Gaussian beam synthetic seismograms

Main Article Content

V. Červeny

Abstract

Numerical modelling of high-frequency seismic wave fields in complex, 2-D and 3-D, laterally varying, layered structures by the summation of elastodynamic Gaussian beams is discussed. The main attention is devoted to the expansion of the wave field into Gaussian beams, to the choice of initial parameters of Gaussian beams in these expansions and to the construction of synthetic seismograms. The Gaussian beam synthetic seismograms are regular even in regions where the ray method fails, such as the caustic region, critical region, etc. Due to the smoothing effects involved in the Gaussian beam procedure, the method is not too sensitive to the approximation of the medium and to minor details of the model. Moreover, the method does not require two-point (source-to-receiver) ray tracing. The eyaluation of Gaussian beam synthetic seismograms requires approximately the same amount of computer time as the evaluation of ray synthetic seismograms. The memory requirements are also approximately the same. Numerical examples of Gaussian beam synthetic seismograms for 2-D and 3-D structures are presented. Various possible applications of Gaussian beams to seismological problem of practical importance are outlined.


Google Scholar           ARK: https://n2t.net/ark:/88439/y058811


Permalink: https://geophysicsjournal.com/article/144


 

Article Details

How to Cite
Červeny, V. (1985). Gaussian beam synthetic seismograms. Journal of Geophysics, 58(1), 44-72. Retrieved from https://journal.geophysicsjournal.com/JofG/article/view/144

References

Aki, K., Richards, P. (1980) Quantitative seismology. Freeman, San Francisco

Alekseyev, A.S., Cheverda, V.A. (1981) On an asymptotic method of the solution of a dynamic inverse problem of the theory of wave propagation in a piece-wise homogeneous layered structure (in Russian). Preprint No. 311. Novosibirsk: Computing Center, Acad. Sci. USSR (Siberian Branch)

Arnaud, J.A., Kogelnik, H. (1969) Gaussian light beams with general astigmatism. Applied Optics 8, 1687-1693

Babich, V.M. (1968) Eigenfunctions, concentrated in the vicinity of closed geodesics. In: Mathematical problems of the theory of propagation of waves (in Russian), Vol. 9, V.M. Babich, ed.: pp. 15-63. Nauka, Leningrad

Babich, V.M., Buldyrev, N.J. (1972) Asymptotic methods in problems of diffraction of short waves (in Russian). Nauka, Moscow

Babich, V.M., Kirpichnikova, N.Y. (1974) The boundary layer method in diffraction problems (in Russian). Leningrad: Leningrad University Press (English translation by Springer-Verlag, 1980)

Babich, V.M., Pankratova, T.F. (1973) On discontinuities of the Green function of mixed problems for wave equation with variable coefficients. In: Problems of mathematical physics (in Russian), Vol. 6, V.M. Babich, ed.: pp. 9-27. Leningrad: Leningrad Univ. Press

Babich, V.M., Popov, M.M. (1981) Propagation of concentrated acoustical beams in three-dimensional inhomogeneous media (in Russian). Akust. Zh. 27, 828-835

Babich, V.M., Ulin, V.V. (1981a) Complex-valued ray solutions and eigenfunctions, concentrated in the vicinity of a closed geodesic. In: Mathematical problems of the theory of propagation of waves (in Russian), Vol. 11, V.M. Babich, ed.: pp. 6-13. Nauka, Leningrad

Babich, V.M., Ulin, V.V. (1981b) Complex space-time ray method and "quasiphotons". In: Mathematical problems of the theory of propagation of waves (in Russian), Vol. 12, V.M. Babich, ed.: pp. 5-12. Nauka, Leningrad

Babich, V.M., Molotkov, I.A., Popov, M.M. (1984) Gaussian beams, concentrated close to lines of solution and their application (in Russian). Preprint No. 24 (396). Moscow: Inst. of Radioengineering and Electronics, Acad. Sci. USSR

Ben Menahem, A., Beydoun, W.B. (1985a) Range of validity of seismic ray and beam methods in general inhomogeneous media. Part I: General theory. Geophys. J. R. Astron. Soc. (In press)

Ben Menahem, A., Beydoun, W.B. (1985b) Range of validity of seismic and beam methods in general inhomogeneous media. Part II: A canonical problem. Geophys. J. R. Astron. Soc. (In press)

Bernard, P., Madariaga, R. (1984) A new asymptotic method for the modeling of near-field accelerograms. Bull. Seismal. Soc. Amer. 74, 539-557

Cernohlavkova, D. (1985) Seismic wave fields in simple structures (in Czech). Diploma Thesis. Prague: Charles University, Faculty of Mathematics and Physics

Červeny, V. (1967) The amplitude-distance curves for waves reflected at a plane interface for different frequency ranges. Geophys. J. R. Astron. Soc. 13, 187-196

Červeny, V. (1981) Seismic wave fields in structurally complicated media. Ray and Gaussian beam approaches. Lecture notes. Utrecht: Rijksuniversiteit Utrecht, Vening-Meinesz Laboratory

Červeny, V. (1982) Expansion of a plane wave into Gaussian beams. Stud. Geophys. Geod. 26, 120-131

Červeny, V. (1983) Synthetic body wave seismograms for laterally varying layered structures by the Gaussian beam method. Geophys. J. R. Astron. Soc. 73, 389-426

Červeny, V. (1985a) Ray synthetic seismograms for complex twodimensional and three-dimensional structures. J. Geophys. 58, 2-26

Červeny, V. (1985b) The application of ray tracing to the numerical modeling of seismic wavefields in complex structures. In: Seismic shear waves, G. Dohr, ed.: pp. 1-124. Handbook of geophysical exploration, Section I: Seismic exploration, K. Helbig and S. Treitel, eds. London: Geophysical Press

Červeny, V., Frangie, A.B. (1980) Elementary seismograms of seismic body waves in dissipative media. Stud. Geophys. Geod. 24, 365-372

Červeny, V., Frangie, A.B. (1982) Effects of causal absorption on seismic body waves. Stud. Geophys. Geod. 26, 238-253

Červeny, V., Jansky, J. (1985a) Fast computation of ray synthetic seismograms in vertically inhomogeneous media. Stud. Geophys. Geod. 29, 49-67

Červeny, V., Jansky, J. (1985b) Fast computation of seismic wave fields in inhomogeneous media. In: Methods of processing of seismic reflection and refraction data (in Czech), M. Fejfar, ed. Brno: Geofyzika N.E. (In press)

Červeny, V., Klimes, L. (1984) Synthetic body wave seismograms for three-dimensional laterally varying media. Geophys. J. R. Astron. Soc. 79, 119-133

Červeny, V., Pšenčik, I. (1983a) Gaussian beams in two-dimensional elastic inhomogeneous media. Geophys. J. R. Astron. Soc. 72, 417-433

Červeny, V., Pšenčik, I. (1983b) Gaussian beams and paraxial ray approximation in three-dimensional elastic inhomogeneous media. J. Geophys. 53, 1-15

Červeny, V., Pšenčik, I. (1984) Gaussian beams in two-dimensional laterally varying layered structures. Geophys. J. R. Astron. Soc. 78, 65-91

Červeny, V., Popov, M.M., Pšenčik, I. (1982) Computation of wave fields in inhomogeneous media - Gaussian beam approach. Geo phys. J .R. Astron. Soc. 70, 109-128

Chapman, C.H. (1978) A new method for computing synthetic seismograms. Geophys. J. R. Astron. Soc. 54, 481-518

Chapman, C.H. (1985) Ray theory and its extensions-W.£5..BJ and Maslov seismograms. J. Geophys. 58, 27-43

Chapman, C.H., Drummond, R. (1982) Body wave seismograms in inhomogeneous media using Maslov asymptotic theory. Bull. Seismal. Soc. Amer. 72, S277-S317

Claerbout, J.F. (1976) Fundamentals of geophysical data processing. McGraw-Hill, New York

Cormier, V.F., Spudich, P. (1984) Amplification of ground motion and wavefront complexity in fault zones; examples from the San Andreas and Calaveras Faults. Geophys. J. R. Astron. Soc. 79, 135-152

Deschamps, G.A. (1971) The Gaussian beams as a bundle of complex rays. Electr. Lett. 7, 684-685

Felsen, L.B. (1976a) Evanescent waves. J. Opt. Soc. Amer. 66, 751-760

Felsen, L.B. (1976b) Complex-source-point solutions of the field equations and their relation to the propagation and scattering of Gaussian beams. Inst. Naz. Alta Matern., Symp. Math. 18, 39-56

Felsen, L.B. (1985) Geometrical theory of diffraction, evanescent waves, complex rays and Gaussian beams. Geophys. J. R. Astron. Soc. (In press)

Felsen, L.B., Marcuvitz, N. (1973) Radiation and scattering of waves. Englewood Cliffs: Prentice Hall

Fertig, J., Pšenčik, I. (1985) Numerical modeling of P and S waves in explosion seismology. In: Seismic shear waves, G. Dohr, ed. Handbook of geophysical exploration, Section I: Seismic exploration, K. Helbig and S. Treitel, eds. Geophysical Press, London

Fock, V.A. (1965) Electromagnetic diffraction and propagation problems. Pergamon Press, New York

Frazer, L.N. (1983) Feynman path integral synthetic seismograms. Trans. Amer. Geophys. Un. 64, 772

Frazer, L.N. (1985) Reflection seismograms using multi-fold path integrals. Geophys. J. R. Astron. Soc. (In press)

Frazer, L.N., Sen, K.M. (1985) Kirchhoff-Helmholtz reflection seismograms in a laterally inhomogeneous multi-layered elastic medium, Part I: Theory. Geophys. J. R. Astron. Soc. 80, 121-147

Grikurov, V.E., Popov, M.M. (1983a) Summation of Gaussian beams in a surface waveguide. Wave Motion 5, 225-233

Grikurov, V.E., Popov, M.M. (1983b) On the computation of waveguides by the method of summation of Gaussian beams (in Russian). Izv. Acad. Sci. USSR, Physics of the Earth No. 8, 101-103

Haines, A.J. (1983) A phase-front method I: Narrow-frequencyband SH waves. Geophys. J. R. Astron. Soc. 72, 783-808

Haines, A.J. (1984a) A phase-front method II: Broad-frequency-band SH waves. Geophys. J. R. Astron. Soc. 77, 43-64

Haines, A.J. (1984b) A phase-front method III: Acoustic waves, Pand S-waves. Geophys. J. R. Astron. Soc. 77, 65-104

Hanyga, A. (1985a) Gaussian beams in anisotropic elastic media. Geophys. J. R. Astron. Soc. (In press)

Hanyga, A. (1985b) Gaussian beams in anisotropic elastic media and applications. In: Proceedings of the workshop on hybrid formulation of wave propagation and scattering, L.B. Felsen, ed. Amsterdam: Martinus Nijhoff (In press)

Honl, H., Maue, A.W., Westphal, K. (1961) Theorie der Beugung. Berlin-Gottingen-Heidelberg: Springer Verlag

Hudson, J.A. (1980) A parabolic approximation for elastic waves. Wave Motion 2, 207-214

Jobert, N., Jobert, G. (1983) An application of ray theory to the propagation of waves along a laterally heterogeneous spherical surface. Geophys. Res. Lett. 10, 1148-1151

Katchalov, A.P. (1984) Coordinate system for description of the "quasiphoton". In: Mathematical problems of the theory of propagation of waves (in Russian), Vol. 14, V.M. Babich, ed.: pp. 73-76. Nauka, Leningrad

Katchalov, AP., Popov, M.M. (1981) The application of the Gaussian beam summation method to the computation of wave fields in the high-frequency approximation. Dokl. Akad. Nauk SSSR 258(5), 1097-1100

Katchalov, A.P., Popov, M.M., Pšenčik, I. (1983) On the application of the method of summation of Gaussian beams to the problems of boundaries with edges. In: Mathematical problems of the theory of propagation of waves (in Russian), Vol. 13, V.M. Babich, ed.: pp. 65-71. Nauka, Leningrad

Keller, J.B., Streifer, W. (1971) Complex rays with an application to Gaussian beams. J. Opt. Soc. Amer. 61, 40-43

Kennett, B.L.N. (1983) Seismic wave propagation in stratified media. Cambridge: Cambridge Univ. Press

Kirpichnikova, N.J. (1971a) Construction of solutions concentrated close to rays for the equations of elasticity in an inhomogeneous isotropic space. In: Mathematical problems of theory of diffraction and propagation of waves (in Russian), Vol. 1, V.M. Babich, ed.: pp. 103-113. Nauka, Leningrad (English translation by American Mathematical Society, 1974)

Kirpichnikova, N.J. (1971b) On the propagation of surface waves concentrated close to rays in an inhomogeneous elastic body of an arbitrary form. In: Mathematical problems of theory of diffraction and propagation of waves (in Russian), Vol. 1, V.M. Babich, ed.: pp. 114-130. Nauka, Leningrad

Klimes, L. (1983) Hermite-Gaussian beams in inhomogeneous elastic media. Stud. Geophys. Geod. 27, 354-365

Klimes, L. (1984a) Expansion of a high-frequency time-harmonic wavefield given on an initial surface into Gaussian beams. Geophys. J.R. Astron. Soc. 79, 105-118

Klimes, L. (1984b) The relation between Gaussian beams and Maslov asymptotic theory. Stud. Geophys. Geod. 28, 237-247

Klimes, L. (1985) Computation of seismic wave fields in 3-D media by the Gaussian beam method. Program package SW 84 (in Czech). Research Report No. 68. Prague: Charles University, Institute of Geophysics

Konopaskova, J., Červeny, V. (1984) Numerical modelling of timeharmonic seismic wave fields in simple structures. Part I: Stud. Geophys. Geod. 28, 19-35, 1984. Part II: Stud. Geophys. Geod. 28, 113-128

Kravtsov, Yu.A., Orlov, Yu.I. (1980) Geometrical optics of inhomogeneous media (in Russian). Nauka, Moscow

Landers, T., Claerbout, J.F. (1972) Numerical calculation of elastic waves in laterally inhomogeneous media. J. Geophys. Res. 77, 1476-1482

Leontovich, M.A., Fock, V.A. (1946) Solution of the problem of propagation of electromagnetic waves along the Earth's surface using the parabolic equation method (in Russian). ZETF 16, 557-573

Madariaga, R. (1984) Gaussian beam synthetic seismograms in a vertically varying medium. Geophys. J. R. Astron. Soc. 79, 589-612

Madariaga, R., Bernard, P. (1985) Ray theoretical strong motion synthesis. J. Geophys. 58, 73-81

Madariaga, R., Papadimitriou, P. (1985) Gaussian beam modelling of upper mantle phases. Ann. Geophys. (In press)

Maslov, V.P. (1977) Complex method WKB in non-linear equations (in Russian). Nauka, Moscow

McCoy, J.J. (1977) A parabolic theory of stress wave propagation through inhomogeneous linearly elastic solids. J. Appl. Mech. 44, 462-482

Muller, G. (1983) Rheological properties and velocity dispersion of a medium with power-low dependence of Q on frequency. J. Geophys. 54, 20-29

Muller, G. (1984) Efficient calculation of Gaussian beam seismograms for two-dimensional inhomogeneous media. Geophys. J. R. Astron. Soc. 79, 153-166

Muller, G. (1985) The reflectivity method: a tutorial. J. Geophys. 58, 153-174

Nomofilov, V.E. (1981) Asymptotic solutions of a system of differential equations of the second order, concentrated close to a ray. In: Mathematical problems of the theory of propagation of waves (in Russian), Vol. 11, V.M. Babich, ed.: pp. 1 70-1 79. Nauka, Leningrad

Nowack, R., Aki, K. (1984a) The 2-D Gaussian beam synthetic method: testing and applications. J. Geophys. Res. 89, 1466-1494

Nowack, R., Aki, K. (1984b) Iterative inversion for structure using complete waveforms (abstract). EOS Trans. AGU 65, 237

Popov, M.M. (1982) A new method of computation of wave fields using Gaussian beams. Wave Motion 4, 85-95

Ru-Shan Wu (1985) Analytic extension of Green's function, complex rays and Gaussian beams in smoothly inhomogeneous media. Geophys. J. R. Astron. Soc. (In press)

Scott, P., Helmberger, D.H. (1983) Applications of the KirchhoffHelmholtz integral to problems in seismology. Geophys. J. R. Astron. Soc. 72, 237-254

Sen, M.K., Frazer, L.N. (1985) Kirchhoff-Helmholtz reflection seismograms in a laterally inhomogeneous multi-layered elastic medium, Part II: Computations. Geophys. J. R. Astron. Soc. (In press)

Sinton, J.B., Frazer, L.N. (1981) Using Kirchhoffs method to compute finite-frequency body wave synthetic seismograms in laterally varying media. Trans. Amer. Geophys. Un. 62, 956

Sinton, J.B., Frazer, L.N. (1982) A Kirchhoff method for the computation of finite frequency body wave synthetic seismograms in laterally varying media. Geophys. J. R. Astron. Soc. 71, 37-55

Spudich, P., Frazer, L.N. (1984) Use of ray theory to calculate highfrequency radiation from earthquake sources having spatially variable rupture velocity and stress drop. Bull. Seismol. Soc. Amer. 74, 2061-2082

Sutton, G.R. (1984) The effect of velocity variations on the beam width of seismic wave. Geophysics 49, 1649-1652

Tappert, F.D. (1977) The parabolic approximation method. In: Wave propagation and underwater acoustics. Lecture Notes in Physics, Vol. 70, J.B. Keller and J .S. Papadakis, eds.: pp. 224-287. Berlin: Springer-Verlag

Yomogida, K. (1985) Gaussian beams for surface waves in laterally slowly varying media. Geophys. J. R. Astron. Soc. (In press)

Yomogida, K., Aki, K. (1985) Waveform synthesis of surface waves in a laterally heterogeneous Earth by the Gaussian beam method. J. Geophys. Res. (In press)