Modeling of uniform rotation effects on homogeneous decaying turbulence

Main Article Content

Abstract

Hydrodynamic turbulence under rotation is often encountered in geophysics and astrophysics, inspiring extensive research into the effects of rotation on turbulence. Amongst numerous scenarios in those studies, the rotating homogeneous decaying turbulence stands out as a canonical case study of turbulence theory. I report a physical 2nd-order closure model to simulate homogeneous decaying turbulence under uniform rotation, which corrects a previous solution. The rotation effects are functions of the rotation rate Ω, the parallel component of the Reynolds stress tensor, and the integral length scale along the rotation axis, together with its isotropic value. The results demonstrate that the new remedying model effectively reproduces theoretical predictions, aligning closely with data from direct numerical simulations and outperforming old physical models from the same class.


Google Scholar         ARK: https://n2t.net/ark:/88439/x071373


Permalink: https://geophysicsjournal.com/article/361


Copyright Clearance Center Reprints & Permissions


 

Article Details

How to Cite
Marzougui, H. (2024). Modeling of uniform rotation effects on homogeneous decaying turbulence. Journal of Geophysics, 66(1), 60-66. Retrieved from https://journal.geophysicsjournal.com/JofG/article/view/361

References

Bardina, J., Ferziger, J., Rogallo, R. (1985) Effect of rotation on isotropic turbulence: Computation and modeling. J. Fluid Mech. 154:321–336. https://doi.org/10.1017/S0022112085001550

Bartello, P., Metais, O., Lisieur, M. (1994) Coherent structures in rotating three-dimensional turbulence. J. Fluid Mech. 273:1–29. https://doi.org/10.1017/S0022112094001837

Bartoud, N., Plapp, B., She, Z., Swinney, L. (2002) Anomalous self-similarity in a turbulent rapidly rotating fluid. Phys. Rev. Lett. 88:114501. https://doi.org/10.1103/PhysRevLett.88.114501

Cambon, C., Mansour, N., Godeferd, S. (1997) Energy transfer in rotating turbulence. J. Fluid. Mech. 337:303–332. https://doi.org/10.1017/S002211209700493X

Davidson, P.A. (2010) On the decay of Saffman turbulence subjected to rotation, stratification or an imposed magnetic field. J. Fluid Mech. 663:268–292. https://doi.org/10.1017/S0022112010003496

Deming, N., Jianzhong, L., Limin, Q. (2013) Direct numerical simulations of the decaying turbulence in rotating flows via the MRT-lattice Boltzmann method. Int. J. Comp. Fluid Dyn. 27:173–183. https://doi.org/10.1080/10618562.2013.779679

Fu, S., Launder, B., Tselepidakis, D. (1987) Accommodating the effects of high strain rates in modelling the pressure-strain correlation. UMIST Mech. Engr. Dept. Rep. TFD/87/5.

Gatski, B., Speziale, C.G. (1993) On explicit algebraic stress models for complex turbulent flows. J. Fluid Mech. 254:59–78. https://doi.org/10.1017/S0022112093002034

Hanjalić, K., Launder, B. (1980) Sensitizing the dissipation equation to irrotational strains. ASME J. Fluids Eng. 102:34–40. https://doi.org/10.1115/1.3240621

Haworth, C., Pope, B. (1986) A generalized Langevin model for turbulent flows. Phys. Fluids 29:387–405. https://doi.org/10.1063/1.865723

Huidan, Y., Grimaji, S., Luo, S. (2005) DNS and LES of decaying isotropic turbulence with and without frame rotation using lattice Boltzmann method. J. Comput. Phys. 209:599–616. https://doi.org/10.1016/j.jcp.2005.03.022

Jacquin, L., Leuchter, O., Cambon, C., Mathieu, J. (1990) Homogeneous turbulence in the presence of rotation. J. Fluid Mech. 220:1–52. https://doi.org/10.1017/S0022112090003172

Launder, B., Reece, G.W., Rodi, W. (1975) Progress in the development of a Reynolds stress turbulence closure. J. Fluid Mech. 68:537–566. https://doi.org/10.1017/S0022112075001814

Launder, B., Spalding, D. (1974) The numerical Computation of turbulent flows. Comput. Methods Appl. Mech. Engr. 3:269–289. https://doi.org/10.1016/0045-7825(74)90029-2

Mahalov, A., Zhou, Y. (1996) Analytical and phenomenological studies of rotating turbulence. Phys. Fluids 8:2138–2152. https://doi.org/10.1063/1.868988

Mansour, N., Cambon, C., Speziale, C.G. (1991) Single point modeling of initially isotropic turbulence under uniform rotation. Center for Turbulence Research, Stanford University, Ann. Res. Briefs p.159.
https://ui.adsabs.harvard.edu/abs/1991arb..nasa..159M

Marzougui, H. (2016) K – ∈ model for rotating homogeneous decaying turbulence. Can. J. Phys. 94(11):1200–1204. https://doi.org/10.1139/cjp-2016-0543

Morinishi, Y., Nakabayashi, K., Ren, S. (2001b) Dynamics of anisotropy on decaying homogeneous turbulence subjected to system rotation. Phys. Fluids 13:2912–2922. https://doi.org/10.1063/1.1398040

Morinishi, Y., Nakabayashi, K., Ren, S. (2001a) A new DNS algorithm for rotating homogeneous decaying turbulence. Int. J. Heat Fluid Flow 22:30–38. https://doi.org/10.1016/S0142-727X(00)00067-9

Okamoto, M. (1995) Theoretical turbulence modelling of homogeneous decaying flow in a rotating frame. J. Phys. Soc. Japan 64:2854–2867. https://doi.org/10.1143/JPSJ.64.2854

Park, J., Chung, M. (1999) A model for the decay of rotating homogeneous turbulence. Phys. Fluids. 11:1544–1549. https://doi.org/10.1063/1.870017

Pope, S. (1978) An explanation of the turbulent round jet/plane jet anomaly. AIAA J. 16(3):279–281. https://doi.org/10.2514/3.7521

Raj, R. (1975) Form of the turbulence dissipation equation as applied to curved and rotating turbulent flows. Phys. Fluids. 18:1241–1244. https://doi.org/10.1063/1.861008

Ristorcelli, R. (1996) Toward a turbulence constitutive relation for rotating flows. NASA Contractor Report 201621. https://ntrs.nasa.gov/api/citations/19970004242/downloads/19970004242.pdf

Shih, T.-H., Lumley, J. (1985) Modeling of pressure correlation terms in Reynolds stress and scalar flux equations. Sibley School of Mechanical and Equations Aerospace Engineering, Cornell University Tech. Rep. FDA 85(3).

Shimomura, Y. (1993) Turbulence modelling suggested by system rotation, in Near-wall turbulent flows. Edited by So, R.M.C., Speziale, C.G., Launder, B., Elsevier Science, Amsterdam. ISBN 0444896635.
https://www.researchgate.net/publication/275213056_Near-Wall_Turbulent_Flows

Speziale, C.G. (1989) Turbulence modelling in non-inertial frames of reference. Theor. Comput. Fluid Dyn. 1:3–19. https://doi.org/10.1007/BF00271419

Speziale, C.G. (1985) Second-order closure models for rotating turbulent flows. Icase report N085-49. https://ntrs.nasa.gov/citations/19860007047

Speziale, C.G., Gatski, T., Mhuiris, N. (1990) A critical comparison of turbulence models for homogeneous shear flows in a rotating frame. Phys. Fluids 2:1678 –1684. https://doi.org/10.1063/1.857575

Speziale, C.G., Mansour, N., Rogallo, S. (1987) The decay of isotropic turbulence in a rapidly rotating frame. Proc. the 1987 Summer Program, Center of Turbulence Research, Stanford University & NASA Ames Research Center. https://ntrs.nasa.gov/citations/19880013723

Speziale, C.G., Raj, R., Gatski, B. (1990) Modeling the dissipation rate in rotating turbulent flows. Icase Report No. 90-88. https://ntrs.nasa.gov/citations/19910006993

Speziale, C.G., Sarkar, S., Gatski, B. (1991) Modelling the pressure-strain correlation of turbulence: an invariant dynamical systems approach. J. Fluid. Mech. 227:245–272. https://doi.org/10.1017/S0022112091000101

Vorobev, A., Zikanov, O., Davidson, P., Knaepen, B. (2005) Anisotropy of magnetohydrodynamic turbulence at low magnetic Reynolds number. Phys. Fluids 17:125105. https://doi.org/10.1063/1.2140847

Yang, X., Domaradzki, J. (2004) Large eddy simulations of decaying rotating turbulence. Phys. Fluids 16:4088–4104. https://doi.org/10.1063/1.1790452

Yeung, K., Zhou, Y (1998) Numerical study of rotating turbulence with external forcing. Phys. Fluids 10:2895–2909. https://doi.org/10.1063/1.869810

Zeman, O. (1994) A note on the spectra and decay of rotating homogeneous turbulence. Phys. Fluids 6:3221–3223. https://doi.org/10.1063/1.868053

Zhou, Y. (1995) A phenomenological treatment of rotating turbulence. Phys. Fluids 7:2092–2094. https://doi.org/10.1063/1.868457