The reflectivity method for different source and receiver structures and comparison with GRF data

Main Article Content

Abstract

A brief review of the reflectivity method is given, including a new analytical solution of the layer matrix equation. The method is extended to allow the computation of complete body waves for different source and receiver structures. Applications of theoretical seismograms to the Grafenberg broadband data are shown. Examples are the detection of depth phases at regional distances in southern Germany, which leads to improved source depth determinations, and the computation of the complete P-wave group for events in ocean-covered areas.


Google Scholar           ARK: https://n2t.net/ark:/88439/y037003


Permalink: https://geophysicsjournal.com/article/233


 

Article Details

How to Cite
Kind, R. (1985). The reflectivity method for different source and receiver structures and comparison with GRF data. Journal of Geophysics, 58(1), 146-152. Retrieved from https://journal.geophysicsjournal.com/JofG/article/view/233

References

Brustle, W., Muller, G. (1983) Moment and duration of shallow earthquakes from Love-wave modeling for regional distances. Phys. Earth Planet. Inter. 32:312-324

Chang-Eob Baag, Langston, Ch.A. (1985) A WKBJ spectral method for computation of SV synthetic seismograms in a cylindrically symmetric medium. Geophys. J. R. Astron. Soc. 80:387-417

Dunkin, J.W. (1965) Computation of modal solutions in layered media at high frequencies. Bull. Seismol. Soc. Am. 55 (2):335-358

Engdahl, E.R., Kind, R. (1985) Interpretation of broadband seismograms from central Aleutian earthquakes. Ann. Geophys. (In press)

Fuchs, K. (1968) The reflection of spherical waves from transition zones with arbitrary depth-dependent elastic moduli and density. J. Phys. Earth 16:27-41 (Special Issue)

Fuchs, K., Muller, G. (1971) Computation of synthetic seismograms with the reflectivity method and comparison with observations. Geophys. J. R. Astron. Soc. 23:417-433

Harkrider, D.G. (1964) Surface waves in multilayered elastic media. 1. Rayleigh and Love waves from buried sources in a multilayered elastic halfspace. Bull. Seismol. Soc. Am. 54:627-679

Kennett, B.L.N. (1975) Theoretical seismograms for calculation of laterally varying crustal structures. Geophys. J. R. Astron. Soc. 42:579-589

Kennett, B.L.N. (1983) Seismic wave propagation in stratified media. Cambridge University Press

Kind, R. (1978) The reflectivity method for a buried source. J. Geophys. 44:603-612

Kind, R. (1979a) Extensions of the reflectivity method. J. Geophys. 45:373-380

Kind, R. (1979b) Observations of sPn from Swabian Alb earthquakes at the GRF array. J. Geophys. 45:337-340

Kind, R., Odom, R.I. (1983) Improvements to layer matrix methods. J. Geophys. 53:127-130

Phinney, R.A. (1965) Theoretical calculation of the spectrum of first arrivals in layered elastic mediums. J. Geophys. Res. 20:5107-5123

Schwab, F.A., Knopoff, L. (1972) Fast surface wave and free mode computations. In: Bolt, B.A. (Ed.) Methods in Computational Physics, vol. II. Academic Press, New York

Turnowsky, J., Schneider G. (1982) The seismotectonic character of the September 3, 1978 Swabian Jura earthquake series. Tectonophysics 83:151-162

Zonno, G., Kind, R. (1984) Depth determination of north Italian earthquakes using Grafenberg data. Bull. Seismol. Soc. Am. 74(5):1645-1659

Zurmtihl, R. (1964) Matrizen und ihre technischen Anwendungen. Springer Verlag