, United States Patent and Trademark Office. https://worldwide.espacenet.com/publicationDetails/biblio?CC=US&NR=2009192741A1
Omerbashich, M. (2007) Magnification of mantle resonance as a cause of tectonics. Geodinamica Acta 20:6:369–383. https://doi.org/10.3166/ga.20.369-383
Omerbashich, M. (2006) Gauss–Vaníček Spectral Analysis of the Sepkoski Compendium: No New Life Cycles. Comp. Sci. Eng. 8(4):26–30. https://doi.org/10.1109/MCSE.2006.68 (Erratum due to journal error. Comp. Sci. Eng. 9(4):5–6. https://doi.org/10.1109/MCSE.2007.79; full text: https://arxiv.org/abs/math-ph/0608014)
Omerbashich, M. (2003) Earth-model Discrimination Method. Ph.D. Dissertation, pp.129. ProQuest, USA. https://doi.org/10.6084/m9.figshare.12847304
Pagiatakis, S. (1999) Stochastic significance of peaks in the least-squares spectrum. J. Geod. 73:67–78. https://doi.org/10.1007/s001900050220
Pettersen, B.R. (1989) A review of stellar flares and their characteristics. Sol. Phys. 121:299–312. https://doi.org/10.1007/BF00161702
Poppenhaeger, K. (2015) Stellar magnetic activity – Star-Planet Interactions. Invited review for the CoRoT Symposium 3/Kepler KASC-7 joint meeting. Toulouse, France, July 2014. https://doi.org/10.1051/epjconf/201510105002
Poppenhaeger, K., Schmitt, J.H.M.M. (2011) A correlation between host star activity and planet mass for close-in extrasolar planets? Astrophys. J. 735:59. https://doi.org/10.1088/0004-637X/735/1/59
Poppenhaeger, K., Robrade, J., Schmitt, J.H.M.M. (2010) Coronal properties of planet-bearing stars. Astron. Astrophys. 515:A98. https://doi.org/10.1051/0004-6361/201014245
Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P. (2007) Numerical Recipes: The Art of Scientific Computing (3rd Ed.). Cambridge University Press, United Kingdom. ISBN 9780521880688
Raymond, S.N., Morbidelli, M. (2022) Planet formation: key mechanisms and global models. arXiv. https://arxiv.org/abs/2002.05756. In: Biazzo, K., Bozza, V., Mancini, L., Sozzetti, A. (Eds.) Demographics of Exoplanetary Systems. Lecture Notes of the 3rd Advanced School on Exoplanetary Science. https://www.springer.com/gp/book/9783030881238
Rieger, E., Share, G.H., Forrest, D.J., Kanbach, G., Reppin, C., et al. (1984) A 154-day periodicity in the occurrence of hard solar flares? Nature 312:623–625. https://doi.org/10.1038/312623a0
Rubenstein, E.P., Schaefer, B.E. (2000) Are Superflares on Solar Analogues Caused by Extrasolar Planets? Astrophys. J. 529(2):1031. https://doi.org/10.1086/308326
Schaefer, B.E., King, J.R., Deliyannis, C.P. (2000) Superflares on Ordinary Solar-Type Stars. Astrophys. J. 529(2):1026. https://doi.org/10.1086/308325
Scharf, C.A. (2010) Possible constraints on exoplanet magnetic field strengths from planet-star interaction. Astrophys. J. 722:1547–1555. http://dx.doi.org/10.1088/0004-637X/722/2/1547
Scherrer, P.H., Wilcox, J.M., Svalgaard, L., Duvall, Jr. T.L., Dittmer, P.H., et al. (1977) The mean magnetic field of the Sun: Observations at Stanford. Sol. Phys. 54:353–361. https://doi.org/10.1007/BF00159925
Spruit, H.C. (2017) Essential magnetohydrodynamics for astrophysics. An introduction to magnetohydrodynamics in astrophysics. Max Planck Institute for Astrophysics report. arXiv. https://doi.org/10.48550/arXiv.1301.5572
Taylor, J., Hamilton, S. (1972) Some tests of the Vaníček Method of spectral analysis. Astrophys. Space Sci. 17:357–367. https://doi.org/10.1007/BF00642907
Tsurutani, B.T., Gonzalez, W.D., Lakhina, G.S., Alex, S. (2003) The extreme magnetic storm of 1–2 September 1859. J. Geophys. Res. 108:1268. https://doi.org/10.1029/2002JA009504
Tu, Z.-L., Yang, M., Zhang, Z.J., Wang, F.Y. (2020) Superflares on Solar-type Stars from the First Year Observation of TESS. Astrophys. J. 890:46. https://doi.org/10.3847/1538-4357/ab6606
Usoskin, I.G., Gallet, Y., Lopes, F., Kovaltsov, G.A., Hulot, G. (2016) Solar activity during the Holocene: the Hallstatt cycle and its consequence for grand minima and maxima. Astron. Astrophys. 587:A150. http://dx.doi.org/10.1051/0004-6361/201527295
Usoskin, I.G., Solanki, S.K., Kovaltsov, G.A. (2007) Grand minima and maxima of solar activity: new observational constraints. Astron. Astrophys. 471(1):301–309. https://doi.org/10.1051/0004-6361:20077704
Vaníček, P. (1969) Approximate Spectral Analysis by Least-Squares Fit. Astrophys. Space Sci. 4(4):387–391. https://doi.org/10.1007/BF00651344
Vaníček, P. (1971) Further Development and Properties of the Spectral Analysis by Least-Squares Fit. Astrophys. Space Sci. 12(1):10–33. https://doi.org/10.1007/BF00656134
Wells, D.E., Vaníček, P., Pagiatakis, S. (1985) Least squares spectral analysis revisited. Department of Geodesy & Geomatics Engineering Technical Report 84, University of New Brunswick, Canada. http://www2.unb.ca/gge/Pubs/TR84.pdf
de Wit, J., Lewis, N.K., Knutson, H.A., Fuller, J., Antoci, V., et al. (2017) Planet-induced Stellar Pulsations in HAT-P-2's Eccentric System. Astrophys. J. Lett. 836(2):L17. https://doi.org/10.3847/2041-8213/836/2/L17
Zaqarashvili, T.V., Carbonell, M., Oliver, R., Ballester, J.L. (2010) Magnetic Rossby waves in the solar tachocline and Rieger-type periodicities. Astrophys. J. 709(2):749–758. https://doi.org/10.1088/0004-637X/709/2/749