Ray theory and its extensions: WKBJ and Maslov seismograms

Main Article Content

C.H. Chapman


Asymptotic ray theory can be used to describe many seismic signals. Provided the wavefronts and amplitudes vary smoothly and the correct phase changes are included for caustics and reflection/transmission coefficients, it successfully describes direct and turning rays, on normal and reversed branches with multiple turning points, and partial and total reflections and transmissions. Nevertheless, many exceptions occur. Critical points, head waves, interference head waves, Airy caustics, Fresnel shadows, edge, point and interface diffractions and gradient coupling are examples discussed in this paper. Asymptotic ray theory can be simply extended to cover some of these problems. In this paper, the extension called the WKBJ or Maslov seismogram is discussed.

Google Scholar           ARK: https://n2t.net/ark:/88439/y086318

Permalink: https://geophysicsjournal.com/article/147


Article Details

How to Cite
Chapman, C. (1985). Ray theory and its extensions: WKBJ and Maslov seismograms. Journal of Geophysics, 58(1), 27-43. Retrieved from https://journal.geophysicsjournal.com/JofG/article/view/147
Bookmark and Share


Arnol'd, V.I. (1967) Characteristic classes entering in quantization conditions. Funct. Anal. Appl. 1:1-13

Burridge, R. (1963a) The reflexion of a pulse in a solid space. Proc. Roy. Soc. A276:367-400

Burridge, R. (1963b) The reflexion of a disturbance within an elastic sphere. Ph.D. thesis, University of Cambridge

Cagniard, L. (1939) Reflexion et refraction des ondes seismiques progressives. Gauthier-Villars, Paris

Cagniard, L. (1962) Reflexion and refraction of progressive seismic waves, trans. E.A. Flinn and C.H. Dix. McGraw-Hill Book Co., New York

Cerveny, V., Ravindra, R. (1971) Theory of seismic head waves. University of Toronto Press, Toronto

Cerveny, V., Molotkov, I.A., Psencik, I. (1977) Ray method in seismology. Charles University Press, Prague

Chapman, C.H. (1978) A new method for computing synthetic seismograms. Geophys. J. R. Astron. Soc. 54:481-518

Chapman, C.H. (1981) Long-period corrections to body-waves: theory. Geophys. J. R. Astron. Soc. 64:321-372

Chapman, C.H., Drummond, R. (1982) Body-wave seismograms in inhomogeneous media using Maslov asymptotic theory. Bull. Seismol. Soc. Amer. 72, S277-S317

Courant, R., Hilbert, D. (1962) Methods of mathematical physics. John Wiley and Sons, New York

Gebrande, H. (1976) A seismic-ray tracing method for two-dimensional inhomogeneous media. In: Giese, P., Prodehl, C., Stein, A. (Eds.) Exploration seismology in Central Europe: data and results, pp. 162-167. Springer, Berlin

Gilbert, F. (1960) Scattering of impulsive elastic waves by a smooth convex cylinder. J. Acous. Soc. Amer. 32:841-856

Gilbert, F., Backus, G.E. (1966) Propagator matrices in elastic wave and vibration problems. Geophysics 31:326-333

Heyman, E., Felsen, L.B. (1984) Non-dispersive approximations for transient ray fields in an inhomogeneous medium. In: Proceedings of the NATO Advanced Research Workshop on Hybrid Formulation of Wave Propagation and Scattering. Nijhoff Publishing Co.

Hill, D.P. (1973) Critical refracted waves in a spherically symmetric, radially heterogeneous Earth model. Geophys. J. R. Astron. Soc. 34:149-179

de Hoop, A.T. (1960) A modification of Cagniard's method for solving seimic pulse problems. Appl. Scient. Res. BS:349-356

Hormander, L. (1971) Fourier integral operators. Acta Math. 127:79-183

Hormander, L. (1979) Spectral analysis of singularities. In: Hormander, L. (Ed.) Seminar on singularities of solutions of linear partial differential equations, pp 3-49. Princeton Univ. Press

Hron, F., Kanasewich, E. R. (1971) Synthetic seismograms for deep seismic sounding studies using asymptotic ray theory. Bull. Seismol. Soc. Amer. 61:1169-1200

Jackson, P.S. (1971) The focusing of earthquakes. Bull. Seismol. Soc. Amer. 61:685-695

Keller, J.B. (1958) Corrected Bohr-Sommerfeld quantum conditions for non-separable systems. Ann. Phys. 4:180-188

Keller, J.B. (1962) The geometrical theory of diffraction. J. Opt. Soc. Amer. 52:116-130

Kennett, B.L.N., Illingworth, M.R. (1981) Seismic waves in a stratified half space - III. Piecewise smooth models. Geophys. J. R. Astron. Soc. 66:633-675

Kline, M., Kay, I.W. (1965) Electromagnetic theory and geometrical optics. John Wiley and Sons, New York

Knopoff, L., Gilbert, F. (1961) Diffraction of elastic waves by the core of the earth. Bull. Seismol. Soc. Amer. 51:35-49

Ludwig, D. (1966) Uniform asymptotic expansion at a caustic. Comm. Pure Appl. Math. 29:215-250

McMechan, G.A., Mooney, W.D. (1980) Asymptotic ray theory and synthetic seismograms for laterally varying structures: theory and application to the Imperial Valley, California. Bull. Seismol. Soc. Amer. 70:2021-2035

Madariaga, R. (1984) Gaussian beam synthetic seismograms in a vertically varying medium. Geophys. J. R. Astron. Soc. 79:589-612

Marks, L.W., Hron, F. (1977) Weber function computation in the interference reflected head wave amplitude. Geophys. Res. Lett. 4:255-258

Marks, L.W., Hron, F. (1980) Calculation of synthetic seismograms in laterally inhomogeneous media. Geophysics 45:509-510

Maslov, V.P. (1965) Theory of perturbations and asymptotic methods (in Russian). Izd. MGU, Moscow

Milnor, J. (1969) Morse theory. Princeton Univ. Press

Pekeris, C.L. (1955a) The seismic surface pulse. Proc. Nat. Acad. Sci. USA 41:469-480

Pekeris, C.L. (1955b) The seismic buried pulse. Proc. Nat. Acad. Sci. USA 41:629-639

Richards, P.G., Frasier, C.W. (1976) Scattering of elastic waves from depth-dependent inhomogeneities. Geophysics 41:441-458

Scholte, J.G.J. (1962) Oblique propagation of waves in inhomogeneous media. Geophys. J. R. Astron. Soc. 7:244-261

Smirnov, V.I. (1964) A course in higher mathematics, Vol. 4, trans. D.E. Brown and I.N. Sneddon. Pergammon Press, Oxford

Stickler, D.C., Ahluwalia, D.S., Ting, L. (1981) Application of Ludwig's uniform progressing wave ansatz to a smooth caustic. J. Acous. Soc. Amer. 69:1673-1681

Thomson, C.J., Chapman, C.H. (1985) An introduction to Maslov's asymptotic method. Geophys. J. R. Astron. Soc. (in press)

Whittal, K.P., Clowes, R.M. (1979) A simple, efficient method for the calculation of travel-times and ray paths in laterally inhomogeneous media. J. Can. Soc. Exp. Geophys. 15:21-29

Will, M. (1976) Calculation of travel-times and ray paths for lateral inhomogeneous media. In: Giese, P., Prodehl, C., Stein, A. (Eds.) Explosion seismology in Central Europe: dates and results, pp. 168-177. Springer-Verlag, Berlin

Ziolkowski, R.W., Deschamps, G.A. (1984) Asymptotic evaluation of high frequency fields near a caustic: an introduction to Maslov's method. Radio Science 19:1001-1025