Domain state of Ti-rich titanomagnetites deduced from domain structure observations and susceptibility measurements

Main Article Content

E. Appel
H.C. Soffel


Domain structure observations and measurements of the temperature dependence of susceptibility on synthetic and natural titanomagnetites are reported. At room temperature Ti-rich titanomagnetite particles (x ≈ 0.6) of MD grain size normally develop a very complicated domain structure. The experimental results of our investigations, in addition to simple theoretical calculations, indicate that internal stress is the dominant cause of the observed anomalous domain patterns. Part of the results have already been published by Appel and Soffel (1984). The paper presented here, however, is a far more extended summary of the actual state of our research.

Google Scholar           ARK:



Article Details

How to Cite
Appel, E., and H.C. Soffel. 1984. “Domain State of Ti-Rich Titanomagnetites Deduced from Domain Structure Observations and Susceptibility Measurements”. Journal of Geophysics 56 (1), 121-32.
Bookmark and Share


Akimoto, S.T., Katsura, T., Yoshida, M. (1957) Magnetic properties of Ti - Fe2 O4 - Fe3 O4 system and their change with oxidation. J. Geomagn. Geoelectr. 9:165-178

Appel, E., Moll, A. (1980) Syn these von reinen und Aluminium- sowie Magnesiumdotierten Titanomagnetiten urid Messungen charakteristischer Eigenschaften an diesem Material. Dipl.-Arbeit Teil I, Inst. Alig. Angew. Geophys. Univ. of Munich

Appel, E., Soffel, H.C. (1984) Model for the domain state of Ti-rich titanomagnetites. Geophys. Res. Lett. 3:189-192

Banerjee, S.K. (1977) On the origin of stable remanence in pseudo-single domain grains. J. Geomagn. Geoelectr. 29:319-329

Bogdanov, A.A., Vlasov, A.Y. (1966) On the effect of elastic stresses on the domain structure of magnetite. Izv. Earth Phys. 1:42-46

Butler, R.F., Banerjee, S.K. (1975) Theoretical single-domain grain-size range in magnetite and titanomagnetite. J. Geophys. Res. 80:4049-4058

Clark, D.A., Schmidt, P.W. (1982) Theoretical analysis of thermomagnetic properties, low-temperature hysteresis and domain structure oftitanomagnetites. Phys. Earth Planet. Inter. 30:300-316

Day, R. (1977) TRM and its variation with grains size. J. Geomagn. Geoelectr. 29:233-265

Dunlop, D.J. (1977) The hunting of the 'Psark'. J. Geomagn. Geoelectr. 29:293-318

Dunlop, D.J. (1983) On the demagnetizing energy and demagnetizing factor of a multidomain ferromagnetic cube. Geophys. Res. Lett. 10:79-82

Halgedahl, S., Fuller, M. (1980) Magnetic domain observation of nucleation processes in fine particles of intermediate titanomagnetite. Nature 288:70-72

Hearmon, R.F.S. (1956) The elastic constants of anisotropic materials. Adv. Phys. 5:323

Hodych, J.P. (1982a) Magnetic hysteresis as a function of low temperature for deep-sea basalts containing large titanomagnetite grains - inference of domain state and controls of coercivity. Can. J. Earth Sci. 19:144-152

Hodych, J.P. (1982b) Magnetostrictive control of coercive force in multidomain magnetite. Nature 298:542-544

Ishikawa, Y., Syono, Y. (1971) Giant magnetostriction due to Jahn Teller distortion in Fe2 Ti O4. Phys. Rev. Lett. 26:1335-1338

Kean, W.F., Day, R., Fuller, M., Schmidt, V.A. (1976) The effect of uniaxial compression on the initial susceptibility of rocks as a function of grain size and composition of their constituent titanomagnetites. J. Geophys. Res. 81:861-872

Kronmuller, H., Fahnle, M., Domann, M., Grimm, H., Grimm, R., Groger, B. (1979) Magnetic properties of amorphous ferromagnetic alloys. J. Magn. Magn. Mat. 13:53-70

Moll, A. (1980) Untersuchung der Tieftemperatur-Oxidation von synthetischen - z.T. mit Aluminium und Magnesium dotiertenTitanomagnetiten und Messung charakteristischer Eigenschaften der Oxidationsprodukte. Dipl.-Arbeit Teil II, Inst. Alig. Angew. Geophys. Univ. of Munich

Neel, L. (1949) Theorie du tralnage magnetique des ferromagnetiques en grains fins avec applications aux terres cuites. Ann. Geophys. 5:99-136

Ozima, M., Ozima, M. (1965) Origin of thermoremanent magnetization. J. Geophys. Res. 70:1363-1369

Petersen, N., Eisenach, P., Bleil, U. (1979) Low temperature alteration of magnetic minerals in ocean floor basalts. Maurice Ewing Series 2, M. Talwani, C.G. Harrison, D.E. Hayes, eds.: pp 169-209. Am. Geophys. Union, Washington D.C.

Radhakrishnamurty, C., Likhite, S.D., Deutsch, E.R., Murthy, G.S. (1982) On the complex magnetic behaviour of titanomagnetites. Phys. Earth Planet. Inter. 30:281-290

Readman, P.W., O'Reilly, W.O. (1972) Magnetic properties of oxidized (cation-deficient) titanomagnetites (Fe,Ti, □)3O4. J. Geomagn. Geoelectr. 24:69-80

Salzmann, P., Hubert, A. (1981) Local measurement of magnetic anisotropy in metallic glasses. J. Magn. Magn. Min. 24:168-174

Soffel, H.C. (1966) Stress dependence of the domain structure of natural magnetite. J. Geophys. 32:63-77

Soffel, H.C., Petersen, N. (1971) Ionic etching of titanomagnetite grains in basalts. Earth Planet. Sci. Lett. 11:312-316

Soffel, H.C., Deutsch, E.R., Appel, E., Eisenach, P., Petersen, N. (1982) The domain structure of synthetic stoichiometric TM1O-TM75 and Al-, Mg-, Mn-, V-doped TM62 titanomagnetites. Phys. Earth Planet. Inter. 30:336-346

Stacey, F.D. (1963) The physical theory of rock magnetism. Adv. Phys. 12:45-133

Syono, Y. (1965) Magnetocrystalline anisotropy and magnetostriction of Fe3 O4 - Fe2 Ti O4 series with special application to rock magnetism. Jap. J. Geophys. 4:71-143

Trauble, H. (1966) Moderne Probleme der Metallphysik. Bd. II, A. Seeger, ed.: pp 420-459. Springer, Heidelberg

Verhoogen, J. (1959) The origin of thermoremanent magnetization. J. Geophys. Res. 64:2441-2449

Weil, L. (1953) The texture of fine ferromagnetic powders. Rev. Mod. Phys. 25:324-326

Winhard, H. (1983) Bestimmung der Art der Platznahme von Basalten mit Hilfe der Anisotropie der magnetischen Suszeptibilitat. Thesis, Inst. Alig. Angew. Geophys., Univ. of Munich