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Abstract. A new derivation of the earth-flattening approximation (EF A) for 
body waves from geometric ray theory is given which results in an improved 
version of the EF A. This version agrees with the EF A, derived by Chapman 
(1973) from wave theory. Moreover, it allows absolute, not only relative, 
body-wave amplitude calculations for given source time functions. The 
choice of the density transformation of the EF A is shown, by numerical 
calculations, to be uncritical for body-wave amplitudes in the period range 
up to 30 s. An error in an earlier derivation of the EF A (Mi.iller, 1973 a) is 
corrected. This error requires a new investigation of the range of applica­
bility of the EF A, which is performed for the P-wave propagation through a 
homogeneous sphere. The results are similar to those of the earlier paper: 
long-period P waves with dominant periods up to about 20s can be treated 
practically exactly, as long as they do not pass closer than about 800 km to 
the earth's center. 
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Introduction 

Earth-flattening approximations (EF As) for body waves have been derived from 
geometric ray theory (Mi.iller, 1971, 1973a) and from wave theory (Chapman, 
1973; see also Gilbert and Helmberger, 1972; Helmberger and Harkrider, 1972; 
Hill, 1972). Although the basic structure of both EF As is the same, there is a 
notable difference: according to the EF A of Mi.iller (1973a) (in the following 
called paper /) the velocity-density-depth distribution in the flat earth depends 
both on source and receiver radius whereas Chapman's EF A is independent of 
these radii. Because of the dependence on source and receiver radius the EF A of 
I requires frequency and time transformations, as long as these radii are 
different, which is not required with Chapman's EF A. The essential assumption 
in the derivation of the EF A of I, which entails its more complicated form, is 
that medium properties at the source should agree in the spherical and the flat 
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earth, such that the radiation of P and S waves is the same. This condition can 
be relaxed, and it is shown in this paper that the resulting EF A, derived from 
geometric ray theory, agrees with Chapman's EF A in its essential features. 
Moreover, it allows the calculation of absolute (not only relative) body-wave 
amplitudes for a given source time function, e.g., the moment function in the 
case of a double-couple point source. 

The density transformation of the EF A is not well determined in the case of 
P-SV waves, neither by geometric ray theory (which is not surprising) nor by 
wave theory. Therefore, numerical calculations of theoretical seismograms for 
different density transformations are desirable, and they should show whether or 
not the choice of the density transformation is critical for practical purposes. 
Results of calculations for the mantle P phase and the core reflection PcP are 
discussed in this paper. 

Another purpose of this paper is to correct an error in J, related to the 
amplitude correction factor for diffracted waves. A correct application of 
geometric ray theory gives the same (L1/sinL1) 112 factor as for other body waves 
(Ll =epicentral distance). 

Finally, a new investigation of the range of applicability of the EF A is 
performed by calculating the P-wave propagation from an explosive point 
source through a homogeneous sphere. Exact results are available in this case, 
since it corresponds to propagation through a homogeneous unbounded me­
dium. This test has already been used by Helmberger (1973) for P waves 
propagating as deep as 1150 km in a sphere of the size of the earth. These 
calculations are extended here to much greater depths in order to find out for 
which wavenumber times radius products the EF A still works with sufficient 
accuracy. 

Theory 

The following is a summary of the properties of rays in a sphere and a half­
space, according to geometric ray theory. Most notations are explained in 
Figure 1, and subscripts s and f refer to the spherical and the flat earth, 
respectively. The formulas are given for the simple type of ray shown in 
Figure 1, but the results derived from them are also true for other types such as 
rays with a turning point or reflected rays. 

Spherical earth: 

ro r ('2 )-1/2 
Epicentral distance: xs=f; J ...!. - 2 -f; 2 dr 

,, r V, 
( 1) 

ro r {'2 )-1/2 
ts = J -2 -2 - P;2 d r ,, v, v, Travel time: (2) 

Ray parameter: 

Amplitude: (3) 
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Fig. 1. The spherical earth (left), the flat earth (right) and two corresponding rays from the source 
Q,.J to the receiver P,, 1 . The radiation angle is the same for both rays 

V,(r) = P or S velocity} . 
( ) d 

. at radius r 
Ps r = ens1ty 

A.0 =amplitude at a reference point 0 , on the ray with distance a 
from the source Q. 

Amplitude: 

V1(() = P or S velocity} d h v 

. at ept <, 
p 1 (() = density 

A 10 = amplitude at a reference point 0 1 on the ray with distance a 
from the source Q1 . 

The depth and velocity transformations of G erver and Markushevich (1966), 

R 
(=Rln - , 

r 

(4) 

(5) 

(6) 

(7) 

which are independent of source and receiver radius yield, when inserted into (I) 
and (2), 

or (8) 
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and 

ts=tf. 

Here, (4) and (5) have been used. It follows that the mapping of the sphere onto 
the half-space is independent of r 1 , and that the travel times between cor­
responding points in the sphere and the half-space agree for arbitrary values of 
r 0 and r1 ; in both regards the EF A derived here differs from the EF A of I. The 
constancy of ray parameter along the ray in both media yields t/Js=t/Jf. Inserting 
this and (7) and (8) into (3) one obtains, using (6): 

_ ( L1 ) 112 R (r0Ps(ro)PJ((1)) 112 Aso 
As- sinLi -;:;- r1ps(r1)pf((0) Afo Af. 

A density transformation similar to the velocity transformation, 

(9) 

where according to wave theory n depends on the wave type investigated, yields 
finally the amplitudes in the sphere in terms of the amplitudes in the half-space: 

_ ( L1 ) 112 (R)~ (r0)~ Aso As- -.- - 2 - 2 --AI. 
smLi r1 R Afo 

(10) 

The relation between the exponent of receiver radius r1 and the exponent n in 
the density transformation (9) is the same as with Chapman's EF A. Thus, both 
EF As agree in all essential points. 

The amplitude correction formula (10) allows the calculation of absolute 
amplitudes in the sphere, provided the ratio A sol A JO of the initial amplitudes is 
known. In the framework of geometric ray theory these amplitudes have to be 
considered as the amplitudes of the far-field term of displacement, taken close to 
the source. The simplest assumption is As 0 / A f 0 = 1; this means that the source is 
described by its (far-field) displacement-time function. There may, however, be 
cases where one prefers to describe a double-couple source by its moment 
function M(t) or an explosion by its excitation function (or reduced displace­
ment potential) F(t). From the far-field displacements of these sources m a 
homogeneous unbounded medium, one derives for a double-couple 

Aso PJ((o)Vj((o) (R)n+J 
Afo = Ps(ro) V,3(ro) - ro 

and for an explosion 

Aso = Vf(( 0 ) = R 
Afo V,(r0 ) r 0 

Discussion 

As paper I and this paper show, geometric ray theory allows the construction of 
different EF As. From a theoretical point of view preference should be given to 
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the EF A derived here, since it agrees with an EF A from wave theory, which has 
not yet been shown for the EF A of I. From a practical point of view, no 
essential differences exist, as follows from calculations of theoretical seismo­
grams. For example, theoretical long-period P and PcP phases between 40° and 
70° have been computed by Mi.iller et al. (1977, Fig. 7) for the Jeffreys-Bullen 
earth model and a source at a depth of 600 km, using the EF A of I. 
Recalculation with the revised EF A shows agreement generally within 1 % in 
absolute amplitudes and in the amplitude ratio PcP/P. 

The density transformation of the EF A is not well defined from geometric 
ray theory. Chapman (1973) has shown from wave theory that in (9) n= 1 is 
optimum, although not exact, for P waves in liquid media, i.e., for the acoustic 
case, and n = - 5 for SH waves. For P-SV waves in solid media no optimum 
value could be found. Numerical calculations of theoretical seismograms, again 
for long-period P and PcP between 40° and 70° from a deep source, show 
changes in amplitudes from n = 1 to n = - 5 which do not exceed 2 % in the case 
of P and 4 % in the case of PcP. These numbers decrease for a closer 
approximation of the velocity-density-depth distribution by layers (which in the 
computational method used, the reflectivity method (Fuchs and Mi.iller, 1971), 
are homogeneous in the flat earth and hence inhomogeneous with negative 
velocity gradients in the spherical earth). The conclusion from this is that for 
practical purposes the choice of n is not critical in body-wave studies. On this 
background, a theoretical argument can be made in all three cases (acoustic, SH 
and P-SV) in favor of n = -1. It is an experience from numerical calculations 
that the influence of density on body-wave amplitudes is strongest for vertically 
travelling waves. For these the controlling parameter is the impedance, i.e., the 
product of velocity and density. Therefore, it is reasonable to match the 
impedances of the spherical and the flat earth, which means n = -1. For waves 
travelling predominantly horizontal this value is as reasonable as any other 
from -5 to 1. 

The amplitude correction formula (10) applies also in the case of diffracted 
rays, contrary to what was stated in I; i.e., formulas (12) and (17) of I are wrong. 
The simplest argument is that a diffracted ray which runs parallel to the 
diffracting boundary can be approximated arbitrarily close by a ray of the type 
discussed so far, having a turning point. This is done by introducing in an 
arbitrarily thin layer above the diffracting boundary a velocity gradient d Vjdr 
= V,(rd)/rd where rd is the radius of the diffracting boundary and V,(rd) the 
velocity directly above it. Then, (10) is applicable. For finite frequencies, i.e., 
non-zero wavelengths, the original and the new velocity distribution are equiva­
lent, and thus (10) is also valid for diffracted rays. This qualitative argument is 
confirmed by strict geometric-ray-theory calculations of the changes in wave 
amplitude along the segments of a truly diffracted ray in the spherical earth and 
its image in the flat earth. The error in I is due to a wrong sequence in the 
treatment of the ray segments. 

A consequence of the error is that in Mi.iller (1973b) theoretical ~iff 

amplitudes are slightly incorrect (see Mi.iller, 1976). As a more serious con­
sequence, it seems no longer certain that the EF A can be applied in those body­
wave propagation problems for which the product wavenumber times radius, kr, 
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is greater than about 16. This lower limit had been inferred in I from a 
comparison of exact F:iirr amplitudes with those following from calculations via 
the EF A, including the wrong amplitude correction factor for diffracted rays (I, 
Fig. 3). If the correct factor is used the agreement is less good, and hence one 
would derive a greater minimum value of kr and consequently a more restricted 
range of applicability of the EF A. This question requires further investigation 
which is reported in the next section. 

Range of Applicability of the EF A 

The range of applicability of the EF A can be tested by comparing theoretical 
seismograms for a model, for which they can be calculated analytically, with 
those calculated numerically via the EF A and the reflectivity method for a 
layered half-space. The simplest test model is a homogeneous sphere with an 
explosive point source and receivers at the surface. The radius of the sphere is 
assumed to be 6370 km, the P velocity 10.00 km/s, the S velocity 5.77 km/s and 
the density 5.50 g/cm 3 . In the corresponding flat medium the wave velocities 
increase exponentially with depth; the density decreases exponentially with 
depth, according to the exponent n = -1 in the density transformation (9). For 
application of the reflectivity method, this half-space is approximated by homo­
geneous layers which corresponds to saw-tooth-like velocity and density-depth 
distributions in the sphere. The thickness of the inhomogeneous layers in the 
sphere is 50 km in a first calculation; it is reduced in a second calculation to 
25 km at depths greater than 4000 km and to 12.5 km below 5000 km, in order to 
test whether or not the approximation of the homogeneous sphere is sufficient. 
Both calculations give essentially the same results, the differences in the maxi­
mum peak-to peak amplitudes being 2 % or less. 

The far-field term of the displacement of the spherical P-wave at a reference 
distance close to the source is assumed to be 

. t . t 
s(t)=sm2n T-~sm4n T' O~t~T=20s. ( 11) 

The dominant wavelength is about 180 km in the sphere. The epicentral distance 
of the receivers increases from 120° -170°, such that the rays from the source to 
the receivers pass closer and closer to the center of the sphere where the EF A 
definitely breaks down. The influence of the free surface is disregarded, both at 
the source and at the receivers; in reality the test is one for an unbounded 
medium for which theoretical seismograms can be calculated analytically in a 
well-known manner from (11). 

Figure 2 shows a comparison of exact theoretical seismograms for the 
displacement component along the ray from the source to the receiver with 
calculations using the EF A. The component perpendicular to the ray, which in 
theory vanishes, has maximum amplitudes less than 1 % of those of the com­
ponent along the ray. The agreement between analytical and numerical calcu­
lations is very good up to 150°. Then discrepancies gradually develop, and at 
170° both amplitudes and pulse forms are significantly different. The most 



|00000449||

Earth-Flattening Approximation for Body Waves 435 

505 

485 
120 130 140 150 160 

/::, [QEGl 
Fig. 2. P-wave propagation from an explosive point source through a homogeneous sphere: 
comparison of exact theoretical seismograms (circles) and numerical calculations, based on the 
earth-flattening approximation and the reflectivity method for a half-space (solid lines). For more 
details see text 
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Fig. 3. Ratio of the amplitude spectra of the numerically calculated and the exact seismograms of 
Figure 2, for epicentral distances from 150°-170°. The length of the time interval considered is 127 s, 
and the time step I s. The normalized source spectrum follows from ( 11) 



|00000450||

436 G. MUiler 

important conclusion can already be drawn by inspection from the seismograms 
at 165° where, inspite of certain differences in pulse form, the maximum peak-to­
peak amplitudes arc practically identical. The distance of the luring point of the 
ray from the center of the sphere is 831 km, which in the real earth corresponds 
to a depth of about 400 km below the boundary of the inner core. Since the 
velocity-depth distribution in the inner core is quite similar to the one in the 
homogeneous sphere under investigation, it is safe to conclude that the EF A can 
be applied without essential errors in amplitude studies of long-period core 
phases with dominant periods up to at least 20 s, provided that the waves do not 
propagate deeper than about 400 km below the inner-core boundary. Moreover, 
spectral analysis of the scismograms of Figure 2 shows (Fig. 3) that at low 
frequencies the EFA leads to systematically reduced spectral ratios of the 
numerically calculated to the analytical scismograms. At 165° the spectral ratio 
is in error by more than I 0 /., at periods greater than about 30 s, taking a 
smoothed version of the spectral-ratio curve. Considering I 0 % as an acceptable 
error in the computational method, compared with the normally much larger 
observational error in amplitude studies of long-period waves, one derives kr 
~ 17 as the admissible range of the product k r in studies of long-period body­
wavc amplitudes with the EFA. To be on the safe side, the waves should not 
pass closer than about 800 km to the earth's center. In essence, these arc the 
same conclusions that had been reached in I. 
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