Domain state of Ti-rich titanomagnetites deduced from domain structure observations and susceptibility measurements
Article Sidebar
Vols. 1-18 (1924-1944), ISSN 0044-2801
Main Article Content
Abstract
Domain structure observations and measurements of the temperature dependence of susceptibility on synthetic and natural titanomagnetites are reported. At room temperature Ti-rich titanomagnetite particles (x ≈ 0.6) of MD grain size normally develop a very complicated domain structure. The experimental results of our investigations, in addition to simple theoretical calculations, indicate that internal stress is the dominant cause of the observed anomalous domain patterns. Part of the results have already been published by Appel and Soffel (1984). The paper presented here, however, is a far more extended summary of the actual state of our research.
ARK: https://n2t.net/ark:/88439/y026104
Permalink: https://geophysicsjournal.com/article/212
Article Details
References
Appel, E., Moll, A. (1980) Syn these von reinen und Aluminium- sowie Magnesiumdotierten Titanomagnetiten urid Messungen charakteristischer Eigenschaften an diesem Material. Dipl.-Arbeit Teil I, Inst. Alig. Angew. Geophys. Univ. of Munich
Appel, E., Soffel, H.C. (1984) Model for the domain state of Ti-rich titanomagnetites. Geophys. Res. Lett. 3:189-192
Banerjee, S.K. (1977) On the origin of stable remanence in pseudo-single domain grains. J. Geomagn. Geoelectr. 29:319-329
Bogdanov, A.A., Vlasov, A.Y. (1966) On the effect of elastic stresses on the domain structure of magnetite. Izv. Earth Phys. 1:42-46
Butler, R.F., Banerjee, S.K. (1975) Theoretical single-domain grain-size range in magnetite and titanomagnetite. J. Geophys. Res. 80:4049-4058
Clark, D.A., Schmidt, P.W. (1982) Theoretical analysis of thermomagnetic properties, low-temperature hysteresis and domain structure oftitanomagnetites. Phys. Earth Planet. Inter. 30:300-316
Day, R. (1977) TRM and its variation with grains size. J. Geomagn. Geoelectr. 29:233-265
Dunlop, D.J. (1977) The hunting of the 'Psark'. J. Geomagn. Geoelectr. 29:293-318
Dunlop, D.J. (1983) On the demagnetizing energy and demagnetizing factor of a multidomain ferromagnetic cube. Geophys. Res. Lett. 10:79-82
Halgedahl, S., Fuller, M. (1980) Magnetic domain observation of nucleation processes in fine particles of intermediate titanomagnetite. Nature 288:70-72
Hearmon, R.F.S. (1956) The elastic constants of anisotropic materials. Adv. Phys. 5:323
Hodych, J.P. (1982a) Magnetic hysteresis as a function of low temperature for deep-sea basalts containing large titanomagnetite grains - inference of domain state and controls of coercivity. Can. J. Earth Sci. 19:144-152
Hodych, J.P. (1982b) Magnetostrictive control of coercive force in multidomain magnetite. Nature 298:542-544
Ishikawa, Y., Syono, Y. (1971) Giant magnetostriction due to Jahn Teller distortion in Fe2 Ti O4. Phys. Rev. Lett. 26:1335-1338
Kean, W.F., Day, R., Fuller, M., Schmidt, V.A. (1976) The effect of uniaxial compression on the initial susceptibility of rocks as a function of grain size and composition of their constituent titanomagnetites. J. Geophys. Res. 81:861-872
Kronmuller, H., Fahnle, M., Domann, M., Grimm, H., Grimm, R., Groger, B. (1979) Magnetic properties of amorphous ferromagnetic alloys. J. Magn. Magn. Mat. 13:53-70
Moll, A. (1980) Untersuchung der Tieftemperatur-Oxidation von synthetischen - z.T. mit Aluminium und Magnesium dotiertenTitanomagnetiten und Messung charakteristischer Eigenschaften der Oxidationsprodukte. Dipl.-Arbeit Teil II, Inst. Alig. Angew. Geophys. Univ. of Munich
Neel, L. (1949) Theorie du tralnage magnetique des ferromagnetiques en grains fins avec applications aux terres cuites. Ann. Geophys. 5:99-136
Ozima, M., Ozima, M. (1965) Origin of thermoremanent magnetization. J. Geophys. Res. 70:1363-1369
Petersen, N., Eisenach, P., Bleil, U. (1979) Low temperature alteration of magnetic minerals in ocean floor basalts. Maurice Ewing Series 2, M. Talwani, C.G. Harrison, D.E. Hayes, eds.: pp 169-209. Am. Geophys. Union, Washington D.C.
Radhakrishnamurty, C., Likhite, S.D., Deutsch, E.R., Murthy, G.S. (1982) On the complex magnetic behaviour of titanomagnetites. Phys. Earth Planet. Inter. 30:281-290
Readman, P.W., O'Reilly, W.O. (1972) Magnetic properties of oxidized (cation-deficient) titanomagnetites (Fe,Ti, □)3O4. J. Geomagn. Geoelectr. 24:69-80
Salzmann, P., Hubert, A. (1981) Local measurement of magnetic anisotropy in metallic glasses. J. Magn. Magn. Min. 24:168-174
Soffel, H.C. (1966) Stress dependence of the domain structure of natural magnetite. J. Geophys. 32:63-77
Soffel, H.C., Petersen, N. (1971) Ionic etching of titanomagnetite grains in basalts. Earth Planet. Sci. Lett. 11:312-316
Soffel, H.C., Deutsch, E.R., Appel, E., Eisenach, P., Petersen, N. (1982) The domain structure of synthetic stoichiometric TM1O-TM75 and Al-, Mg-, Mn-, V-doped TM62 titanomagnetites. Phys. Earth Planet. Inter. 30:336-346
Stacey, F.D. (1963) The physical theory of rock magnetism. Adv. Phys. 12:45-133
Syono, Y. (1965) Magnetocrystalline anisotropy and magnetostriction of Fe3 O4 - Fe2 Ti O4 series with special application to rock magnetism. Jap. J. Geophys. 4:71-143
Trauble, H. (1966) Moderne Probleme der Metallphysik. Bd. II, A. Seeger, ed.: pp 420-459. Springer, Heidelberg
Verhoogen, J. (1959) The origin of thermoremanent magnetization. J. Geophys. Res. 64:2441-2449
Weil, L. (1953) The texture of fine ferromagnetic powders. Rev. Mod. Phys. 25:324-326
Winhard, H. (1983) Bestimmung der Art der Platznahme von Basalten mit Hilfe der Anisotropie der magnetischen Suszeptibilitat. Thesis, Inst. Alig. Angew. Geophys., Univ. of Munich