Estimate of confidence in paleomagnetic directions derived from mixed remagnetization circle and direct observational data

Main Article Content

R.C. Bailey
H.C. Halls


A method is presented for obtaining the direction and confidence oval for a paleomagnetic component at a site given a number of independently oriented samples, some of which give an estimate of the remanence direction, while others yield only remagnetization circles. Such mixed remagnetization circle-remanence direction data frequently characterise paleomagnetic sites carrying two remanence components where the component of interest is small and less dispersed compared to a more easily removed one. The method described maximises the amount of usable data per site and thus leads to an improved site direction estimate.

Google Scholar           ARK:



Article Details

How to Cite
Bailey, R., & Halls, H. (1983). Estimate of confidence in paleomagnetic directions derived from mixed remagnetization circle and direct observational data. Journal of Geophysics, 54(1), 174-182. Retrieved from
Bookmark and Share


Bailey, M.E., Hale, C.J. (1981) Anomalous magnetic directions recorded by laboratory induced chemical remanent magnetisation. Nature 294:739-741

Creer, K.M. (1962) A statistical enquiry into the partial remagnetization of folded Old Red sandstone rocks. J. Geophys. Res. 67:1899-1906

Halls, H.C. (1976) A least-squares method to find a remanence direction from converging remagnetization circles. Geophys. J. R. Astron. Soc. 45:297-304

Halls, H.C. (1978) The use of converging remagnetization circles in paleomagnetism. Phys. Earth Planet. Inter. 16:1-11

Halls, H.C. (1979) Separation of multicomponent NRM: combined use of difference and resultant magnetization vectors. Earth Planet. Sci. Lett. 43:303-308

Hoffman, K.A., Day, R. (1978) Separation of multicomponent NRM: a general method. Earth Planet. Sci. Lett. 40:433-438

Jones, D.L., Robertson, I.D.M., McFadden, P.L. (1975) A paleomagnetic study of Precambrian dyke swarms associated with the Great Dyke of Rhodesia. Geol. Soc. S. Afr. 78:57-65

Khramov, A.N. (1958) Paleomagnetism and stratigraphic correlation, Gastoptechizdat (Leningrad, 218 p., transl. Lojkine, A.J.). Geophysics Department, Australian National University, 1960

Khramov, A.N. (1971) Paleomagnetic directions and paleomagnetic poles. McElhinny, M.W. (Ed.) and Brown, D.A. (Transl.). Australian National University, RSES Publ. No. 990, 1973

Kirschvink, J.L. (1980) The least squares line and plane and the analysis of paleomagnetic data. Geophys. J. R. Astron. Soc. 62:699-718

Mardia, K.V., Edwards, R. (1982) Weighted distributions and rotating caps. Biometrika 69:323-330

McFadden, P.L. (1977) Comments on "a least-squares method to find a remmanence direction from converging remagnetization circles" by H.C. Halls. Geophys. J. R. Astron. Soc. 48:549-550

Onstott, T.C. (1980) Application of the Bingham distribution function in paleomagnetic studies. J. Geophys. Res. 85:1500-1510

Palmer, H.C., Halls, H.C., Pesonen, L.J. (1981) Remagnetization in Keweenawan rocks. Part I: Conglomerates. Can. J. Earth Sci. 18:599-618

Ramsay, J.G. (1967) Folding and fracturing in rocks. McGraw-Hill, New York

Watson, G.S. (1960) More significant tests on a sphere. Biometrika 47:87-91

Watson, G.S. (1965) Equatorial distributions on a sphere. Biometrika 52:193-201

Zijderveld, J.D.A. (1967) A.C. demagnetization in rocks: analysis of results. In: Collinson, D.W., Creer, K.M., Runcorn, S.K. (Eds.) Methods in paleomagnetism, 254-286. Elsevier, New York