Frequency dependence of Q for seismic body waves in the Earth's mantle
Article Sidebar
Vols. 1-18 (1924-1944), ISSN 0044-2801
Main Article Content
Abstract
In this paper an attempt is made to determine the frequency dependence of Q in the Earth's mantle in the frequency range 0.03–1.5 Hz from the spectral ratio of teleseismic S- and P-waves. Digital broad-band data of 17 earthquakes at 40° < ∆ < 90° recorded at the Central Seismological Observatory of the Federal Republic of Germany at Erlangen were analysed. The method implies the following assumptions: frequency independence of the crustal transfer function, proportionality of Qp (f) and Qs (f), and proportionality of P- and S-source spectra. This last and most critical assumption was carefully investigated by kinematic and dynamic source models. The calculated Q-spectra for the individual events vary considerably but all have in common a general increasing trend with frequency which can best be represented by a power law Q ≈ f α with 0.25 < α < 0.6. A further increase in slope near 1 Hz suggests an absorption band corner with an upper cut-off relaxation time τm = 0.33 ± 0.18 s. The significance of the Q-spectra and their variability is estimated by manipulating semi-synthetic seismograms with different error-producing processes such as length and shape of the time window, superposition of noise, digital filter process and source spectra. It is concluded that none of these processes is able to destroy or to imitate the observed increasing trend of Q with frequency. The results are compared with those from other seismological investigations and from laboratory experiments on mantle rocks at high temperature and in the seismic frequency band.
ARK: https://n2t.net/ark:/88439/y081538
Permalink: https://geophysicsjournal.com/article/270
Article Details
References
Aki, K. (1980) Attenuation of shear waves in the lithosphere for frequencies from 0.05 to 25 Hz. Phys. Earth Planet. Inter. 21:50-60
Anderson, D.L., Given, J.W. (1982) Absorption band Q model for the Earth. J. Geophys. Res. 87:3893-3904
Anderson, D.L., Hart, R.S. (1978) Attenuation models of the Earth. Phys. Earth Planet. Inter. 16:289-306
Anderson, D.L., Minster, J.B. (1979) The frequency dependence of Q in the Earth and implications for mantle rheology and chandler wobble. Geophys. J. R. Astron. Soc. 58:431-440
Berckhemer, H., Auer, F., Drisler, J. (1979) High-temperature anelasticity and elasticity of mantle peridotite. Phys. Earth Planet. Inter. 20:48-59
Berckhemer, H., Kampfmann, W., Aulbach, E., Schmeling, H. (1982) Shear modulus and Q of forsterite and dunite near partial melting from forced-oscillation experiments. Phys. Earth Planet. Inter. 29:30-41
Burdick, L.J. (1978) t* for S waves with a continental raypath. Bull. Seismol. Soc. Am. 68:1013-1030
Clements, J. (1982) Intrinsic Q and its frequency dependence. Phys. Earth Planet. Inter. 27:286-299
Der, Z.A., McEifresh, T.W., O'Donnell, A. (1982) An investigation of the regional variations and frequency dependence of anelastic attenuation in the mantle under the Umted States in the 0.5-4 Hz band. Geophys. J. R. Astron. Soc. 69:67-99
Frasier, C.W., Chowdhury, D.K. (1974) Effect of scattering on PcP/P amplitude ratios at Lasa from 40° to 84° distance. J. Geophys. Res. 79:5469-5477
Futterman, W.I. (1962) Dispersive body waves. J. Geophys. Res. 67:5279-5291
Hanks, T.C. (1981) The corner frequency shift, earthquake source models, and Q. Bull. Seismol. Soc. Am. 71:597-612
Ito, K., Kennedy, G.C. (1967) Melting and phase relations in a natural peridotite to 40 kilobars. Am. J. Sci. 265:519-538
Kanamori, H. (1967) Spectrum of short-period core phases in relation to the attenuation in the mantle. J. Geophys. Res. 72:2181-2186
Kanamori, H., Anderson, D.L. (1977) Importance of physical dispersion in surface wave and free oscillation problems: Review. Rev. Geophys. Space Phys. 15:105-112
Kara to, S. (1981) Comment on the effect of pressure on the rate of dislocation recovery in olivine, by D. L. Kohlstedt et al. J. Geophys. Res. 86:9319
Karato, S., Ogawa, M. (1982) High pressure recovery of olivine: Implications for creep mechanism and creep activation volume. Phys. Earth Planet. Inter. 28:102-117
Kohlstedt, D.L., Nichols, H.P.K., Hornack, P. (1980) The effect of pressure on the rate of dislocation recovery in olivine. J. Geophys. Res. 85:3122-3130
Kurita, T. (1969) Spectral analysis of seismic waves, Part 1. Data windows for the analysis of transient waves. Spec. Contnb. Geophys. Inst. Kyoto Univ. 9:97-122
Leblanc, G.S.J. (1967) Truncated crustal transfer functions and fine crustal structure determination. Bull. Seismol. Soc. Am. 57:719-733
Liu, H.-P., Anderson, D.L., Kanamori, H. (1976) Velocity dispersion due to anelasticity; implications for seismology and mantle composition. Geophys. J. R. Astron. Soc. 47:41-58
Lundquist, G.M., Cormier, V.F. (1980) Constraints on the absorption band model of Q. J. Geophys. Res. 85:5244-5256
Madariaga, R. (1976) Dynamics of an expanding circular fault. Bull. Seismol. Soc. Am. 66:639-666
Mitchell, B.J. (1980) Frequency dependence of shear wave internal friction in the continental crust of eastern North Amenca. J. Geophys. Res. 85:5212-5218
Mitchell, B.J., Helmberger, D.V. (1973) Shear velocities at the base of the mantle from observations of S and ScS. J. Geophys. Res. 78:6009-6020
Okada, H., Suzuki, S., Asano, S. (1970) Anomalous underground structure in the Matsushiro earthquake swarm area as derived from a fan shooting technique. Bull. Earthquake Res. Inst. 48:811-833
Roecker, S.W., Tucker, B., King, J., Hatzfeld, D. (1982) Estimates of Q in Central Asia as a function of frequency and depth using the coda of locally recorded earthquakes. Bull. Se1smol. Soc. Am. 72:129-150
Ross, J.V., Ave'Lallemant, H.C., Carter, N.L. (1979) Activation volume for creep in the upper mantle. Science 203:261-263
Sacks, I.S. (1989) Qs of the lower mantle-A body wave determination. Carnegie Institution, Ann. Rep. Dir. Department of Terrestrial Magnetism, Year Book 79:508-512
Shimsoni, M., Ben-Menahem, A. (1970) Computation of the divergence coefficient for seismic phases. Geophys. J. R. Astron. Soc. 21:285-294
Singh, K., Fried, J., Aspel, R., Brune, J. (1982) Spectral attenuation of SH-wave along the Imperial Fault and a prehmmary model of Q in the region. Bull. Seismol. Soc. Am. 72:2003-2016
Sipkin, S.A., Jordan, T.H. (1979) Frequency dependence of Q ScS. Bull. Seismol. Soc. Am. 69:1055-1079
Touvenot, F. (1983) Frequency dependence of the quality factor in the upper crust: A deep seismic sounding approach. Geophys. J. R. Astron. Soc. 73:427-447
Tsujiura, M. (1966) Frequency analysts of seismic waves (1). Bull. Earthquake Res. Inst. 44:873-891
Ulug, A. (1983) Frequenzabhangigkeit von Q seismischer Raumwellen im Erdmantel. Ber. Inst. Meteorol. u. Geophys. Umv. Frankfurt, 49
Wielandt, E., Streckeisen, G. (1982) The leaf-spring seismometer: design and performance. Bull. Seismol. Soc. Am. 72:2349-2367