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Abstract. The Kramers-Kronig relations for magnitude 
and phase of a linear causal filter are used to derive an 
exact general expression for the viscoelastic modulus 
M, corresponding to power laws for the quality factor, 
Q ~ wr. The exponent y varies from -1 to + 1, such 
that the spectrum of rheologies extends from a Kelvin­
V oigt to a Maxwell body. High- and low-frequency 
approximations for M(w) are derived, and in the spe­
cial cases y = ± 1, ± 1/2, ± 1/3, ± 1/4, . . . closed-form 
solutions are given which apply for arbitrary frequen­
cies. With M(w) at hand, both high-frequency phenom­
ena such as velocity dispersion and low-frequency phe­
nomena such as creep and stress relaxation can be 
investigated. Results for phase-velocity dispersion are 
given as well as short- and long-time-scale approxi­
mations of the creep and relaxation functions. Simple 
dissipation operators are derived which can be con­
volved with theoretical seismograms in order to correct 
these for the influence of absorption. Some results 
on relaxation spectra for the case 0 ;£ y ;£ 1 are sum­
marized in an appendix. Taken together, the results of 
this paper suggest that media with 0 < y < 1 should 
be considered as generalized Maxwell bodies and media 
with -l<y<O as generalized Kelvin-Voigt bodies. Ap­
plication of the Kramers-Kronig relations to the viscoe­
lastic modulus is better than the use of those relations 
in conjunction with the wavenumber of a plane wave, 
which is the procedure that has been employed so far. 
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Introduction 

The study of the attenuation-dispersion properties of 
earth materials is a subject of past and current interest, 
both in rock physics and seismology. After a period 
during which the assumption of frequency indepen­
dence of the quality factor Q in the seismic frequency 
band was considered sufficient, it is now apparent, from 
both seismological and laboratory studies, that there 
may be significant departures from the constant-Q mo­
del (Sipkin and Jordan, 1979; Anderson and Minster, 
1979; Lundquist and Cormier, 1980; Berckhemer et al., 

1982; Minster, 1980; see also Stacey et al., 1981). In this 
context a power-law dependence of Q on frequency, 
Q~wr with O<y<0.5, has become popular. Approxi­
mate results for the corresponding frequency depen­
dence of phase velocity c have been given, e.g., by 
Brennan (1980); this author also discussed a method for 
the determination of y from pulse-form measurements 
in ultrasonic studies. Brennan (see also Brennan and 
Smylie, 1981 or Chin, 1980) obtained his results for 
phase-velocity dispersion, following earlier develop­
ments by Strick (1967) and many others, from the 
Kramers-Kronig relations for the quantity k/w = 1/c 
-i/3/w (k=wavenumber, f3=attenuation coefficient of a 
plane wave): 

1 1 1 +oo f3(w')/w' , 
-=-+-P J dw 
c ( w) c ( oo) n _ 00 w' - w 

1 1 +oo f3(w') , 
=-+-P J --dw 

c(oo) nw _00 w'-w ' 
(1) 

+ 00 - 1 ( ') 
f3(w)= _<:':?_ p J c ' w dw'. 

n _ 00 w -w 
(2) 

The attenuation coefficient is related to Q by 

w 
f3(w) = 2c(w) Q(w) (3) 

This relation is consistent with the definition of Q as 
the ratio of the real and imaginary part of the visco­
elastic modulus M=M1 +iM2 , Q=Mi/M2 , only for Q 
~ 1. Another approximation, after inserting Q ~ wr into 
(3), is the assumption that f3 is strictly proportional to 
w1 -r. This implies that in (3) dispersion is neglected 
and c(w) is effectively identified with c( oo ). Then, f3 is 
inserted into (1) and the principal-value integral solved, 
giving c(w). Both approximations are perfectly valid for 
seismological applications where Q, even if frequency­
dependent, is usually much larger than 1 and dispersion 
is only slight. 

The purpose of this paper is to study the at­
tenuation-dispersion properties of materials with Q ~ w1 

from a different starting point, namely the Kramers­
Kronig relations for magnitude and phase of the vis­
coelastic modulus M =Aei<p (which follow from the fa­
miliar Kramers-Kronig relations for the real part and 
the imaginary part of the function ln M): 
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1 + oo <p ( w') ' 
lnA(w)=B--P J -,-dw, 

n _00 w -w 
(4) 

1 + 00 In A ( w') 
cp(w)=- P J , dw' (minimum phase). (5) 

n -DO W -W 

The background of these equations is the assumption 
that the modulus M provides a linear relation between 
stress (J and strain B, (J(w)=M(w)t:(w), irrespective of 
frequency or stress and strain amplitudes. This relation 
must, of course, be causal; this imposes the conditions 
(4) and (5) on the filter M(w). 

The so far undetermined constant B in (4) expresses 
the fact that the amplitude characteristic of a linear 
filter is determined by the phase only to within a multi­
plicative constant. B will be fixed suitably in the follow­
ing. The quality factor Q is introduced into (4) by 

<p ( w) = arctan Q - 1 ( w ). (6) 

Then, if the principal-value integral can be calculated, 
the viscoelastic modulus M(w) is known. 

There are two advantages in using M(w) instead of 
the wave-number k(w) in an investigation of the at­
tenuation-dispersion properties of earth materials. First, 
the modulus describes both the rheological (long-time­
scale) and seismological (short-time-scale) properties: 
besides the phase velocity the relaxation and creep 
functions can be determined, and the variation with 
frequency of the modulus itself is of interest. Second, no 
restriction has to be imposed on the size of Q, because 
the phase in ( 4) is finite for all Q, according to ( 6). 
Indeed, as shown below, for Q ~ wY and y = ± 1, ± 1/2, 
± 1/3, ± 1/4, ... closed-form solutions can be obtained 
for M(w), valid for arbitrary values of Q and hence 
frequency. What this means for practical purposes is a 
different question, but it is at least of general interest to 
know completely the elastic-anelastic behaviour of a 
material with power-law dependence of Q on frequency. 
In this regard our study is an extension of a paper by 
Kjartansson (1979) where the case of frequency-inde­
pendent Q (y = 0) was treated without approximations 
and restrictions. 

In the following, we present first the case 0 < y:;;; 1, 
i.e., the case of materials with elastic behaviour at high 
and viscous behaviour at low frequencies; y = 1 corre­
sponds to a Maxwell body. Then the results for media 
with complementary behaviour and - 1 :;;; y < 0 are sum­
marized; y = - 1 is the case of a Kelvin-Voigt body. 
Finally, simple dissipation operators are presented in 
the frequency and the time domain by which theoreti­
cal seismograms, calculated without absorption, can be 
approximately corrected. 

Positive exponents (0 < y :;;; 1) 

General solution for the viscoelastic modulus 

The power law for Q will be used in the following in 
two different forms. The form best suited for appli­
cations is 

Q(w)=Q(w,) (:J (7) 

21 

with the reference (angular) frequency w, for which Q is 
known; w, normally is chosen in or close to the seismic 
frequency band. An equivalent form is 

Q(w)= (;or (8) 

Here, the frequency w0 is defined by Q(w0 ) = 1; usually 
it is located far below the seismic frequency band. This 
frequency is useful in the determination of long- and 
short-time approximations of the creep and relaxation 
functions. The relation between w0 and w, is 

w 0 =w, Q(w,)- 11 Y. 

Formulas (7) and (8) apply for w~O. In (4) negative 
frequencies also occur. The values of the phase <p of the 
viscoelastic modulus at these frequencies follow from 
the fact that Q and hence <p (via (6)) are odd functions 
of frequency. For Q according to (7) or (8) there is a 
jump in the phase from - n/2 to n/2 at w = 0, whereas 
for w--+ ± oo the phase tends to zero. Applying partial 
integration in (4) separately for the frequency intervals 
from - oo to 0 and from 0 to + oo and observing that 
the derivative of the phase, dcp/dw', is an even function, 
one obtains 

1 00 dcp 
lnA(w)=B+lnlwl+- J lnlw' 2 -w21~,dw'. 

n 0 dw 

Inserting now the analytical form of dcp/dw', 

dcp y(w'/w0 )Y 

dw' w'[l+(w'/mo) 2 Y]' 

and splitting the logarithm, 

we have 

Y oo Q(w') I w'2 \ , 
lnA(w)=B-; l w'[l+Q 2 (w')] ln 1--;;:;z dw. 

From this we find B = ln A ( oo ). The final step is the 
variable change from w' to z=(w'/w)-Y which yields 

A(w) =A( oo) eI(w, Y>, 

I(w,y)= _Q(w) J 2 ~ 2 ( ) lnll-z- 21Yldz, (9) 
n 0 z + w 

with Q(w) from (7) or (8). The complete viscoelastic 
modulus is 

M(w) =A( oo) exp {I(w, y) + i arctan Q- 1 (w)}. (10) 

Its limiting value M ( oo) =A ( oo ), the unrelaxed mo­
dulus, is real. 

In the following, (9) and (10) are evaluated approxi­
mately and exactly, and further results for velocity dis­
persion and rheological properties are summarized. 
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High-frequency approximation (w~ w 0 ) 

If w ~ w 0 , then Q ~ 1. A study of the integrand of 
I(w, y) in (9) shows that in this case the term (z2 

+Q 2)- 1 may be replaced by Q- 2. The remaining in­
tegral can be found in tables. Then 

and the high-frequency approximation of the viscoelas­
tic modulus is 

An equivalent form which uses the modulus M(wr) at 
the reference frequency is 

M(w)=M(wr) exp { Q- 1(wr) [cot (r I)-i] [ 1- (: YJ} 
(12) 

For sufficiently small exponents in (12) a Taylor-series 
expansion can be restricted to the linear term; then 
there is agreement (in essence) with results given by 
Anderson and Minster (1979), Brennan and Smylie 
(1981) and Smith and Dahlen (1981). 

Low1requency approximation (w~w0) 

For w~w0 , i.e., for Q~ 1, the term (z2+Q 2)- 1 in (9) is 
significantly different from zero only for small z. For 
these z the logarithmic term can be approximated as 
follows: 

2 
In ll -z- 21 YI =In z- 2 /y = -- In z. 

'I 

Then we have 

2Q 00 In z 1 
/(w,y)=-J 2 Q2 dz=-lnQ. 

ny 0 z + y 

At low frequencies the phase of the viscoelastic mo­
dulus is n/2, as already mentioned. Hence, the low­
frequency approximation of the modulus is 

M(w) = iQ(w) 11Y M( oo) = i !.'!___ M( oo ). (13) 
Wo 

It is linear in wand independent of y. M(w) vanishes at 
frequency zero, and (13) implies that at very low 
frequencies stress and strain are shifted in phase with 
respect to each other by 90°. 

Exact results for y = 1/m (m = 1, 2, 3, ... ) 

In the special case where y is the reciprocal of a natural 
number m the integral I(w, y) in (9) can be calculated 
exactly for arbritrary values of frequency. Partial in­
tegration leads to another integral, 

m +oo 1 z 1 
l=-P J -arctan-· ---dz 

n - 00 Z Q z 2 m -1 ' 
(14) 

which can be calculated by methods of complex cal­
culus. (14) is a principal-value integral with the in­
tegration path running along the real axis. The in­
tegrand has the first-order poles 

. n 
11[-

Zn=e m (n=O, 1,2,. . .,2m-1), 

distributed over the unit circle, and two branch points 
at z = ± iQ. The latter become evident, if the equiva­
lence 

z 1 iQ-z 
arctan - = - In --

Q 2i iQ+z 

is taken into account. Then the integration path is 
extended by small half-circles around the poles z0 = 1 
and zm = -1 and subsequently deformed into a half­
circle with infinitely large radius in the upper z-half­
plane. The poles z 1 , z 2 , .. ., zm- 1 and the branch cut, 
extending from the branchpoint iQ to + ioo along the 
imaginary axis, are circumvented. The integral along 
the large half-circle vanishes, and the residues and the 
branch line integral can be calculated exactly. We omit 
further details of the derivation which is straightfor­
ward, but requires some care. The final result for the 
viscoelastic modulus is: 

p={2n-1 
2n 

for m = 1, 3, 5, .. . 

for m=2, 4, 6, .. . 

For m = 1 which is the case of a Maxwell rheology (15) 
simplifies to 

M(w)=M( oo) Q(Q + i) 
Q2+1 

=M(oo)~=M(oo) ~ 
Q-1 W-!W 0 

This is a known result which usually is derived directly 
from the stress-strain relation of a Maxwell body (w 0 

= M( oo )/17, 11 =viscosity, M( oo) = unrelaxed modulus). 
Numerical results for the viscoelastic modulus are 

presented in Figure 1, where IM(w)/M(wr)I is displayed 
as a function of w/wr for different values of y = l/m and 
for two values of Q(wr), 200 and 1000. Comparison is 
made with the high-frequency approximation (12): this 
approximation performs amazingly well down to the 
frequency w 0 where Q = 1 (see solid circles on the 
curves of Fig. 1). 

Constant-Q case (y = 0) 

The case y = 0 which is also included in Figure 1 is best 
treated separately from the beginning, i.e., by starting 
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Fig. 1. The viscoelastic modulus M(w) as a function of fre­
quency for power-law dependence of Q on frequency and 
different exponents y. Calculation with the exact formula (15) 
(solid curves) and with the approximate formula (12) (dashed 
curves) 

with the Kramers-Kronig relation (4). The phase <p is 
-q for negative w' and q for positive w', where q 

= arctan ~ with positive, frequency-independent Q. 

Then we consider a positive frequency w and have 

q 0 dw' q + 00 dw' 
InA(w)=B+- J -,---P J -,-

n _ 00 w -w n 0 w -w 

=B+2q J ~-
n _00 w-w 

Subtracting a similar express10n for the reference fre­
quency w,, we obtain 

= 2q In I~' -w lw' ~o = 2q In!!!.___ 
n w-w,w·~-oo n w, 

Finally, the viscoelastic modulus is 
2 1 

. -arctan-

M(w) = A(w,) c:r Q' (16) 

23 

a result which has first been given by Kjartansson 
(1979). M(O) vanishes as for y>O, but M(oo)=oo which 
is different from the case y > 0; therefore M( oo) cannot 
be taken as the reference value. 

Velocity dispersion 

The complex wave velocity v of a dissipating medium 
follows from the complex modulus M by v=(M/p) 112 , 

where p is the (real) density. The real phase velocity c 
of a plane wave in this medium is (vi+v~)/v 1 , where v1 

is the real part and v2 the imaginary part of v. If Q ~ 1, 
as in all potential seismological applications, the mo­
dulus of v is a very good approximation for c. From 
the high-frequency approximation (11) for M we ob­
tain: 

cot(}'~) i 

v(w) = v( oo) exp{- 2Q(w) + 2Q(wJ 

v( oo) = [M( oo )/ p] 112 • 

Hence, the phase velocity is 

Introducing the phase velocity at the reference fre­
quency w,, we find 

cot(}'~) 
c(w)=c(w,)exp{ 2 Q(w~) [1-(:YJ} 
and 

v(w) = c(w) exp{ 2Q:w,) (: Y}· 

(17) 

(18) 

(17) describes the relative dispersion, and (18) ad­
ditionally includes the attenuation. Expressions for 
phase-velocity dispersion which are equivalent to (17) 
have been given, e.g., by Brennan (1980) and Minster 
( 1980). 

Figure 2 shows a few numerical results, calculated 
with (17) for Q(w,) = 200 and different values of y. As 
expected, dispersion is slight; over 3 decades in fre­
quency below w, the phase-velocity decrease does not 
exceed a few per cent. However, dispersion increases 
with y. Group velocity has been included in Figure 2, 
although it is not yet clear whether, in a weakly disper­
sive medium it has any special meaning. 

The phase velocity in the constant-Q case (y = 0) 
follows from (16) (see also Kjartansson, 1979): 

1 1 

c(w)=c(w,) (:J ;arctanQ. (19) 

This is an exact result, valid for all frequencies. For 
Q ~ 1, ( 19) has the well-known and often used approxi­
mation 
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Fig. 2. Relative dispersion for phase velocity c and group 
velocity U in the case of power laws for Q with exponents 
y~O 

Relaxation and creep functions 

The relaxation function R(t) and the creep function 
K(t) can be calculated from the viscoelastic !?odulus 
M(w) with the aid of their Fourier transforms R(w) and 
K(w): 

R(w)=~~)' K(w)=M(~)iw' (20) 

Short-time-scale approximations of R(t) and K(t) follow 
by using the high-frequency approximation (11) for 
M(w) in (20). Inverse transformation into the yme do­
main is possible after a series expansion of R(w) and 
K(w) with the aid of the Taylor series of the exponen­
tial function. The results, valid for t <:%: w 0 1, are: 

{ 
N ( l)"(w t)" 1' } 

R(t)=M(oo) 1 + ~ - ~ ( n) H(t), 
n- 1 n!I'(l+ny)sm" yl 

(21) 

K(t) =-- 1 + L 0 H(t). 1 { N (w t)"Y } 

M(oo) n~i n!I'(l+ny)sin" (Yi) 
(22) 

Here, H(t) is the unit-step function, I'(x) the gamma 
function, and N the largest integer less than or equal to 
1/y. Summation in (21) and (22) has been restricted to 
terms with non-vanishing slope for t = 0 which contrib­
ute most for short times. 

The finite jumps of R(t) and K(t) at t = 0 are de­
termined by the unrelaxed modulus M( oo ), as expected, 
and the slopes change continuously from infinite values 
at t = 0 to finite values afterwards. The dominant terms 
in the sums, for n = 1, have a power-law dependence on 
t with exponent y. Some of these properties are known, 
but it seems that the precise forms (21) and (22) of the 
relaxation and creep functions have not yet been given 
in the geophysical literature. 

Short-time-scale approximations in closed form fol­
low from (21) and (22) by observing that the arguments 
of the gamma function vary from 1 + y to about 2 and 
hence I'(l + n y):::::: 1. The simple expressions 

R(t) = M( oo) exp{ (23) 

(24) 

are obtained. The approximation (23) for the relaxation 
function appears to be an especially useful form; for y 
= 1 it is exact for all times. However, it is uncertain 
whether, in general, (23) and (24) are better short-time­
scale approximations than (21) and (22). 

Long-time-scale approximations of R(t) and K(t) follow 
from the low-freq_uency approximation (13) of M(w). 
The finite value R(O) implies that R(t) decays to zero 
for t-+ oo which is, of course, expected. The long-time 
approximation of the creep function, valid for t ~ w0 1, 

is 

(25) 

i.e., creep is stationary for large times and for all y from 
0 to 1, excluding y = 0. Under shear deformations, the 
material behaves as a viscous fluid with viscosity 

(26) 

where M ( oo) is twice the unrelaxed rigidity. 
Relaxation and creep functions in the constant-Q 

case are obtained from (20) and (16). The following 
expressions, which have already been given by Kjartans­
son (1979), apply for arbitrary times t>O: 

R(t) A(wr) (w t)-a 
I'(l-a) r ' 

1 
K(t) (w t)a 

A(wr)I'(l+a) r ' 
(27) 

2 1 
a=; arctan Q. 
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They are different in character from (21) and (22), since 
R(t) starts with infinite and K(t) with zero amplitude at 
t = 0. Long-time-scale behaviour of the creep function is 
also different from (25). 

Stress relaxation is sometimes described by relax­
ation spectra. It may therefore also be of interest to 
know these spectra in the case of the rheologies dis­
cussed in this paper. In the appendix a general formula 
is derived which expresses the relaxation spectrum (not 
to be confused with the spectrum of the relaxation 
function) in terms of the viscoelastic modulus. For y 
with 0 < y < 1, which is the most interesting case, the 
relaxation spectrum represents a relaxation band with a 
peak at or below the frequency w 0 • 

Negative exponents ( - 1 ;£ y < 0) 

The power law for Q continues to have the form (7) or 
(8), but now dissipation is low at low frequencies and 
high at high frequencies. Elastic behaviour occurs at 
low frequencies and on long time-scales, whereas for 
·; > 0 it occurs at high frequencies and on short time­
scales. Therefore, the case y < 0 is largely complemen­
tary to the case y > 0. 

This section is a summary of results for y < 0 whose 
derivation is quite similar to that for y>O; therefore no 
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details will be given. A basic (but expected) difference is 
that now the viscoelastic modulus at frequency zero, 
M(O) = A(O), the relaxed modulus, has to be taken as the 
reference value; M(O) is real. The general form of M(w) 
is (cf. (9) and (10)): 

M(w) =M(O) exp {J(w, y)+ i arctan Q- 1(w)} 

Q(w) OOJ 1 2/y 
J(w,y)=- 2 2 ( )lnll-z ldz. 

n 0 z +Q w 
(28) 

The low-frequency approximation of M(w) is similar to 
the high-frequency approximation (11) in the case y>O: 

(29) 

It applies for w <% w0 . The low-frequency approxima­
tion, expressed in terms of the modulus M(w,) at the 
reference frequency, is identical with (12). The high­
frequency approximation of M(w), valid for w~w0 , is 

w 
M(w)=i-M(O) 

Wo 
(30) 

and similar to (13). Since according to (29) and (30) 
M(w) increases with w, a medium with y<O has the 
peculiar property that at high frequencies it becomes at 
the same time more dissipative and stiffer. For the 
Kelvin-Voigt body (y= -1) this is well-known. 

Exact results for M(w), similar to (15), can be de­
rived for y= -1/m (m= 1, 2, 3, ... ): 

Q+i 
M(w)= M(O) (1 + Q2)1;2 

I
m (l+Q2 -2Qsin~)Q4 i-l/4 

. n ( nn) ( np) (31) n~ 1 1+Q2 +2Q sin--;;;- 1 + Q4 - 2Q 2 cos--;;;-

The conventions for p are as in (15), and for m= 1 the 
known results for the Kelvin-Voigt body are repro­
duced. 

The perhaps most important result in the case y < 0 
is that for velocity dispersion. Since, as just mentioned, 
formula (12) is valid also for y < 0, namely as a low­
frequency and hence high-Q approximation, it is clear 
that the velocity formulas (17) and (18) also apply in 
the present case. Figure 3 presents, as an illustration, a 
few numerical results for phase- and group-velocity dis­
persion. It is interesting to note that, as in Figure 2, the 
velocities increase with frequency, although in a dif­
ferent manner. That they increase at all is a con­
sequence of the general increase of M(w) with w. 

Short-time-scale approximations for the relaxation 
and creep functions follow from (20) and (30). For 
t<%w0 1 we have (c5(t)=delta function): 

R(t) = :~) c5(t), K(t) = ::(~) t H(t). (32) 

These approximations imply that all media with y be­
tween 0 and - 1 share the known unphysical properties 
of the Kelvin-Voigt body, that the relaxation function 
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Fig. 4. Time-domain dissipation operators for y = 0, 0.2 and -0.2. The reference frequency J;. = w)2n is used for normalization. 
t': is the familiar quantity t*, taken for the reference frequency. For details see text 

has a delta-function contribution and that the creep 
function starts with zero amplitude. 

Long-time-scale approximations for R(t) and K(t) at 
t ~ w0 1 are obtained from (20) and the simplest form of 
(29), M(w)=M(O): 

R(t) ~ M(O) H(t), 
1 

K(t)~ M(O) H(t). (33) 

Hence, long-time-scale response is elastic, as mentioned 
earlier. 

Dissipation operators 

There are two possibilities to incorporate a power law 
frequency dependence of Q into the calculation of 
theoretical seismograms. One is to make the compres­
sional and shear wave velocities complex, using (18) 
(Muller and Schott, 1981). This procedure has justifi­
cation through the correspondence principle and is 
most versatile, since spatial variations of . Q can be 
modelled correctly. The price paid for this is sometimes 
a considerable increase in computing time, because 
complex arithmetic must be used to a larger extent 
than in purely elastic calculations. Moreover, there are 
computational methods, e.g., generalized ray theory, 
which cannot accomodate complex wave velocities. 
Dissipation operators, by which the seismograms of 
purely elastic calculations are convolved, offer another 
means to incorporate frequency dependence of Q and 
are actually a sufficient supplement in many cases; 
dissipation operators for constant Q are frequently used. 

Dissipation operators are wave profiles u(x, t) of a 
plane wave propagating in x-direction, when the input 
at x = 0 corresponds to the delta function: 

(34) 

with v(w) from (18) and (17). If (34) is written m the 
form 

u(x,t)=-1 7° D(w)exp[iw(t--(x ))]dw 
2n -00 c wr 

= D(t) * [J (t-_!-__)), 
c(wr 

Le., as a convolution of the elastic response, travelling 
with velocity c(w,), and _!he dissipation operator D(t), 
the Fourier transform D(w) of D(t) is found by in­
spection: 

t* = x/c(w,) 
r Q(w,) . (36) 

In the constant-Q case (y = 0) we have instead of (35): 

D(w) =exp{-~ t; ( 1- ~i In :J}. (37) 

In seismological applications the dissipation time (36) 
has to be replaced by the integral along the seismic ray, 

*-S ds 
t, - c(w,) Q(wr)' 

and the assumption is implicit, that the exponent y is 
the same everywhere in the medium. Inverse transfor­
mation of (35) or (37) by numerical methods yields the 
dissipation operator D(t). 

Results of calculations are shown in Figure 4 for y 
= 0, 0.2 and - 0.2. In the calculations and for the 
display of their results we have used the fact that D(w) 
can be written as a function of the dimensionless fre-
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quency w/w,. Then, parameters in D(w) are 9=w, t;, a 
dimensionless dissipation time, and y. As a con­
sequence, D(t) depends on the dimensionless time w, t 
and on 9 and y. In Figure 4 the reference frequency 
proper, f,.=w,/2n, has been used instead of w,. 

The slight acausality which some of the dissipation 
operators have should pose no problem in applications. 
This effect is difficult to explain; it may be related to 
the fact that group velocity is somewhat larger than 
phase velocity (see Figs. 2 and 3), but it may also sim­
ply be a consequence of slight approximations that 
have been made in the derivation of D(w). Anyway, 
Figure 4 shows that dissipation operators determined 
from (35) or (37) will serve their purpose well. 

If in the constant-Q case one is not bound to use a 
special reference frequency w,, the Fourier transform 
(37) of the dissipation operator can be simplified. Since 
t; varies only little with w,, it can be replaced by a 
constant value t*. Then it is evident from (37) that the 
dissipation operators, corresponding to different w,, are 
time-shifted versions of each other. Therefore, convo­
lution with them has the same low-pass filter effect, but 
is associated with different time shifts. Then a simple 
and convenient choice is to identify w, with the highest 
resolvable frequency of the problem under study, i.e., 
with the Nyquist frequency wN: 

D(w)=exp{-~t*(l-~iln:J}, t*=J:~. (38) 

The dissipation operators are identical with those in 
the left part of Figure 4 after sampling with the abscissa 
increment 0.5 (f,= fN=wN/2n). The simple form (38), 
which apart from a time shift 2t*/n agrees with a result 
of Frasier and Filson (1972), is sufficient for many 
practical purposes. 

Discussion 

The main purpose of this paper has been to give a 
simple and compact derivation of the properties of a 
viscoelastic material, having a specific dissipation func­
tion Q which strictly obeys a power law for all frequen­
cies. The central role in this derivation is played by the 
viscoelastic modulus M, whose knowledge as a function 
of frequency allows the subsequent study of velocity 
dispersion and rheological properties, i.e., of both high­
and low-frequency characteristics. The connection be­
tween M and Q is provided by the Kramers-Kronig 
relations for magnitude and phase of a linear, causal 
filter. In the case of power laws for Q an exact general 
solution for M can be given. Approximations come in 
only afterwards, if at all. This procedure has definite 
advantages, compared with the more usual treatment 
based on the wavenumber. It should also be the op­
timum procedure for other Q laws, in conjunction with 
numerical Hilbert transformation, if necessary. 

The results derived in this paper show that ma­
terials with power-law dependence of Q on frequency 
and exponents y between 0 and 1 have short- and long­
time-scale properties similar to those of a Maxwell 
body (y = 1) and hence can be called generalized Max­
well bodies. Likewise, materials with - 1 < y < 0 can be 
considered as generalized Kelvin- Voigt bodies. Three-
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dimensional stress-strain relations, valid for arbitrary 
frequency, as they are known for the Maxwell body 
and other viscoelastic models (see, e.g., Peltier et al., 
1981), can also be constructed for the generalized Max­
well and Kelvin-Voigt bodies in the cases y = ± 1/2, 
± 1/3, ± 1/4, .... The simplest procedure would be to 
assume for the rigidity the exact result for the viscoelas­
tic modulus, (15) or (31), and to neglect bulk dissi­
pation, i.e., to assume a real, frequency-independent 
bulk modulus. Whether these generalized bodies, nb­
tably the generalized Maxwell body, are of practical 
importance, remains to be seen. It is tempting to specu­
late that post-glacial-rebound data, which have been 
successfully interpreted with the Maxwell-body model 
(Cathles, 1975; Peltier, 1976, 1980), could also be ex­
plained by a generalized Maxwell body with y < 1. In 
this context it may be of interest to note that for a 
generalized Maxwell body the relation between the de­
cay time r of the relaxation function R(t), defined by 
R(r) = R(O)/e, and the viscosity follows with sufficient 
accuracy from (23) and (26): 

IJ= [sin (Y~) J- 1/r M(oo)r. 

This simple formula implies a strong dependence of '1 
on y. For instance, for y= 1/3 the inferred viscosity 
would be 8 times larger than the viscosity of a Maxwell 
body. 

The model of a generalized Maxwell body can be 
applied to rocks at low pressures and high tempera­
tures in a frequency band of 3 to 4 decades around 
1 Hz, according to laboratory studies by Berckhemer et 
al. (1982). These authors find an exponent y of about 
0.25. It is not clear to what extent this result can also 
be applied to the rocks of the earth's mantle where 
there is additional influence on viscoelastic properties 
by high pressures. A y value as high as 0.25 cannot 
apply for large frequency ranges in the earth's mantle, 
as the following example shows. Assuming a Q(w,) of 
200 at a period of about 30 s, according to Jordan and 
Sipkin's (1977) investigation of long-period shear waves 
of Sc S type, we can determine from Figure 1 the re­
duction of the rigidity from this period to the period of 
the Chandler wobble which is about 435 sidereal days. 
The relative frequency w/w, is 0.8·10- 6 , and for y = 0, 
1/10, 1/6, 1/4 the rigidity is reduced to 0.96, 0.91, 0.84, 
0.69 times the rigidity at 30 s. Employing perturbation­
theory formulas for the change in Chandler-wobble 
period due to changes in rigidity, as given, e.g., by 
Anderson and Minster (1979), one obtains an increase 
of about 6 days for y =0 and 14 days for y = 1/10. The 
increase for y=l/6 and y=l/4 cannot be calculated 
from perturbation theory, but certainly it would be 
considerably larger than 14 days. Most of the observed 
wobble period is explained by elastic earth models, 
valid for the seismic frequency band, and by the influ­
ence of the oceans; only a few days, 3 according to 
Lambeck (1980, Table 8.1) and 8.5 according to Smith 
and Dahlen (1981, Fig. 5), respectively, are left for the 
influence of absorption-related dispersion. This points 
to y values between 0 and 0.1 at most, a result which is 
in principal agreement with one of the cases studied by 
Smith and Dahlen. Okubo's (1982) y values, 
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10-S 

W/W 0 

Fig. 5. Normalized relaxation spectra for different values of y 
(IJ=viscosity). Calculation by formula (A.7) 

0.13 ~ y ~ 0.2, were determined from estimates of Q for 
the Chandler wobble, which is a different (and perhaps 
less safe) procedure than that based on the wobble 
period. 

The asymptotic, steady-state creep behaviour of a 
generalized Maxwell body with the properties of the 
earth's mantle at seismic frequencies and at the fre­
quency of the Chandler wobble is very different from 
the creep behaviour of the earth's mantle. If (26) is used 
to determine the viscosity for y~0.1, w, and Q(w,) from 
above and an average rigidity at w, of about 2 Mbar, 
values of 1036 Poise and larger are found. These visco­
sities are far beyond the range that is discussed for the 
mantle, 1021 to 1025 Poise. On the other hand, visco­
sities within this range are found for y values between 
about 0.17 and 0.24, but then the Chandler-wobble 
period remains unexplained. Hence, there is no genera­
lized Maxwell body which adequately describes the 
complete spectrum of seismological-rheological proper-
ties of average mantle material. · 
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Appendix: Relaxation spectra 

The relaxation spectrum r(w) is defined by the follow­
ing representation of the relaxation function R(t), valid 
for t;:;: 0: 

()() 

R(t) = J r(w) e-rot dw. (A.1) 
0 

This is a superposition of elementary exponential relax­
ation functions with relaxation frequency w or, equiva-

lently, relaxation time 1/w. In the following, we want to 
relate r(w) to the Fourier transform R(w) = M(w)/i w of 
the relaxation function and hence to the viscoelastic 
modulus M(w). We start with the Fourier integral re­
presentation of R(t), 

1 ()()J - . 
R(t) =-Re R(w) e'rot dw, 

n o 

and change the integration variable to s = - i w. This 
yields 

1 -ioo _ 

R(t)= --Im J R(is)e-•1 ds 
n o 
1 -ioo 

=--Im J P(w)e-"'1 dw. 
n o 

(A.2) 

In the second expression we have again written w m­
stead of s, and P(w) is defined by 

- 1 
P(w)=R(iw)= --M(iw). 

w 
(A.3) 

The integration path in (A.2), which runs along the 
negative imaginary axis in the complex w plane, is then 
replaced by an equivalent path along the positive real 
axis and on a quarter circle with infinitely large radius 
around the fourth quadrant. If necessary, poles of P(w) 
on the positive real axis or inside the fourth quadrant 
are circumvented. We obtain 

R(t)= _!._Im{f P(w)e-"'1 dw+niI1\e-'°k 1}. (A.4) 
n o k 

In this expression the contribution from the quarter 
circle has been omitted, because it vanishes, and the 
following abbreviations have been used: 

wk=pole of P(w), assumed to be of first order. 
Ek=residue of P(w) at wk, multiplied by 1 for wk 

on the positive real axis and by 2 for wk inside 
the fourth quadrant, respectively. 

(A.4) can be written in the form 

R(t) = S {-!._Im P(w)- I Re eko(w-wk)} e-wt dw. 
o n k 

Then comparison with (A.1) yields the relaxation spec­
trum 

(A.5) 

Here (A.3) has been used. The relaxation spectrum 
(A.5) has a continuous part and (occasionally) a dis­
crete part. In the simple case of a Maxwell body, whose 
modulus has been mentioned in connection with for­
mula (15), only the second part is present, giving r(w) 
= M( oo) o(w-Wo) and R(t) = M( oo) e-"'0 \ as expected. 
The continuous spectrum in (A.5) follows also from 
results of Gross (1947) and MacDonald and Brachman 
(1956), which were derived in an entirely different man­
ner. 
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In the case of constant Q (y = 0) the viscoelastic 
modulus has been given in (16). The corresponding 
relaxation spectrum is continuous: 

2 

_ 2A(w,) (W');arctanQ 
r(w)- (Q Q-1) nw, + w 

(A.6) 

This is a power law with a frequency exponent between 
O and -1, depending on Q; however, for Q ~ 1 the 
exponent is practically - 1. 

In the case of power laws (8) for Q with 0 < y < 1 the 
low-frequency approximation (13) for the modulus im­
plies that r(w) tends to zero with w. The high-frequency 
approximation (11) for M(w) gives the continuous re­
laxation spectrum 

(A.7) 

This is a valid approximation for w~w0 , since (11) 
approximates M(w) well for these frequencies (see 
Fig. 1 ). 1'/ is the viscosity defined in (26). Figure 5 shows 
results for that part of the relaxation spectrum which is 
described by (A. 7). For the larger y values the decrease 
of r(w) with w below w 0 is indicated. The relaxation 
spectrum is effectively bandlimited with its peak at or 
below w 0 . For frequencies very much larger than 
w 0 r(w) follows approximately a power law with the 
exponent -(1 + 'y). This law would apply in the seismic 
frequency band. Exact values of the relaxation spec­
trum, valid at arbitrary frequencies, can be calculated 
from (15) in the special cases y = 1/2, 1/3, 1/4, .... 

The generalized Maxwell body (0 < y < 1) can be 
considered as a parallel connection of classical Maxwell 
bodies (y = 1) with relaxation frequencies w from 0 to 
oo. According to (A.l) the (real) elastic modulus of each 
of these classical Maxwell bodies is r(w) dw and the 
viscosity r(w) dw/w. 
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