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Abstract. The maximum entropy principle as described in the first, intro
ductory part of the paper is applied to 2 problems: the estimation of the power 
spectrum from a finite number of values of the autocovariance function, and 
the determination of the density within the Earth from its mass, radius, and 
moment of inertia. In both cases the available information is given in terms 
of known values of linear functionals and the maximum entropy principle is 
used to derive a probability distribution for the values of the unknown func
tion. The expectation value of the probability distribution for the spectral 
power is shown to be equal to the well-known maximum entropy power 
spectrum. The expectation value for the density within the Earth is in -with 
respect to the few data used - good agreement with that of accepted Earth 
models. 
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Introduction 

The problem of estimation of a large number of unknowns or an unknown func
tion from only few measured values of functionals of these unknowns constitutes 
a typical task in geophysics. A deterministic approach to its solution is, for 
..:xample, achieved by the well-known Backus-Gilbert inversion technique (Backus 
and Gilbert, 1967, 1968, 1970). 

In this paper it is proposed to handle such problems by means of probabilistic 
methods based on the maximum entropy principle as put forward by Jaynes in 
1968. 

The paper starts with a review of the ideas which lead to the formulation of 
this principle. This introductory part is of a more tutorial character and intends 

Edited version of a paper presented at the Institute for Geophysics. Technical University Claus
thal, on June 10, 1976 
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to explain the reasons for maximizing the entropy of a probability distribution. 
The equations established in this part are then applied to two examples. In the 
first a probability distribution for the spectral power of a band-limited time 
series is derived from the first few values of its autocovariance function. The ex
pectation value of this probability distribution is shown to be the well known 
maximum entropy spectrum. In the second example a probability distribution 
is derived for the density as a function of depth of a spherically symmetric Earth 
assuming radius, mass, and moment of inertia to be known. The expectation 
value of the density obtained from of this probability distribution agrees amaz
ingly well with the, according to Bullen (1975), most likely density distribution. 

The Concept of Entropy 

TI1€ Entropy of Discrete Probability Distributions 

In probability theory a finite, complete system of events is understood to mean 
a set of events 

such that, as a result of a certain experiment, one and only one of these events 
must occur. To each of these events Ak there is associated a probability of occur
rence Pk~ 0. The system of events and the associated probabilities may be arranged 
in the scheme 

A= (A1 Az ... A"), 
P1 P2 · · · Pn 

and the completeness of the scheme A is expressed by 

The tossing of a coin, for example, may be described by the scheme 

( A 1 A 2 ) 

A= 1/2 1/2 ' 

(1) 

which consists of the two events A1 and A2 representing the two possible out
comes heads and tails. 

Any such scheme describes a situation of uncertainty. One knows that an 
experiment will lead to one of n possible events but is unable to predict with 
certainty which of these events will eventually occur. 

Obviously, the amount of uncertainty concerning the outcome of an experi
ment is different in different schemes. Consider the scheme 

( 
B1 B 2 ) 

B= 1 1023 

1024 1024 



|00000505||

The Maximum Entropy Approach to Inverse Problems 491 

which describes the simultaneous tossing of ten coins. The event B 1 occurs 
when all ten coins show heads, and the event B 2 comprises all other possible 
combinations of heads and tails for these ten coins. Clearly, in this scheme 
there is much less uncertainty than in scheme A. An experimenter will be 
almost sure to have the event B2 as outcome of his experiment whereas he would 
refrain from any prediction in the situation described by scheme A. 

Realization of a given scheme, i.e. performing of the experiment the possible 
outcomes (events) of which are described by this scheme, completely removes 
the uncertainty. Hence the average information obtained by carrying out the 
experiment (namely the information which of the possible events actually occurred) 
may be regarded as proportional to the uncertainty that existed before the ex
periment. Sometimes the notion ··average information" is used synonymously 
with "'uncertainty". 

In this situation it seems desirable to have a measure for the amount of un
certainty inherent in a particular scheme or, equivalently, a measure of the 
average information obtained from a realization of this scheme. 

Such a measure -which will be a function of the probabilities of the different 
events - must satisfy a number of reasonable consistency requirements (AczeJ and 
Dar6czy, 1975). From among these conditions the following three are sufficient 
to define a function H (p) = H (p,, ... , Pn) which serves this purpose and is unique -
apart from a positive constant factor (Khinchin, 1957). 

a) The uncertainty asslciated with a finite complete scheme A takes its largest 
rnlue if all events are equally likely. 

Because of Equation (1) this means 

H(p1 , •• ., Pn)~H(l/n, ... , 1/n). (2) 

b) Addition of an impossible erent to a scheme does not change the amount of 
uncertainty. 

The amount of uncertainty is therefore equal in the two schemes 

In terms of the function H (p) this condition reads 
H(pi. ... , Pnl = H(JJ,, ... ,pm 0). (3) 

c) The uncertainty in the product AB of the two schemes A and B is equal to the 
uncertainty in scheme A increased by the uncertainty remaining in scheme B ufier 
u realization of scheme A. 

Alternatively, be means of the previously introduced notion of the ··average 
information", this third condition may be expressed as follows: The average in
formation obtained from a realization of scheme AB is equal to the average 
information obtained from a realization of scheme A increased by the additional 
average information expected from a realization of scheme B after realization of 
scheme A. 

The meaning of this condition is explained in the following. Let A and B denote 
2 finite schemes with n and m possible events, respectively. The product scheme 
AB consists of then m combinations Aj Bk of events. Let pj denote the probability 
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of event A 1 in scheme A and let lfJk stand for the (conditional) probability that 
the event Bk of scheme B occurs provided that the event A 1 in scheme A occurred. 
Then the product scheme AB has the form 

AB= (A1 B1 A1 B2 ... A1 Bm A1 B1 ... A"B"') 

\pl lftt Pt lf12 ... Pt lftm P2 lf21 ... PnlJnm 

and condition c) demands that 

H(AB)=H(A)+H(B/A). 

The abbreviations 

denote the uncertainty in schemes AB and A, respectively, and 

H(B/ A)= L p1 H(q11, ... , lJ1ml 
j 

(4) 

describes the uncertainty in scheme B after a realization of scheme A. H (qi 1 , ••• , lJJm) 
denotes the uncertainty in scheme B after occurrence of event A 1 in scheme A. 
This function is multiplied with the probability p1 of event Ai and summed over 
all possible events of scheme A to obtain H(B/A). 

If the two schemes A and B are independent a realization of scheme A does 
not convey any information concerning the outcome of a realization of scheme B: 
the q1k do not depend on j. In this case H(B/A)=H(B). 

On the other hand, H(B/A)=O if the outcome of scheme A completely deter
mines the outcome of scheme B. 

The above three conditions lead to a function (Khinchin, 1957) 

n 

H(p1 , ... ,p11 )= -/. LP11ogpJ 
)~1 

(5) 

which is called "'entropy" in view of an analogy with the entropy in thermo
dynamics. It is unique apart from the positive factor ;, which frequently is set 
to 1/log 2. Hence it can be omitted if the logarithm is to the base 2 as done in the 
following. 

It is easy to show that the function H defined in (5) satisfies the above stated 
three basic conditions. 

Another obviously necessary property of the uncertainty in a finite scheme 
can also be easily established from (5): the entropy is zero if and only if one 
of the numbers PJ is unity and all others are zero. This is just the case when 
the outcome of an experiment can be predicted with certainty. 

Incorporation of Information 

The first of the three conditions which lead to the mathematical expression for 
the entropy specified that the entropy must have a maximum when all possible 
outcomes of an experiment are equally likely. Such a situation exists if there is no 
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reason to consider one possible outcome of an experiment to be more likely than 
any other. This condition is related to Bernoulli's principle of insufficient reason 
or Keynes' principle of indifference (Rawlinson, 1970). It is a subjective principle 
and does not necessarily mean that all events are really equally probable but only 
that one's state of knowledge is not sufficient to assign to some of the outcomes 
a higher probability than to others. However, if one is given information con
cerning the outcome of the experiment it should be exploited to obtain better 
estimates of the probabilities. The foregoing analysis gives a clue how this can be 
accomplished. The distribution of probabilities among the possible events should 
maximize the uncertainty of the scheme without contradicting the given informa
tion. Any other choice of probabilities would either lead to a probability distribu
tion with lower entropy- thus implying that further information has been 
assumed -or contradict the available information or both. 

Let this information be given in the form of mean values .Ti, ... , J~ of m func
tions .fi (A), ... , j~ (A) of the n possible outcomes A 1, where m < n. The distribu
tion of probabilities complying with this information and free from all other 
assumptions is the one which maximizes the entropy 

(6) 

subject to the constraints 

(7) 

(8) 
j 

Here and in the following the summations over j and k are understood to extend 
from 1 to n and 1 to m, respectively. Condition (7) means that the system of events 
is complete while the m equations (8) specify the known mean values };, of the 
functions j~ (A). The solution to this problem by means of Lagrange multipliers 
is straightforward and leads to 

(9) 

The form of the partition function 

Z (l) = Z (/. 1 , ... , i,m) = L exp [L i.k f~ (A)] (10) 
k 

makes immediately clear that the normalization condition (7) is satisfied. The m 
Lagrange multipliers l.k are to be determined from the m conditions (8) which 
can be brought into the form 

a -
-;;-;- In Z (l) = j~. 
Cl.k 

(11) 

The entropy reads 

H =(In Z(l) - 2)·Jk)/ln 2. (12) 
k 
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Entropy of Continuous Probability Distributions 

The derivation of the entropy (5) as a measure of the uncertainty is only valid 
for discrete probability distributions. This represents a limitation and, in view 
of the success of the maximum entropy principle in discrete cases, makes it 
desirable to extend the concept of entropy to random variables for which a 
continuum of values is permitted. 

Let X denote a random variable which may have values x in some interval 
[a, b] and let p(x) dx denote the probability that a value of X be in the interval 1 

[x, x+dx]. A selfsuggesting approach to the definition of the entropy of this 
continuous probability distribution is to subdivide the interval [a, b] into sub
intervals [xj_ 1 ,xj] where 

a=x0 <x1 < ··· <xn=b 

and to denote by pjL1xj the probability that xis in the interval [xj_ 1 , xJ of length 
L1xj=xj-xj_ 1 • The entropy of this discretized probability distribution reads 

H= -IpjL1xjlog(pjL1x) 

(13) 

For n--+ x and max(L1x )--+0 the first term to the right of the last equality sign 
in (13) passes to 

Jp(x)logp(x)dx 

where the integral is understood to extend over the interval [a, b]. The second 
term requires special analysis. By means of weights wj defined as 

L1xj=6/wj I wjL1x;=n d= 1 (14) 

and the discretized normalization condition 

it can be rewritten as 

- 'P L1x log,1x = 'P L1x logw +logn L...1 .I 1L..1 J J • 

By means of this procedure the last term in (13) has been separated into a finite 
term which approaches the Riemann integral 

J p(x) log w(x) dx 

for n--+ oo and max (,1x)--+0 and a divergent term which, however, does not 
depend on the particular subdivision of the interval [a, b]. Neglecting of this 
divergent term leads to the following equation for the entropy of a continuous 
probability distribution 

H = -J p(x) log[p(x)/w(x)] dx (15) 

In order to avoid unnecessary complications open and closed ends of intervals are not distinguished 
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which depends not only on p (x) but also on w (x), an "invariant measure" function 
(Jaynes, 1968) proportional to the varying density of the xj in the limiting case. 

Incorporation of Information 

Let the information about the probability distribution p(x) again be given in 
form of known mean values _i of m different functions j~(x). 

Jp(x)h(x)dx=h k=l, ... ,m. (16) 

Maximization of H subject to these conditions leads to 

p(x)= [w(x)/Z(J.)] exp [L ;,kj~(x)] 
k 

( 17) 
Z (J.) = J w(x) exp [L ;,k j~(x)] dx 

k 

and the Lagrange multipliers /ck are determined by means of Equation (11). 
At this stage there appears a practical difficulty not present in the discrete 

case discussed before. The measure w(x) defining the distribution of the xj in the 
limiting case is as yet undetermined unless there exists an obvious limiting pro
cess. The meaning of w(x) becomes clear if a situation is considered in which no 
prior information is available. In this case there are no Lagrange multipliers and 
from Equations ( 17) follows 

p(x)=w(x) 

by virtue of 

Jw(x)dx=l 

( 18) 

(19) 

obtained from (14) by passing to the limit n --+e:tJ, max(LI x)--> 0. Hence w(x) 
represents the prior probability distribution existing in the case of complete 
ignorance. Since the Lagrange multipliers may only be determined if w(x) is 
known the question arises how to find this prior probability distribution. 

A uniform prior probability distribution can not generally be appropriate 
since it is not invariant under coordinate transformations and since there exists 
apparently no general criterion for finding a "distinguished" coordinate system. 

Jaynes (1968) proposed to use group theoretical reasoning, in particular to 
search for transformations under which there is no change in the level of ignorance 
and to require that w(x) be invariant with respect to these transformations. This 
approach has been used to determine the prior probability distribution in the 
first of the following 2 examples. 

Another possibility has already been mentioned. As often is the case with 
physical quantities, the variable X may be continuous as a result of an abstrac
tion process; i.e., in principle, only a discrete set of values xj is permissible for X 
with the difference Llxj=xj-xj_ 1 , however, so small that, for practical applica
tions, X may be assumed to be continuous. Then there exists an obvious dis
cretization and w(x) can be determined. This possibility is employed in the second 
example. 
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M ultivuriate Probubilit y Distributions 

Generalization to multivariate probability distributions of Equations (15) to (17) 
is straightforward. Let X denote a vector of random variables (X 1 , ... , X n) and 
let p(x) denote the multivariate (or joint) probability distribution p(x 1 , ••• , xJ 
With w(x) representing the multivariate prior probability distribution the entropy 
reads 

H = - J p(x) log [p(x)/w(x)] dv. (20) 

Here and in the following dr denotes the n-dimensional volume element, and the 
integration is extended over all possible values of the random variables Xj. 

If the information about X is given in the form 

J p(x) l~(x) dv= ~ 

multivariate probability distribution and partition function are given by 

p(x)= [w(x)/Z(J.)] exp[L i.kl~(x)] 
k 

Z (A)= J w(x) exp [L l.k l~(x)] dv. 
k 

Spectral Analysis of Time Series by Means of the Autocovariance Function 

Statement of the Problem 

Let 

An= J P(f) exp(2 n ifn LI t) df 

(21) 

(22) 

(23) 

denote the autocovariance function of a time series sampled at equidistant time 
values n LI t. The upper frequency limit be equal to the Nyquist frequency 
1;. = l/(2LI t) and the integral in (23) is understood to extend from - 1; to 1;. For 
a real-valued time series the An are real and symmetric and P(f) is real, sym
metric, and nonnegative. 

It is required to estimate P(f) from a limited number of values of the auto
covariance function. 

Usually this is accomplished by invoking the Fourier inversion theorem. 
Owing to the finite number of available values of the autocovariance function 
only a smoothed version 

f>(f)=LI t L An W,, exp(-2n ifn LI t) 

of the true power spectrum P(f) may be obtained (Kanasewich, 1975) 

F(f)= J K(f- f') P(f') df'. 

The amount of smoothing can be influenced by proper selection of the coeffi
cients W,, of the Fourier kernel 

K(f)=LltL W,,exp(-2nifnLlt). 
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A formally identical result is obtained if the problem is attacked by the Backus
Gilbert inversion technique which leads to a particular kernel (Backus and 
Gilbert, 1968, appendix B). Kernels of this type have been investigated by Pa
poulis ( 1973 ). 

It is the objective of this example to show how this problem can be handled 
by means of the above derived maximum entropy equations. For this purpose 
Equation (23) is considered as the limiting case of the periodic autocovariance 
function A~ with period T. 

An= Jim A~= Jim [ Llf L?,,, exp(2 n in m/M)]. (24) 
T-·x ,\1-·:x rn 

Here 

Llf=l/T, P,,,=P(m/T), M=2J:T~2N. 

The summation over min Equation (24) extends from [ -(M-1)/2] to [(M -1)/2] 
or from 0 to M -1 (here brackets denote the greatest integer less or equal to the 
enclosed expression). This reduces the problem to the determination of the spec
tral power at discrete frequencies j~ = m/T. 

Since the number of unknowns grossly exceeds the number of known values 
of the autocovariance function no attempt is made to determine a fixed value of 
the spectral power at each of the discrete frequencies. Instead, a probability dis
tribution of the spectral power is derived. In the spirit of the foregoing analysis 
it is requested that this probability distribution maximizes the entropy while 
accounting for the information available in form of the known values of the 
autocovariance function. Hence the maximum entropy principle may be formu
lated as follows. 

Maximize the entropy 

H = - J p(P) log [p(P)/w(P)] dr (25) 

of the multivariate probability distribution p(P)=p(fl-(M- 11121 , ... , fl(M- 111 21) 

subject to the normalization condition 

fp(P)dv=l (26) 

and 

Liff p(P) [,L Pm exp(2n in m/M)] dv=An n = -N, ... , N. (27) 
m 

The last condition implies that the expectation value of the Fourier transform 
of the power spectrum should agree with the known values An of the auto
covariance function. The integrations in Equations (25), (26) and (27) are per
formed over all positive values of fl-(M- 11121 , ... , F[<M-i 1;21 , and dv denotes the 
M-dimensional volume element. 

The resulting multivariate probability distribution has the form (Eq. (22)) 

p (P) = [ w (P)/Z (l)] exp (-_L Lm P,,,) (28) 
m 

Z (A)= J W (P) exp ( - L Lm Pm) d l' (29) 
m 
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where 

Lm = L ;,"exp (2 n i n m/ M) (30) 

and An denote the 2 N + 1 Lagrange multipliers. 
Here and in the following summation over n is understood to extend from 

-N to N while summation over m goes from [ -(M -1)/2] to [(M -1)/2]. 

Prior Probability Distribution of the Power Spectrum 

Determination of the Lagrange multipliers requires knowledge of w(P). This 
prior probability distribution of the spectral power can be determined on the 
basis of the following 3 conditions. 

1. The spectral power P(f) can be represented as the sum of the squares of the 
Fourier cosine component C (f) and the Fourier sine component S (f). 

P(f) = C2 (f) + S 2 (f). 

2. C(f) and S(f) are independent from each other, i.e. knowledge of one of the 
Fourier components conveys no information concerning the value of the other 
Fourier component. 

3. The probability distribution of C (f) and S (f) does not depend on the origin 
of the time axis. 

This last condition means that the new Fourier coefficients 

C' (f) =cos cp C (f)- sin cp S (f) 

S' (f) =sin cp C (f) +cos cp S (f) 

which are obtained in place of C (f) and S (f) if the origin of the time axis is 
shifted by r should have the same probability distribution-for any cp=2nfr. 

The joint probability distribution for C and S (for the sake of simplicity the 
argument f is omitted) is, because of condition 2, equal to the product Pc( C) p5 (S) 
of the probability distribution of the individual Fourier components. Condition 3 
requires that 

PAC) Ps(S) =Pc( cos cp C -sin cp S) Ps(sin cp C +cos cp S). (31) 

Putting cp = n/2 one finds 

for any C and S. Hence the two Fourier components must have the same prob
ability distribution. 

Let y=coscp C, z=sincp C, S=O. Then Equation (31) reduces to the well 
known functional equation 

pJi/y2 + Z2 ) Pc(O) =Ph) Pc(z) 
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which has the normalized solution (Rao, 1965) 

Pc(C)=y1/n exp(-) C2 ) 

499 

(32) 

with the arbitrary positive constant A. Because of condition 1 the probability 
distribution for the spectral power derived from Equation (32) reads 

(33) 

If knowledge of the power at one frequency does not convey information con
cerning the power at any other frequency the multivariate prior probability 
distribution is the product of the prior probability distributions of the spectral 
power at the frequencies j~. Furthermore the parameter A. should be equal for 
all frequencies. 

Hence 

w(P)= ;_M exp( - )"I Pm). (34) 
rn 

Probability Distribution and Expectation Value of the Spectral Power 

The parameter A in Equation (34) plays the role of a scaling factor and may be 
included into the Lagrange multiplier A. 0 in Lm (Eqs. (28) and (30)). The multi
variate probability distribution p (P) factors into the product of the probability 
distributions for the individual frequencies 

with 

Pm(Pm) = Lm exp ( - Lm P,,,). 

The expectation value of the spectral power at frequency fm reads 

At this stage it is convenient to pass to the limit T---> oo. Then 

Lm---> L(f) = L An exp (2 n if n LI t) 

Pm---> P(f)= 1/L(f). 

(35) 

(36) 

(37) 

(38) 

in order to determine the Lagrange multipliers )," we note that the power spec
trum must be positive and integrable. Hence L(j) must be nonnegative and, 
by the Fejer-Riesz Theorem (Akhiezer, 1956), allows factoring 

L(f)=A. G(f) G* (f)=l"IG(f)l 2 

where 
N 

G(f)= Lgvexp(2nifvLlt), 
v~ 0 

:.md A denotes a factor chosen to make g0 =1. 
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Multiplication of both sides of (38) by G* (f) exp(2 rr ifn LJ t) and integration 
from -./; to f leads to (Edward and Fitelson, 1973) 

,\ - 1 
LA,,_,. g"=- c5,, 0 
1~0 A.LJt 

(39) 

where A,, denote the given values of the autocovariance function and 6,, 0 the 
Kronecker symbol. From this linear system of equations the g" can be identified 
as the coefficients of the (N + I )-length prediction error filter with F:v + 1 = 1/(A. LJ t) 
being the power of the unpredictable noise. Thus the expectation value P(f) of 
the probability distribution for the spectral power is equal to the well known 
maximum entropy power spectrum 

P(f)= 1/UIG(f)l2] = Prv+i LJ t/IL g" exp(2rr if1• LJ t)l 2 (40) 

which has found application in many different branches of geophysics (e.g. 
Ulrych, 1972; Smylie, Clarke and Ulrych, 1973; Jensen and Ulrych, 1973; Phil
lips and Cox, 1976). 

Density Distribution within a Spherically Symmetric Earth 

Statement of the Prohlem 

This second example to be discussed refers to the following question: What can 
be said about the density distribution p (r) within a (spherically symmetric) planet 
if its mass M, radius R, and moment of inertia J are known (in order to have 
specific data this planet is assumed to be the Earth). 
This problem which constitutes part of an investigation by Cook (1971) could. 
in principle, be attacked by the Backus-Gilbert inversion method which would 
result in a smoothed version of the true density distribution. Here, however, the 
data are so inadequate with respect to the desired solution that the "resolution 
length" which characterizes the amount of smoothing is of the order of R and 
thus renders the results rather useless. 

Parker (1972) has adopted another approach to this problem. He proposed 
to look for inequalities resulting from these data such that all Earth models 
complying with the given data satisfy the inequalities. In this way he concluded, 
for example, that the maximum density in the Earth must not be less than p 0 

where 

p0 = p/y312 = 1.299 {J = 7.166 g/cm 3 

and 

f}=5.517 g/cm 3 , y=51/(2MR 2)=0.84 

( 41) 

(42) 

denote mean density (Bullen, 1975) and a dimension less factor proportional to 
the ratio of the actual moment of inertia of the Earth and the moment of inertia 
of a homogeneous sphere with the same mass and radius, respectively. 
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This bound has much in common with error bounds e.g. in numerical integra
tion, summation, or inversion of matrices. These bounds are safe but usually 
overly pessimistic; in general, the error is much lower than indicated by the 
bounds. 

This example is to demonstrate the maximum entropy approach to this 
problem. To this aim the Earth is subdivided into N equivoluminous shells and 
to each shell there is assigned a constant density Pn. By means of this discretization 

R 4n 
M=4nJp(r)r2 dr-+-~3 LPn(r~-r~_ 1 ) (43) 

0 n 

Sn R Sn 
J =3 J p(r) r4 dr-+ lS L Pn(r~ -r~-1) 

0 n 

(44) 

with 

rn = R (n/ N)113 (45) 

denoting the outer radius of the n-th shell. Here and in the following the summa
tion over n is understood to extend from 1 to N. 

For N > 2 it is impossible to uniquely determine the Pn and hence a prob
ability distribution p(p) is established for the densities of the N shells. This multi
variate probability distribution should maximize the entropy 

H = - J p(p) log [p(p)/w(p)] du 

subject to condition 

Jp(p)dv=l. 

Furthermore, the expectation values 

Pn=J PnP(p)dv 

should satisfy 

LPn=pN 
n 

L Pn [nS/3 -(n-1)513] = y p Nsi3. 
n 

Prior Probability Distribution 

(46) 

(47) 

(48) 

(49) 

(50) 

Before proceeding further we shall determine the appropriate prior probability 
distribution for the densities Pn. In this case it is easiest to look for a physically 
reasonable discretization. 

In view of the atomistic nature of matter the density of a pure material is 
proportional to the number of molecules per volume element. Therefore the 
density can have values from a discrete set only. Adding or removing one molecule 
from the volume element changes the density by a fixed constant amount. Thus 
the range of possible values for the density is to be subdivided into intervals of 
equal width and the concentration of subdivision points is a constant. Hence a 
constant prior probability distribution is appropriate. 



|00000516||

502 E. Rietsch 

This line of argument is not invalidated if different types of molecules are 
permitted. In this case the density can change in different steps, and as long as 
the change in density is independent from the number of molecules already 
present the limiting distribution of subdivision points is still a constant. Since the 
Earth has been subdivided into shells of equal volume the prior probability 
distribution is the same for all shells. 

Probability Distribution and Expectation Value for the Density 

Maximization of the entropy (46) subject to Equations (47), (49) and (50) leads to 

p(p) =exp [ - L Pn hn(),)]/Z (l) 

where 

hn(l) = A1 + l.2 [ n513 -(n - 1 )513]/ N 213 

Z(l)=Jexp[-LPnhn(l)]dv. 

(51) 

(52) 

(53) 

From (51) follows that the multivariate probability distribution p(p) is the pro
duct of the probability distributions 

Pn(Pnl =exp [ - Pn h"(l)]/Z"(l) (54) 

of the densities of the N shells. 
Let p 1 ~0 and Pu~ Np denote the lowest and highest possible density, re

spectively. Then by (53) and (54) 

(55) 

with 

(56) 

and the expectation value /Jn has the form 

Pn = J Pn Pn(Pnl d Pn = P1 + 1/hn(l)-(Pu - P1)/[En(l)- 1]. (57) 

The unknown Lagrange multipliers ).1 , A.2 can be obtained from Equations (49) 
and (50) with Pn substituted from Equation (57). 

For the upper density limit Pu sufficiently large (say Pu~ 300 g/cm 3 ) the third 
term in Equation (57) may be neglected. In this case Equations (49) and (50) 
take the form 

L[n5!3_(n-1)513]/hn(l)=(y p-pi) NS/3. 

n 

Combination of (58) and (59) leads to 

(p - P1) l.1 + (y p - P1) i.2 = I 

(58) 

(59) 

(60) 
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Fig. l. Discrete (N =I 00, step function) 
and continuous (N--> x) density distribu
tion for lower density limit p1=0. Bullen's 
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which can be used to eliminate one of the unknowns from either Equation (58) 
or (59). The resulting nonlinear equation for the other unknown can be easily 
solved with standard methods. 

For N = 100, p 1=0 and Pu= Np, for example, 

),1 = 0.06667' ),2 =0.13640 (61) 

The density Pn obtained from (57) by means of these parameters Is shown in 
Figure 1 (step function). 

With Pu= Np and N---+ oo, Equation (57) becomes 

P (r) = p1 + 1/h (r, .A) (62) 

with 

(63) 

where i,1 and /c2 are solution of 

I 

J x 2 dx/h (x R, .A)= (p - pi)/3 (64) 
0 

I 

J x4 dx/h (x R, .A)= (y p - p1)/5, (65) 
0 

the continuous equivalent to Equations (58) and (59). The integrals can be eval
uated in closed form and determination of the Lagrange multipliers proceeds in 
much the same way as in the discrete case discussed before. For p1 =0 the following 
values are obtained. 

/c1 =0.06674, lc 2 =0.13633 (66) 

The continuous density distribution computed with these Lagrange multipliers 
is shown in Figure 1 superimposed on the discrete density distribution. Both 
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Fig. 2. Discrete (N = 100, step function) 
and continuous (N--> '.1"0) density distribu
tion for lower density limit p 1 = l g/cm 3 . 

Bullen 's ( 1975) density distribution is re
presented by the dashed curve 

agree surprisingly well with the-according to Bullen (1975)-most likely density 
distribution indicated by dashed lines. 

The density distribution changes when p 1>0 as shown in Figure 2 where 
p1=1 g/cm 3 has been assumed. The Lagrange multipliers read 

l. 1 =0.06107, 1.2 =0.19924 [cm 3/g] 

/,1 =0.06120, /, 2 =0.19910 [cm 3/g] 

(67) 

(68) 

in the discrete (N = 100) and continuous case, respectively. For depths greater 
than 4500 km the agreement between this curve and the "'most likely" density 
distribution is poorer than in the previous case. This seems to be in disagreement 
with the fact that more information (i.e. that the density of the Earth is not less 
than 1 g/cm 3 ) has been supplied. In order to show that the uncertainty concerning 
the density has actually been reduced it is necessary to interpret the expectation 
values of the density in a different way. 

Equations (54) and (55) give the probability distribution for the density in the 
n-th interval. The cumulative distribution function 

(69) 

gives the probability that p1 ~ Pn ~ p. For large Pu~ p1 

(70) 

Hence the probability that Pn be in the interval [Pi. Pn] is 1-1/e=0.632 for any 11: 
i.e. with a probability of 63.2 ~10 we expect the true density to be between the lower 
density limit and the expectation value of the density. This 63.2 ~<, interval is 
smaller in Figure 2 for depths less than ca. 4900 km. 

From the form of the probability distribution (Eq. (54)) follows an important 
property of the average density 

1 
p=-LPn· 

N " 
(71) 
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The expectation value of this average density has been requested to be equal to 
the known mean value /5 of the Earth's density (Eq. (49)). 

1 1 
NJp(p)(I,pn)dv= NLPn=p. 

n 

It can be shown that the variance of the average density disappears for N--+cfJ. 

var(p)=Jp(p)(~ ~Pn-p) 2 dv=Jp(p) (~ ~Pn) 2 dv-p 2 

=[ L PnPm+2I,p?;]/N2 -p2 =I,p?;/N 2• 

n.m 
n*m 

(72) 

Since the Pn are bounded for N---> oo the last term in (72) vanishes for N---> cfJ. 
Hence for the continuous density distribution the variance of the average density 
is equal to zero (weak law of large numbers). 

An analoguous result holds for 

L Pn {[n/N]5!3 - [(n-1)/N]S/3}. 

The expectation value of this expression 1s y p (see Eq. (50)) and its variance 
approaches zero for N---> oo. 

Concluding Remarks 

rhis last example has not been presented to propose a new model for the density 
within the Earth. Rather it was to demonstrate that, based on the maximum 
entropy principle, a powerful method exists for extracting useful information 
from a very limited number of measured data. 

For the density distribution within the Earth it leads to a quantification of 
qualitative statements (e.g. that the density increases with depth). Furthermore 
a probability (based on the given data and the prior prohability distribution) 
can be established that the density in a certain depth is within a certain density 
interval. 

The maximum entropy concept is, of course, far from being exhaustively 
treated in this text. In fact many lines of thought have only been sketched, many 
problems have only been touched and require more detailed analysis. It is hoped 
that this paper provokes further investigation of the maximum entropy concept 
for handling of inverse problems. In any case it should be clear that this method 
must not be used indiscriminately and in no case substitute but only comple
ment observations, measurements, and physical reasoning. 

ir/.;11ow/n/gemL'nl. I am indebted to Deutsche Texaco Akticngesellschaft for the permission to publish 
this paper. 
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