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Abstract. This paper presents a survey of the development and use of first 
order elastic scattering theory in seismology. The various methods used to 
provide expressions for scattered waves from variations in structure are 
shown to lead to a single scattering formula. 

A ray theory approximation for the incident and scattered waves pro­
vides a simple formula from which the radiation patterns of different types of 
scatterer can be derived. As an illustration, the solution for a homogeneous 
'average' structure is given in detail. 

The statistical properties of the signal in time are clearly related to those 
of the scatterers in space and, in particular, the correlation time of the signal 
is related to the correlation distance of the scatterers. 

The paper ends with a discussion of the possible use of first order (weak 
scattering) theory in cases when the scattered signals are large. 
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1. Introduction 

The idea of scattering from slight inhomogeneities in the Earth's structure, as an 
explanation of particular phases of a seismogram, has become widespread in 
recent years. 

In 1965 Wesley applied theoretical calculations of scattered waves from 
inhomogeneities in lithospheric structure to account for the coda of P in records 
of nearby explosions. This was followed by similar studies of small earthquakes 
by Aki (1969), Takano (1971) and Aki and Chouet (1975). Greenfield (1971) 
brought in the rough topography of the surface near the source to explain the 
coda of teleseismic P from Novaya Zemlya explosions. More recently, King et 
al. (1975) and Cleary et al. (1976) applied scattering theory to account for the 
coda of P, including precursors to PP, at epicentral distances of around 100°, in 
terms of surface reflections of P which have deviated from their usual ray paths 
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as a result of crustal and upper mantle heterogeneity. A similar mechanism has 
been proposed, to account for precursors to P KP P KP, by King and Cleary 
(1974) and Haddon et al. (1976). 

In 1972, Haddon suggested that scattering from inhomogeneities in the lower 
mantle might be the explanation of precursors to P Kl KP. Comparisons of the 
data with theoretical calculations appeared in papers by Cleary and Haddon 
(1972), Doornbos and Vlaar (1973), King et al. (1973), Vinnik (1974), Doornbos 
(1974), King et al. (1974), Haddon and Cleary (1974), Wright (1975), Doornbos 
(1976) and Husebye et al. (1976). 

In addition to the generation of wave trains by scattering, small irregularities 
in Earth structure will cause variations in amplitudes, arrival times and phase 
velocities of commonly observed seismic phases. While such fluctuations must of 
course be accounted for in any comprehensive theory, this paper is concerned 
only with the scattered waves which can be measured separately from the main 
phase, as in the codas and precursors mentioned above. 

On the assumption that the incident rays are scattered once only before 
arriving at an observation point, simple kinematic theory has been used in many 
cases to predict the onset times of scattered waves, as well as the variation of 
phase velocity along the wave train. Multiple scattering needs to be taken into 
account if the scattering is strong, but the complexity of the calculations would, 
almost inevitably, be very much increased. 

In order to estimate the amplitude of the scattered waves in terms of the 
properties of the solid medium, full elastodynamic theory must be used. The 
theory underlying almost all calculated expressions is a first order perturbation 
approximation; that is, the scattered wave field is assumed to be a small 
perturbation on the primary waves. 

Expressions for first order scattering in an elastic medium were first obtained 
by Miles (1960), who treated the time-harmonic problem of weak scattering 
from a small heterogeneous region. At the same time Gilbert and Knopoff 
(1960) presented a method of dealing with small variations in surface topog­
raphy. Expressions for the scattered field were also derived by Herrera and Mal 
(1965) for a volume distribution of weak scatterers, and by Herrera (1965) for 
thin scatterers. 

When the size of individual scatterers within a heterogeneous region is small 
compared with the size of the region, the details of the structure are of little 
importance and one may expect only to infer the statistical properties of the 
elastic parameters. Theoretical results have been obtained (Knopoff and 
Hudson, 1964; Hudson and Knopoff, 1967) for the mean square amplitudes of 
scattered waves where the incident wave is time harmonic and the mean is 
calculated for a statistical ensemble of scattering regions. In a similar calcu­
lation, Dunkin (1969) derived expressions for the correlation function of the 
signals received by 2 observers from an incident spherical P wave. 

Some of the theoretical results used to compare with seismic observations 
have been derived from acoustical theory. Vinnik (1974), for instance, made his 
calculations on this basis. However, the acoustical model is unsatisfactory for 
several reasons. Most of the calculations made by Haddon and his co-workers 
are based on the elastodynamic equations and first-order perturbation theory, 



|00000375||

Scattered Waves in the Coda of P 361 

rederived by Haddon but unpublished. The published results (see, for instance, 
Haddon and Cleary, 1974) correspond to mean square amplitudes of waves 
scattered from an incident wave whose time variation is either simple harmonic 
or a random time series, modified by a slowly varying envelope. Doornbos 
(1976) too has provided a theoretical basis for his expressions, derived once 
again from the elastodynamic equations with harmonic variation in time. 

In order to cope with scattered signals which are clearly not weak and to 
which first-order theory is unlikely to apply, Wesley (1965) and Aki and Chouet 
(1975) set up a diffusion equation for the scattered elastic energy. King et al. 
(1975) also found that precursors to PP require strong scattering. They, however, 
made the assumptions that only single scattering occurs and that the radiation 
pattern of the scattered energy is the same as for weak scattering. In other 
words, they assumed that the formulae derived from weak scattering theory still 
apply. Both of these approaches are empirical and both give a reasonable fit 
between theory and experiment. Unfortunately, it is not possible in either case 
to interpret the parameters of the model in terms of the physical properties of 
the medium. Nor is it known whether either is an accurate model of the elastic 
behaviour of a real material. 

In the following sections, the various aspects of the first order theory will be 
drawn together into a single formula, valid for an incident wave with arbitrary 
variation in time. Specialisation to a harmonic input and to a statistical model is 
deferred, since the calculation of mean square amplitudes in the frequency 
domain destroys all phase (and time) information. 

2. The Integral Equation 

Consider an elastic material in a domain §!fl with boundary !J7. Its elastic 
parameters A., µ (or cijpq) and density p are functions of position. The reference 
medium is defined as a similar material within a domain §»0 with boundary Y 0 , 

and elastic parameters A. 0, µ0 (or c~pq) and density p0 such that Y 0 differs from 
Y within a bounded region only. Differences between the structural parameters, 
A.1 =A.-A.0 , µ 1 =µ-µ 0 (c1 =c-c0 ) and p1 =p-_p0 are also assumed to be zero 
outside a bounded region. It is assumed, finally, that Green's function is known 
for the reference medium. 

Given a specific problem of wave propagation, let us suppose that the 
solution for the displacements in the reference medium is known and is given by 
u0 . The displacements in the original structure may be written as u = u0 + u1, 
where u is understood to have an analytic continuation into any region of §»0 

exterior to §». In general, in order to use perturbation theory, it must be 
assumed that lu 11 is everywhere small compared with the mean magnitude, or 
scale of u0 . 

The equation of motion in §!fl is 

a ( aup) .. -0 
oxj cijpqaxq -pu;- ' (1) 

where 
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Since u = u0 is a solution of Equation (1) with cijpq replaced by cZpq and p 
replaced by p0 , Equation (1) may be written as 

a ( 0 OU~) 0 ··1 a ( 1 oup) 1 .. 
OXj Cijpq OXq - p U; = - OXj C;jpq OXq + p U;. (2) 

Let G{(x, ~, t) be Green's function for the reference structure. Then Equation 
(2) may be inverted to give 

(3) 

where ~ 1 is the part of ~0 within which cijpq is non-zero and Y 0 is the reference 
surface, where the traction due to G is zero. 

The effect of the heterogeneity may therefore be regarded as equivalent to that 
of a volume and surface distribution of forces and dipoles. The strengths of these 
sources depend on u itself, and in the following sections we consider methods by 
which we may represent them by approximations. 

It may be noted that Equation (3) remains valid if the elastic parameters c 
and density p are discontinuous across given surfaces (Hudson, 1968), so long as 
they are piecewise continuous. 

3. Slight Heterogeneity 

If the deviations of the elastic properties of the material from the local average 
properties are small so that u0 ~ u within ~1, we may use the Born approxima­
tion (Miles, 1960) and substitute u0 for u in the volume integral in Equation (3). 

The scattered field is given by the approximation 

together with a term corresponding to scattering from perturbations from the 
reference surface. 

Equation (4) is the basis for the majority of theoretical papers on scattering 
within the body of the Earth and it will be shown that all formulae for first 
order scattering can be put into this form. 
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4. Thin Scatterers 

If the deviations of A., µ and p from their average values are not small, the 
scattered field will be small only if the region in which these deviations occur is 
small. Thus we are led to consider small intrusions in matrix (or average) 
material (Herrera, 1965). 

While the displacements are continuous across an interface where the 
material properties change, their derivatives are not. Let the normal n at a given 
point of an interface, where the material parameters change from ck}vq' pm to 
cLvq' pi, be in the direction of the 0 3 axis. The displacements and three 
components of strain are continuous; so that 

[uk] =0, k= 1, 2, 3 

~ ~ 

[e11 ] = [e12] = [e22] =0; 

that is 

where superscripts i and m refer to the intrusion and matrix respectively. Also, 
the tractions are continuous across the interface; 

that is, 

µe~3=µ0 e73 

µe~3 =µo e~3 

and (A.+2µ)e~ 3 +A.(e;11 +e~ 2)=(A.0 +2µ0)e;\+A.0 (e7 1 +e~2). 
Thus 

Alternatively, 

where 

2\ 111 = c2222 =(A. 1+2µ 1)-(A.1)2/(A. + 2µ) 

C3333 =(A.1 +2µ1)(A.o +2µo)/(A.+2µ) 

C1122 = c.2 211 =A1(A. 0 + 2µ)/(A. + 2µ) 

(6) 

(7) 

(8) 
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C1133 = C3311 = c2233 = C3322=A1V 0 +2µ 0 )/(A. + 2µ) 

.c1313 = C3113 = C1331 = C3131 = µ 1 µ 0 /µ = c2 3 2 3, etc. 
- ~ - ~ 1 
C1212 = C2112 = C1221 = Cz121 =µ · 

All other components of c are zero. 

J.A. Hudson 

If the intrusion is thin compared with the length scale of variation of the 
displacement, the displacement field in the matrix may be approximated by the 
incident field u0 ; 

(9a) 

and similarly, for the strain field, 

(9b) 

where c2 is a tensor which reduces to c when referred to axes with 0 3 along the 
local normal to the interface. Thus we obtain for the scattered field 

(10) 

Integration over the thickness h(~) of the intrusion gives 

1 "'s S { [ 1 au? a 2 au~ a ] i( )} u 1 (x,t)=-_
00
d\dS h(~) p Trat+cijpqa~qa~j G1 x,~,t-r, (11) 

where S is the median surface of the intrusion. 
Equation (10) has the same form as Equation (4). The equation may of 

course be applied to the problem of scattering from a distribution of inclusions, 
provided that the concentration of the inclusions is sufficiently dilute. It is also 
applicable to the problem of a slightly rough interface between two materials, in 
which case the roughness may be regarded as a distribution of inclusions on the 
interface where the two materials penetrate into each other. 

It will be clear however that the parameters c2 cannot be calculated from 
Equation (8) if the inclusion is rigid (). = µ = oo) or empty (A.=µ= 0). In the first 
case the strain within the inclusion is everywhere zero; in the second case it does 
not exist. The formulae derived here, based on the assumption that the strain 
field in the matrix is altered only slightly by the presence of the inclusion, is 
applicable only if the contrast between the two materials is not too large. 

5. Slightly Rough Surface 

The previous sections were concerned with variations in elastic properties within 
the material. There is now the effect of roughness at a free surface to be 
considered. If the reference surface !7° is the plane x 3 = 0, the surface integral in 
equation (3) may be written as 
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where u is analytically continued, where necessary, up to the reference surface. 
This integral may be developed by a method due to Gilbert and Knopoff (1960). 
If If I is small, 

r pq1X3= o ~ r pqlx3= 1-f 00rpq 1 

X3 X3= 0 

and in the second term on the right rpq may be replaced by r~q to obtain a first 
order approximation. The free surface condition on x3 = f provides a first order 
estimate of the first term on the right; 

!33 -2fx, !31 -2fx2 !32 =0 

and 

approximately where (/;, m;, n;) are two vectors in the tangent plane of the surface 

x3=f(x1, x2), while the normal is Ux, Jx2, -1) approximately when fx, ( = ::1) 

and fx 2 ( = ::J are small. 

Thus, to first order 

!33lx3=f=(2fx, r~1 +2fx2 r~z)ix3 =o=0 

rl3lx3=f=(fx, r~1 +fx2 r~2)ix3=0 

r231x3=f=(fx, r~2+fx2 r~z)ix3 =o 

and the contribution to the scattered field becomes 

(12) 

(13) 
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which has the same form as Equation (11) for scattering from a thin inclusion. 
However, as was pointed out in the last section, Equation (13) cannot be derived 
from Equation (11), even though if h(x)=f(x), p 1 =-p 0 , c1 =-c0 in Equation 
(10), the two equations are identical. 

6. The General Scattering Formula 

The formulae (4), for scattering from a volume distribution of slight hetero­
geneity, (9), for variations in c and p within thin regions, and (13) for a rough 
surface or interface, all have the form 

(14) 

where pt and ct are appropriate values of density and elastic parameters. 
The scattered radiation in any of these cases will be the same if the volume 

densities of pt and ct are the same. Thus, scattering from small variations in c, 
with mean amplitude <I, will be of the same order of magnitude as scattering 
from thin intrusions with mean discontinuity I: if the volume concentration of 
intrusions is approximately <I/I:. Alternatively, thin intrusions lying on a surface 
layer of mean thickness h are equivalent to small variations in a layer whose 

thickness is of the order of h I:. 
(J 

In order to obtain more information about the nature of the scattered waves, 
it is helpful to make some simplifying assumptions about the incident waves. 
This is done in the next section. 

7. Ray Theory Approximation 

Let us now assume that the time variation of the incident wave u0 is the 
same at each point of ~1 ; 

u 0 (~, r) = A(~)f(r - s0 (~)). (15) 

Let us also assume that A varies slowly compared with f This is equivalent 
to a representation of u0 as the first term of the ray expansion; r = s0 ( ~) is the 
wavefront, and the ray direction is along J7 s0 . 

If u0 represents a P wave, then 

no 
Vs 0 =-, A(~)=n° A(~), ln°1=1; 

a 

and if an S wave, 

no 
Vs0 =73, A(~)=m0 A(~), lm0 1=1n°1=1, m0 -n°=0, 

where a and f3 are the local wave speeds. 
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Now c:(x, ~. t - r) represents the displacement at time t in the l direction at x 
due to a point force in the i direction at ~ acting at t = r; alternatively it may be 
regarded as the displacement in the i direction at ~ due to a point force in the l 
direction at x. For large distances, 

G:(x, ~, t-r) = pJ~, x) B 1 (~, x) o(t-r -sP(~, x)) 

+qi(~,x) C 1 (~,x)Ci(t-r-s8 (~,x)) 

approximately, where 

IPl=l, 

lql=l, 

VsP =p/a 

lf317ssl = 1, q · 17ss =0. 

7.1. Scattered P from an Incident P Wave 

Under the above approximation, the scattered P wave is 

OC! 

(16) 

uf (x, t) = - J dr J dV {[pt n? P; + ctpq n~ n~ P; p)a2] AB 1 f'(r -s0) Ci'(t-r -sP)} 
-ro ~ 

= f" (t) *Ft (x, t), (17) 

where 

ft(x, t) = - J {[pt n? P; + cljpq n~ n~ P; p)a2] AB 1 Ci(t-s0 -sP)} 
~ 

( 2t0 +t 00 ) 
= - J AB1 a p ni P; cijpqnp nq P;Pj dS 

SP alno+pl ' 
(18) 

where SP is the surface t = s0 + sP. 
The smallest value of t to give a real surface SP is t = TP, the travel time from 

source to receiver of a P wave. At t = TP, the surface SP reduces to the 
curvilinear ray path with n° +p=O at each point. 

As t increases, SP moves out, sampling the heterogeneous medium as it goes. 
The speed of its advance is given by 

1 ()'. 
v=----

IJ7(s0+sP)I ln°+pl. 
(19) 

Thus v is infinite at the wavefront of the scattered waves, and decreases as 
scattered waves arrive at the point of observation more and more from the side. 

For side scattering v = a/i/2 and the minimum value of v is a/2 for back­
scattering. 

If the correlation distance of the heterogeneities (that is, roughly, the spatial 
wavelength of the variations inc and p) is a, the correlation time of the scattered 
signal is approximately a/v. 
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Thus, the scattered wave begins with short correlation times (high frequen­
cies) corresponding to in-line or forward scattering, and later settles down to 
vibrations centred on frequencies directly proportional to the size of the 
scatterers (side and back scattering). This is in accord with earlier findings 
(Knopoff and Hudson, 1964) that scattering at high frequencies is confined to 
ray paths close to the incident path, while low frequency scattering should be 
observed arriving from all possible directions. 

The main difference between the formula (18) and the corresponding ex­
pression for acoustic scattering lies in the radiation pattern for each element of 
the variable medium regarded as a radiating source, given by the expression 

Scattering from variations in density is governed by the angular variation of 
n° · p (=cos x, say). Also, if the elastic properties are isotropic 

t 0 0 -A_t 2 t ( 0 )2 - t 4 µt ( ) cijpqnqnppipi- + µ n ·p -K+3 P1 cosx, (20) 

where Kt is the corresponding bulk modulus. 
Thus, variations in the bulk modulus give rise to an isotropic radiation 

pattern while variations in rigidity give rise to a radiation governed by P2 (cosx) 
the Legendre polynomial of order 2. Variations in density, as shown above, give 
rise to a radiation pattern according to P1 (cos x). The angle (n- x) is the angle of 
scattering. 

These radiation patterns were first noted by Miles (1960). 

7.2. Scattered S from an Incident P Wave 

Substitution of the S wave component of Green's function, gives the scattered S 
wave: 

00 

uf (x, t) = - J dr J dV {(pt n? qi+ cLpq n~ n~ qi p/a. {3) AC 1 

- 00 w 

x f' ( T - s0) (j' ( t - T - ss)}, 

where, here, p = {3 17 ss. 
So 

uf (x, t) = f'' (t) * F;8(x, t), (21) 

where 

(22) 

and S8 is the surface t = s0 + s8 . 

This surface starts at the point of observation, at t = TP again. However, {3 n° 
+a. p is not zero there, and so scattered wave amplitudes from the surface 
integral will be small to begin with. 
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As t increases, S8 moves out with speed 

(X /3 
(23) 

l/3n°+rxpl · 

This is largest for forward scattering (v =_____f!_____/3 ) but it does not vary nearly as 
1- /rx 

much as the corresponding quantity for scattered P, and in-line scattering will 
have slightly higher frequencies than side or back scattering. Again, the cor­
relation time is approximately a/v when the correlation distance of the scatterers 
IS a. 

There is no very high frequency scattered signal in this case; that is, at high 
frequencies the conversion from P to S is small (Knopoff and Hudson, 1967). 

The radiation pattern for isotropic heterogeneity is given by 

(24) 

that is, a cosine pattern for pt and a double cosine pattern for µt. 
If the scattering region is far from the receiver point, there will be a time 

delay from t = TP until the surface S8 grows large enough to intersect the 
scattering region. This time will correspond to a minimum time path for an 
incident ray to get to a scattering point (at speed rx) and then travel by a shear 
ray path to the receiver (at speed /3). 

It has sometimes been stated that, if the wavelength of the incident wave is 
sufficiently short, conversion from one wave-type to the other ceases and that 
the acoustic equations may be used. However the acoustic equations do not give 
the correct radiation patterns. 

8. Results for a Homogeneous Reference Medium 

In order to illustrate these results more clearly, the expressions will be evaluated 
for the case when the reference medium is homogeneous and isotropic. Green's 
function is now 

Gj(x ~ t)= P;Pi c5(t-R/r:x)+ (c5ii-P;P) c5(t-R//3) 
' ' ' 4np0 Rr:x 2 4np0 R/32 (25) 

+lower order terms 

where 

R=lx-~I and p=(~-x)/R. 
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and 

Thus 

6u-PiPt 
4np0 R/32 ' 

If the incident wave is a uniform plane wave; 

u0 (~,r)=An° f(r-n°-~/rx) 

J.A. Hudson 

(26) 

with A and n° constant. The scattered P-wave is given by Equation (17) with 

Ft (x, t) = -A J E_t_ (rx2 pt n? P;+cljpq n~ n~ Pi P) dS. 
4np0 rx 3 sPR ln°+pl 

(27) 

The surface SP is given by 

i.e. 

t=n°-~/rx+R/rx. 

Let us take the origin of Cartesian axes at the point of observation with the 
0 3 axis along n°; the equation for SP becomes 

(28) 

This is a paraboloid of revolution with focus at the origin (the point of 
observation) and directrix at ~ 3 = rx t. 

The surface moves out with speed v 
Vl(l+~ 3/R)t. 

With cylindrical polar coordinates (r, (), () having origin at ~ = 0 and ~ 3 = (, 

we obtain 

f't(x, t) 

The scattered S waves are given by 

s( ) -A J (rxf3ptn~+ctpqn~n~p)(6u-p,p 1) dS 
F; x, t = 4n p0 /3 2 ss l/3n° +rxpl R 

The surface S5 is 

t=s0 +s8 

(29) 

(30) 
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i.e. 

(31) 

or 

which is an ellipse with the on gm as focus, ~ 3 =a. t as directrix, and with 
ellipticity {J/a.. Finally, in terms of cylindrical coordinates, 

(32) 

The amplitudes of the scattered waves depend on the shape of the scattering 
region and on the radiation pattern of each elementary scatterer. As time increases 
the surface SP or S8 moves outward through the medium; in-line scattering gives 
way to side and back-scattering and the envelope of the scattered signal changes 
accordingly. However, it is noticeable that there is no obvious decay due to 
geometrical spreading in the formulae (28) and (31). This is because the 
geometrical spreading of individual ray tubes is balanced by the steadily 
increasing size of the surface SP or S8 . 

In a model in which the scattering region is contained within an infinite 
plane-sided layer, the theoretical scattered signal will have infinite duration. This 
shows that scattered signals may well be very extended in time. 

9. Statistical Properties of Scattered Signals 

According to Equations (17) and (21), the scattered waves are given by the 
convolution of the time function of the incident acceleration with either FP or 
F8 . Expressions (29) and (32) for FP and F8 -show that both are linearly related to 
pt and ct, and therefore their statistical properties are easily obtained from the 
statistical properties of pt and ct. 

Rather than regard the scattering region as a single sample of an infinite 
ensemble, it is better for many purposes to derive correlations of the signal in 
time from correlations of the material properties in space. This approach has 
already been introduced in the connection of the correlation length a of the 
material variations with the correlation time a/v of the signal, where v is the 
speed of advance of the surface SP or S8 • 

Similarly mean square amplitudes and correlations of amplitudes at two 
different points can be calculated. The advantage of this method over earlier 
investigations is that it operates in the time domain, in which the observations 
are made, and the statistical interpretation has more direct application to the 
data. A mean value, in this case, is an average over a restricted length of signal, 
or region of space. 
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10. Applications of the First-Order Theory 

If the above formulae are to be used, the energy converted by scattering must be 
small compared with energy in the incident wave. However, if this is so, it might 
be expected that the scattering will be seen as low amplitude noise on a seismic 
trace, and ignored. Important applications of the hypothesis of scattering from 
heterogeneity in the Earth, however, occur only when the supposed scattering is 
comparable with the known standard phases on a seismogram. In this case, first­
order theory may not in general be applied with any confidence. 

There are situations, however, where weak amplitude scattering theory may 
be applicable; these include cases where the primary signal has been obscured 
and the scattered signal, by travelling by a separate path, is at full strength (see, 
for example, Douglas, 1973). Three examples may be noted. 

Firstly, precursors to P Kl KP are observed in the shadow region of P KP, the 
primary signal from which the precursors are assumed to have been scattered. 
The precursors arrive at a time when the record is quiet and can be clearly seen 
for this reason. Thus, in the first instance, one may have good reason to hope 
that first-order theory will explain the phenomenon. Recent studies (see, for 
instance, Doornbos, 1976) have suggested that, in fact, the heterogeneity produc­
ing the precursors is not small. If this is so, a new theory for multiple scattering 
needs to be set up. 

A second example is the study of precursors to PP at epicentral distances 
greater than about 100°. The primary wave in this case is P, which is obscured 
at these distances by the core. Scattered signals would travel by paths entirely in 
the crust and mantle and would be expected to be relatively large in amplitude, 
as seen on the seismogram. 

Finally S to P scattering travels ahead of the primary S wave and appears in 
the coda of P. If the direction of radiation is near a node of P and an antinode 
of S, the first arrival will be relatively small and will be followed by scattering 
from a relatively large S wave. In this way an extended and large amplitude 
coda might be produced. Such a mechanism may well be the explanation of the 
occurrence of both simple and complex signals derived from similar (simple) 
earthquake sources and travelling along nearly the same source-receiver path. 
The clue lies in the orientation of the source. 

Other mechanisms have been explored by which the primary wave may be 
obscured, such as by attenuation of the primary wave by regions of high 
damping (Douglas, 1973), or by anomalous geometrical dispersion (Davies and 
Julian, 1972). 

The above argument does not imply that scattering is small in these 
examples, but rather that these are situations where one may reasonably begin 
the investigation with a theory based on a first-order perturbation. 

The difficulty with the hypothesis of strong scattering is that, in the absence 
of a satisfactory theory, it is difficult to check. However, if extended regions of 
strong scattering exist in the Earth, the problem would be to explain the 
existence of simple signals -signals which have not apparently been degraded by 
a scattering process. 
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