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Abstract. For describing transmission of seismic energy through a medium in
which seismic waves are intensively scattered, a statistical approach provides
an attractive alternative to the conventional, deterministic approach. The
energy transmission in such a medium with a given size distribution of scat-
terers is generally governed by a diffusion equation with a frequency-dependent
diffusivity, rather than wave equations as in the conventional approach. By
applying this theory, we can explain many unusual characteristics of lunar
seismic signals, including those generated by surface impacts at near and far
ranges and by continuous movement of the Lunar Rovers. The size distribution
of scatterers can be estimated from the frequency dependence of diffusivity.
Predominantly rectilinear particle motions observed indicate that the scattered
energy is transmitted as body waves. When intensive scattering is limited to
only a part of the transmitting medium, as in the case of far impacts on the
moon, a more general theory combining the two approaches is required. The
theory is also useful for interpreting certain characteristics of terrestrial
seismic signals because, while frequently ignored, appreciable scattering exists
even for terrestrial cases.

Key words: Seismic scattering — Lunar seismic signals.

1. Introduction

Scattering of seismic waves in a medium of randomly distributed heterogeneity
may be described using the conventional seismic wave theory. When the scattering
is intense, however, this deterministic approach becomes increasingly difficult,
and some alternative may be more convenient. In this paper, therefore, I will
present such an alternative approach, namely, the seismic diffusion theory.

The data taken by the Apollo lunar seismometers compelled one to look for
such alternatives. An example of a lunar seismogram is shown in Figure 1. The
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from the low-frequency region to the high-frequency region of the scattering
response becomes of less importance, and the curve of Figure 2 may be approx-
imated by a step function; i.e., significant scattering occurs only when the scatterer
size is greater than or equal to a certain fraction, k, of the wavelength:

D=k (1)

With this approximation, we may treat seismic waves of a given wavelength as
particles traveling through a space filled with scatterers, with more effective
scatterers for shorter wavelength because we count only those scatterers that
satisfy Equation (1).

Now let us further define the cumulative size distribution of hypothetical,
circular (in a two-dimensional space) or spherical (in a three-dimensional space),
non-overlapping scatterers to be given by a linear relation in log-log scales:

logN=a—blogD, DZ=D, 2

where N is the number per unit space of scatterers of diameter greater than or
equal to D, a and b are constants, and D,, is the diameter of the largest scatterer
in the field.

Retaining the particle-like treatment of seismic waves, the probability that a
seismic wave of wavelength 1 is scattered within a distance of travel x can be
obtained as the probability of encounter of the wave with any of the scatterers
that satisfy the relation (1) and distributed according to the relation (2), and is
given by (Nakamura, 1976):

P(x)=1—exp{—xf(4)} ©)
where
fA)=10°b(1—b)~* {Dy " —(kA)' %, b#1
=10°log(D,/k1), b=1 @
The mean free path, y, of the seismic wave in such a field, therefore is given by
p= [ 1= PO} dx =) s

When the fractional changes in the seismic energy density, E, and the seismic
energy flow, J, per mean free path are small, an approximate relation

J=—(vu/n)grad E (6)

holds for an n-dimensional space, where v is the seismic wave velocity (cf. Morse
and Feshback, 1953, p. 178). On the other hand, the requirement for the conserva-
tion of energy leads to the equation of continuity

0E/dt= —divJ —wE/Q ()

where ¢ is the time, w is the angular frequency and Q! is the dissipation function
for the seismic energy. We thus obtain from Equations (6) and (7),

OE/ot=(vu/n) *E—wE/Q @®)

This, except for the dissipation term, is the diffusion equation with a diffusivity
d=vpu/n, which is frequency dependent through Equations (4) and (5).
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1974). The observed envelopes agree well with theoretical expectations except
for the first few seconds, when non-scattered, radially transmitting waves are still
dominant. For the major part of the signal, one can determine the apparent
diffusivity and the dissipation factor by fitting a set of theoretical curves with
observed signal envelopes; “apparent” because the theory, as described in the
preceding section, assumes a constant diffusivity, while in the real moon it is more
likely to be depth-dependent as will be discussed later. The apparent diffusivity
thus determined is strongly frequency dependent, decreasing rapidly with increas-
ing frequency, as expected from the theory. On the other hand, the dissipation
factor is nearly independent of frequency for most impact signals, giving a Q of
the order of 6000.

3.2. Signals from Lunar Rovers

Seismic signals generated by the movement of the lunar roving vehicles (Rovers:
vehicles used for lunar surface transportation during the Apollo 15 and 16 mis-
sions) possessed some unusual properties. The variation of the observed signal
amplitude was relatively smooth despite the irregular movement of the Rovers.
The starting and stopping of a Rover produced only very gradual build-up and
decay of observed signal intensity, taking several minutes, rather than abrupt
changes. The observed amplitude at a given distance was smaller, by a factor of
up to three, when a Rover was coming back towards the seismic station than when
it was moving away from the station. These unusual characteristics can also be
explained readily by the seismic diffusion theory (Nakamura, 1976).

A moving source such as a Rover may be considered as a succession of in-
finitesimal, impulsive, point sources, each of which has a seismic effect at the station
represented by a formula of the type (9) or (10). We will here consider a two-
dimensional case, represented by Equation (9), because the extremely high velocity
gradient in the near-surface zone of the moon efficiently traps most of the seismic
energy in a shallow zone, and the energy transmission, therefore, is essentially
two dimensional for the short distances being considered. Thus, integrating
Equation (9) rewritten for infinitesimal sources with respect to time, we obtain

B 3 _ e o(t-1)
E(’)‘,f,cnf(t—r)e"p{ di-9 0 }d’ 12

for the energy density at the coordinate origin due to a moving source which has
started from distance r, and is moving at a radial velocity of ¢ at a distance of r.

The variation of seismic signal intensity obtained by evaluating Equation (12)
indeed shows all the characteristics of the Rover signals described above. The
diffusivity, &, is determined as a function of frequency, decreasing from about
0.03 km?/s at 4 Hz to about 0.02 km?/s at 8 Hz. The mean free path of seismic
waves can be estimated from the observed diffusivity if a value for the seismic
velocity, v, is assumed in Equation (11). Here, we must consider some sort of
statistical average of velocities appropriate for the distance ranges being consid-
ered. If we use a velocity of 100 m/s, which is within a factor of 3 of velocities of
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various possible modes of propagation in the lunar surface zone, the mean free
path is estimated to be of the order of 100 m.

The theory as developed in the preceding section allows the size distribution
of the scatterers to be determined from the observed frequency dependence of
diffusivity, by working backward through Equations (11), (5), (4), and (2). The
scatterer size distribution thus determined is found to be very close to the steady-
state size distribution of craters on the lunar surface as corrected for overlapping
craters. Thus, it is possible that the topographic and structural disturbances
caused by cratering is responsible for the observed scattering of seismic waves.

3.3. Terrestrial Applications

The diffusion approach to the seismic scattering problem is not limited to the
lunar applications. Terrestrial seismic signals in the near-source regions can often
be interpreted in terms of diffusion-type scattering. Wesley (1965) interpreted
seismic signals generated by an underground nuclear explosion in terms of diffu-
sion. Aki (1969) and Aki and Chouet (1975) described the coda of small, local
earthquakes in terms of scattered seismic waves nearly trapped in the source
region, a phenomenon essentially equivalent to diffusion. Herrmann (1976,
presented at this Symposium) attempted to synthesize the seismic coda of local
earthquakes in terms of random-phased waves modulated by an empirically
determined envelope function.

Wesley’s values of diffusivity found for the terrestrial case were of the same
order as those for lunar impact signals at comparable distances. The apparent
difference in wave characteristics between the terrestrial and lunar seismograms,
therefore, seems to be primarily a difference in the dissipation characteristics of
the transmitting media rather than a difference in degree of scattering.

4. Further Properties of Scattered Seismic Waves and Problems

4.1. Coherence and Phase Spectra .

I have stated earlier that lunar seismograms show no “apparent” coherence
among three orthogonal components of ground motion. However, this does not
mean that the ground motion is completely random and that there is no coherent
phase relation at all frequencies. Figures 4 and 5 show an example of coherence
and phase spectra of lunar impact seismograms, calculated following Kanasevich
(1973, pp. 115-116):

Coherence between x and y

_ (cospectrum of x, y)? +(quadrature spectrum of x, y)?

(power spectrum of x) - (power spectrum of y) (13)
and
Phase spectrum between x and y
—tan-! (quadrature spectrum of x, y) ' (14)
cospectrum of x, y
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The coherence is generally high at the very beginning of the signal, corresponding
to the initial P-wave arrival. It is relatively low for the rest of the signal, but is not
as low as expected for a completely random signal.

The observed coherence exceeds the square root of the variance of coherence
for a completely random signal (about 69, for this example) more often than
expected, particularly at certain frequencies.

The non-randomness of the lunar seismograms is more clearly demonstrated
in the phase spectra, Figure 5. The phase relationship among components is
predominantly in phase or 180° out of phase, indicating that the particle motion
is predominantly rectilinear rather than elliptical, which would show 90° phase
relations. The coherent phase relationship is particularly pronounced at certain
frequency bands. At a given seismic station, the phase spectra of various seismic
events exhibit essentially the same phase relations among components regardless
of the azimuthal direction of the source.

These observations imply the following: (1) The predominantly rectilinear
polarization suggests that the most scattered energy is in the form of body waves.
(2) Polarization of seismic signals which is independent of the source azimuth
suggests one or more predominant scatterers that happen to be located near the
seismometer. The scatterers in the near-range thus determine the polarization and
the coherence of the observed seismic signal, while those in the far range determine
the overall envelope of the signal.

4.2. Long-Range Transmission

The scattering described in the preceding sections assumes a constant diffusivity
throughout the medium. For many real cases, however, this simplistic model is
not sufficient, and further refinements of the theory are required.

An immediate problem is the vertical heterogeneity. The apparent diffusivity
measured from the envelope of lunar impact signals increases with distance, with
the signal rise time approaching a constant value at far ranges. This suggests that
the diffusivity increases with increasing depth, approaching infinity at a certain
depth. At this depth, therefore, the diffusion equation no longer applies, and we
must use the more conventional method of wave equations.

Long-range transmission of seismic energy thus requires a combination of
diffusion near the surface zone and wave propagation at depths. For a surface
source, such as a meteoroid impact on the moon, seismic waves are (1) first scat-
tered in the surface zone, (2) leak gradually into the interior, (3) travel through
the interior as ordinary seismic waves, (4) are absorbed in the surface scattering
zone near the seismic station, and (5) are scattered again before final observation.
The observed seismic wave train at far distances has a characteristic envelope
consisting of two clearly identifiable scattered envelopes, one for P-waves and
the other for S-waves, as seen for example in Figure 4 of Nakamura et al. (1976).
This is because step (3) above separates these two wave trains. Theoretical formula-
tions of steps (2) and (4) have not yet been worked out, and require further study.
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5. Conclusions

The diffusion approach offers a very attractive alternative to the more conventional
wave propagation approach for describing intensive scattering of seismic waves.
Even a simple, constant-diffusivity model can explain many of the properties of
scattered seismic wave trains. For applications to far ranges, a more sophisticated
formulation combining the effects of diffusion and wave propagation is needed.
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