Investigations of the internal geomagnetic field by means of a global model of the Earth's crust
Article Sidebar
Vols. 1-18 (1924-1944), ISSN 0044-2801
Main Article Content
Abstract
A global model of the Earth's crust has been constructed of two-layer blocks of 2° x 2° dimension, with thickness and susceptibility selected from a ten-step classification of the various crustal types. Considering induced magnetization only, the magnetic effect of each block has been approximated by a single dipole in the middle of the block, directed parallel to the field for a given main field model (32,400 dipoles altogether). The magnetic field of this global model of the crust has been calculated for an altitude of 450 km, appropriate for a comparison with anomaly fields from satellite surveys. From field values at 1° x 1° grid points, model anomaly charts for the X, Y, Z-components and for the total intensity can be plotted. The underlying crustal parameters have been prepared for modification towards adjusting the model field to the final Magsat anomaly field. The aim is to construct a truly realistic model of the whole Earth's crust. Based on a global distribution of the Z-component of the model field a spherical harmonic analysis has been made by a direct integral method, up to degree and order 35. The energy density spectrum of the magnetic field, apart from the lowest degree terms, resembles a "white" spectrum in which the level nearly meets that obtained for the crustal part of an actual field model (from n = 15 to 29), except for a factor of less than 3. A supplemental evaluation of the core part of the observed spectrum indicates a source depth of some 100 km below the surface of the Earth's core, supported by a similar result for the secular variation of the core field.
ARK: https://n2t.net/ark:/88439/y060920
Permalink: https://geophysicsjournal.com/article/166
Article Details
References
Alldredge, L.R., Stearns, C.O. (1969) Dipole model of the sources of the Earth's magnetic field and secular change. J. Geophys. Res. 74:6583-6593
Cain, J.C. (1975) Structure and secular change of the geomagnetic field. Rev. Geophys. Space Phys. 13, No. 3:203-206
Cain, J.C. (1976) Introductory remarks, Abstract. EOS, Trans. Am. Geo phys. Union 57:907
Cain, J.C., Hendricks, S., Daniels, W.E., Jensen, D.C. (1968) Computation of the main geomagnetic field from spherical harmonic expansions. Data· User's Note NSSDC 68-11. Greenbelt: NASA-Goddard Space Flight Center
Chapman, S., Bartels, J. (1940) Geomagnetism, Vol. 2, Chap. XVII. Clarendon Press, Oxford
Coles, R.L., Haines, G.V., Jansen van Beek, G., Nandi, A., Walker, J.K. (1982) Magnetic anomaly maps from 40°N to 83°N derived from Magsat satellite data. Geophys. Res. Lett. 9:281-284
Frese, R.R.B. von, Hinze, W.J., Braile, L.W. (1981) Spherical Earth gravity and magnetic anomaly analysis by equivalent point source inversion. Earth Planet. Sci. Lett. 53:69-83
Gilbert, M.B. (manag. ed.) (1980) The Magsat issue. John Hopkins University, Applied Physics Laboratory, Technical Digest 1, No. 3
Kautzleben, H. (1963) Die analytische Darstellung des geomagnetischen Hauptfeldes und der Sakularvariation. Abh. Geomagn. Inst. Potsdam, 32, pp. 62-66. Akademie-Verlag, Berlin
Landolt-Bornstein (1982) Numerical data and functional relationships in science and technology, Vol. V /1b. Angenheister, G. (Ed.) Physical properties of rocks. Springer, Berlin-Heidelberg-New York
Langel, R.A. (1979) Near-Earth satellite magnetic field measurements: A prelude to Magsat. EOS, Trans. Am. Geophys. Union 60:667-668
Langel, R.A. (1981) Global magnetic anomaly map from Magsat, Paper presented at the 4th IAGA Scientific Assembly, Edinburgh, Aug. 3-15, 1981, Abstract published in IAGA Bull. 45, p. 105 f.
Langel, R.A. (1982) The magnetic Earth as seen from Magsat, Initial results. Geophys. Res. Lett. 9:239-242
Langel, R.A., Coles, R.L., Mayhew, M.A. (1980a) Comparisons of magnetic anomalies of lithospheric origin measured by satellite and airborne magnetometers over western Canada. Can. J. Earth Sci. 17:876-887
Langel, R.A., Estes, R.H., Mead, G.D., Fabiano, E.B., Lancaster, E.R. (1980b) Initial geomagnetic field model from Magsat vector data. Geophys. Res. Lett. 7:793-796
Langel, R.A., Estes, R.H. (1982) A geomagnetic field spectrum. Geophys. Res. Lett. 9:250-253
Langel, R.A., Phillips, J.D., Horner, R.J. (1982a) Initial scalar magnetic anomaly map from Magsat. Geophys. Res. Lett. 9:269-272
Langel, R.A., Schnetzler, C.C., Phillips, J.D., Horner, R.J. (1982b) Initial vector magnetic anomaly map from Magsat. Geophys. Res. Lett. 9:273-276
Lowes, F.J. (1966) Mean-square values on sphere of spherical harmonic vector fields. J. Geophys. Res. 71:2179
Lucke, O. (1957) Uber Mittelwerte von Energiedichten der Kraftfelder. Wiss. Z. Pad. Hochschule Potsdam, Math.-Nat. Reihe 3:39-46
Mauersberger, P. (1956) Das Mittel der Energiedichte des geomagnetischen Hauptfeldes an der Erdoberflache und seine sakulare Anderung. Gerlands Beitr. Geophys. 65:207-215
Mayhew, M.A. (1979) Inversion of satellite magnetic anomaly data. J. Geophys. 45:119-128
Mayhew, M.A. (1982a) An equivalent layer magnetization model for the United States derived from satellite-altitude magnetic anomalies. J. Geophys. Res. 87:4837-4845
Mayhew, M.A. (1982b) Application of satellite magnetic anomaly data to Curie isotherm mapping. J. Geophys. Res. 87:4846-4854
Mayhew, M.A., Johnson, B.D., Langel, R.A. (1980) An equivalent source model of the satellite-altitude magnetic anomaly field over Australia. Earth Planet. Sci. Lett. 51:189-198
Mobley, F.F., Eckard, L.D., Fountain, G.H., Ousley, G.W. (1980) Magsat - A new satellite to survey the Earth's magnetic field. IEEE Transactions on Magnetics, Vol. MAG-16, No. 5, Sept.
Regan, R.D., Cain, J.C., Davis, W.M. (1975) A global magnetic anomaly map. J. Geophys. Res. 80:794-802
Runcorn, S.K. (1975) On the interpretation of lunar magnetism. Phys. Earth Planet. Int. 10:327-335
Soller, D.R., Ray, R.D., Brown, R.D. (1981) A global crustal thickness map. Phoenix Corporation, McLean, Va.
Stearns, C.O., Alldredge, L.R. (1973) Models of the sources of the Earth's magnetic field. In: Methods in computational physics, Vol. 13, pp. 61-92. Academic Press, New York-London