The simulation problem for broad-band seismograms

Main Article Content

Abstract

A fundamental problem in the numerical data preprocessing of digital broad-band seismograms is the simulation of arbitrary analog seismograph systems, especially seismometer-galvanometer combinations. A special case of this simulation problem is the deconvolution or restitution problem as the realization of a wide-band seismograph system with a transfer function proportional to ground displacement, velocity or acceleration. The simulation problem can be solved by a digital cascade recursive filter using the bilinear z-transformation. Applications of the simulation filter are: a combined interpretation of digital broad-band and analog narrow-band recordings, a routine analysis of broad-band seismograms consistent with ordinary analog stations, the determination of the local magnitude from simulated Wood-Anderson seismograms and the restitution of broad-band recordings. The relationship between bandwidth, fine structure and information content of seismograms can be demonstrated in an obvious way by comparing broad-band recordings of the Graefenberg-array with simulated seismograms for different standardized seismometer-galvanometer systems.


Google Scholar           ARK: https://n2t.net/ark:/88439/y024704


Permalink: https://geophysicsjournal.com/article/108


 

Article Details

How to Cite
Seidl, D. (1980). The simulation problem for broad-band seismograms. Journal of Geophysics, 48(1), 84-93. Retrieved from https://journal.geophysicsjournal.com/JofG/article/view/108

References

Bakun, W.H., Houck, S.T., Lee, W.H.K. (1978) A direct comparison of synthetic and actual Wood-Anderson seismograms. Bull. Seismol. Soc. Am. 68:1199-1202

Beauchamp, K.G. (1973) Signal processing. George Allen & Unwin LTD, London

Chakrabarty, S.K., Choudhury, G.C., Roy Choudhery, S.N. (1964) Magnification curves of electromagnetic seismographs. Bull. Seismol. Soc. Am. 54:1459-1471

Harjes, H.-P., Seidl, D. (1978) Digital recording and analysis of broadband seismic data at the Graefenberg (GRF)-array. J. Geophys. 44:511-523

Kaiser, J.F. (1963) Design methods for sampled data filters. Proc. 1st Annu. Allerton Conf. Circuit System Theory pp. 221-236

Kind, R. (1979) Observations of sPn from Swabian Alb earthquakes at the GRF array. J. Geophys. 45:337-340

Muller, G., Bonjer, K.-P., Stockl, H., Enescu, D. (1978) The Romanian earthquake of March 4, 1977. I. Rupture process inferred from fault-plane solution and multiple-event analysis. J. Geophys. 44:203-218

Peterson, J., Butler, H.M., Holcomb, L.G., Hutt, C.R. (1976) The Seismic Research Observatory. Bull. Seismol. Soc. Am. 66:2049-2068

Savarenski, E.F., Kirnos, D.P. (1960) Elemente der Seismologie und Seismometrie. Akademie-Verlag, Berlin

Savill, R.A., Carpenter, E.W., Wright, J.K. (1962) The derivation and solution of indicator equations for seismometer-galvanl)meter combinations including the effect of seismometer inductance. Geophys. J. R. Atron. Soc. 6:409-425

Stoll, D. (1979) Spektralanalyse seismischer Wellen zur Beschreibung des Scherbruches bei den Erdbeben in Friaul (1976), 48 pp. Diplomarbeit, University of Stuttgart, Germany

Streckeisen, G. (1978) Wide-band feedback seismograph system STS-1 V/STS-1 H. Prospekt der Firma G. Streckeisen MeBgeratebau, Buchsweg 17, CH-8400 Winthertur, Switzerland

Wielandt, E. (1970) Ein einfacher elektronischer Entzerrer fur Seismometer. J. Geophys. 36:763-769

Wielandt, E. (1973) Noise in electronic seismograph systems. J. Geophys. 39:597-602

Wielandt, E. (1975) Ein astasiertes Vertikalpendel mit tragender Blattfeder. J. Geophys. 41:545-547

Wielandt, E., Mitronovas, W. (1976) An electronic long-period seismograph for surface-wave dispersion studies. Bull. Seismol. Soc. Am. 66:987-996

Willmore, P.L., Karnik, V. (1970) Manual of seismological observatory practice. International Seismological Centre Edinburgh, UK

Proceedings (1973) Seminar on deconvolution of seismograms and high-fidelity seismometry. J. Geophys. 39:501-626