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Abstract. A new method for the calculation of theoretical seis-
mograms, which is suitable for a wide class of inhomogeneous
media, is suggested. The method is based on a combination of
partial separation of variables with finite-difference techniques.
Different variants of the method, based on the application of the
Fourier-Bessel transform, finite integral transforms, expansions
in Legendre polynomials, etc, are discussed in detail. Examples
of theoretical seismograms for various simple structures are
presented.
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1. Introduction

One of the basic problems of theoretical seismology and seismic
prospecting is the computation of complete seismograms for
inhomogeneous media. At present various methods can be used
to compute theoretical seismograms. These methods have been
applied successfully to the solution of many important problems
in seismology. A brief review of these methods can be found in
Cerveny et al. (1977). Most of these methods, however, give only
incomplete theoretical seismograms, corresponding, to body
waves or surface waves, for example. The most general method, at
the present time, is the method of finite differences. The method
is quite universal, but it is rather time consuming, and requires
large amounts of computer store.

In this paper we will describe a new method for the calcu-
lation of theoretical seismograms, which is suitable for a wide
class of inhomogeneous media, including vertically inhomo-
geneous media with block structures. The method is based on
the combination of separation of variables with finite difference
techniques. The basic principle of the method is the separation
of the spatial variables (e.g., the coordinate corresponding to the
epicentral distance). After this separation, the equation has
reduced dimensionality, but remains hyperbolic. This equation
can then be solved efficiently by finite differences.

We start with the application of this method to a vertically
inhomogeneous halfspace and then proceed to more compli-
cated cases.
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2. Method of Solution

2.1. Vertically Inhomogeneous Halfspace
(Lamb’s Problem)

The physical problem that we are going to solve is the follow-
ing: to determine the motion of the free surface and the interior
of an inhomogeneous halfspace when a source of the normal-
force type is located on the free surface. Since the geometry of
the system has axial symmetry, it is convenient to use cylindrical
coordinates (r, z).

The equation of motion of an inhomogeneous elastic me-
dium is given by

(A+2u)grad U—protrot U+divU grad A
0*U
+2(grad#‘E)=P*at—2—, (1)

with the boundary conditions

Tzz z=0=_f(l) r—lé(r)’ Trz z:0=0’ (2)

and the initial values

U,_o=—1] =0, 3)

U
where the following notation is used: U= (U') is the displace-

ment vector, p(z) is the density, A(z), u(z) are Lamé’s constants,
E is the deformation tensor, the function f(t) represents the time
variation of the source, 7,, and 7,, are normal and tangential
stresses, respectively.

(a) The First Modification. We seek a solution in the form of
Fourier-Bessel integrals:

U,= | R(z k, 1) Jo(kn) dk, 4
0

U= Stz k 6)J,(kn) dk. )
0

As a result, we obtain the following boundary value problem of
reduced dimensionality for the functions R(z, k, t) and S(z, k, t):
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o7 HAG k)—+B(z K G=C@) 7 (6)
G
(—+D(z, k)G) —e, 4
0z 2=0
oG
G|,=0—E—!=0=0, (®)
where

(S (z, k, t) 0

- R(z,k,t))’ e_(—kf(t))’

and 4, B, C, D are known matrices. To solve this problem we
use the method of finite differences. We must solve our problem
for different values of k and then calculate the integrals (4) and
(5) numerically. The system of Egs. (6)-(8) must be solved for the
values of k, which are knots of the quadrature formula, to allow
the calculation of these integrals. If the values of k are small we
can use an explicit scheme. Equation (6), in the form of an explicit
scheme, enables us to compute the functions R(z, k, ) and
S(z,k,t) at each spatial grid point, at the time step (j+1),
exclusively in terms of the values at the two previous time steps
j and (j—1). If the values of k are large, one has to use either a
smaller time step At for the explicit scheme, or pass to an
implicit scheme in order to make the computation stable.

The convergence of the Fourier-Bessel integrals is deter-
mined by the behaviour of the functions R(z, k, t) and S(z, k, t) as
k—oco. For the case of an impulsive SH-torque source for a
homogeneous model, we have analyzed the analytical solution
for the boundary-value problem obtained after the separation of
variables. The behaviour of R(z k,t) and S(z, k,t) has been
found to depend on the smoothness of the function f(¢) in the
boundary condition. If f(¢) is a discontinuous function, one can
speak of convergence of the integrals (4), (5) only in general
terms. For smooth finite functions f(¢) the integrands R(z, k, t)
and S(z, k,t) decrease exponentially as the parameter k in-
creases, the integrals (4), (5) converge and therefore can be
calculated numerically.

Replacing the integrals (4), (5) by those over a finite interval,
we note that they are integrals of strongly oscillating functions.
Therefore, to compute them we follow Filon’s method: we
consider J,(kr), J,(kr) as weight functions and substitute for
R(z, k, t) and S(z, k, t) using an interpolation polynomial. Spline-
interpolation of the second order is used.

The error in the method as a whole can be determined by
comparison with the exact solution for the problem of an
impulsive SH-torque source, for the case of a homogeneous
model. The error in the displacement U(r, z, t) does not exceed
two or three per cent at distances up to 30 A, (here 4, is the
dominant wavelength radiated by the source). For details see
Alekseev and Mikhailenko (1976), Mikhailenko (1973, 1974).

(b) The Second Modification. This method is based on combining
finite-integral transformations (see Koshlyakov et al. 1970) with
finite-difference methods. The use of finite-integral transfor-
mations considerably increases the possibilities of the method.
Numerical integration of the rapidly-oscillating integrals (4), (5)
is no longer necessary. To compute them one has only to solve a
great number of one-dimensional problems at fixed values of the
parameters k.
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Consider problem (1)-(3) again and introduce new boundary
conditions:

U(r, z,t)| Uz t)l._,,= )

r= ro ’
We have thus introduced a reflecting surface at the distance r
=r, from the origin. We select a sufficiently large distance 7,
and consider the wave field up to t=T, where T is the time
taken for propagation of the wavefront up to the reflecting
surface.

Let us apply finite Hankel integral transformations (see
Sneddon 1951) along the coordinate r,

R, (z,k;, t)= er(r z,t) Jo(k; ) dr, (10
Si(z, ki, )= [ rU,(r, z,8) J,(k;r) dr, (11)
0
2 2 Jo(kr)
U(r, z, t)== (2 k) (12)
R AT
202 . Jrky)
U(r,z,t)=— s z,kl,t—,—, (13
0= LGk G o )
where k; are the roots of the equation Jy(k;7y)=0, (14)
and k; are those of the equation J, (k; r5)=0. 15
The boundary value problem of reduced dimensionality is:
62Q+,&( k¥ aQ+1§ k)Q C(z)azQ (16)
Z. K¥)— . = —_—
0z* » 9z (2 K, o’
il -
£+D(z, k¥) Q=& at z=0, 17
_0Q
=0 18
Qli_o= i (18)

where Q(z, ¥,t) is the vector with the components R,(z, k;, t)
and S(z, k,, t), the coefficients 4, B, C, D, § are known matrices,

k; . .
and the vector k¥ = (El) contains the roots of Bessel’s equations.

Having solved problem (16)-(18) numerically for various roots
of the Bessel’s Egs. (14), (15), we can find the components of the
displacement vector by (12), (13).

The convergence of the series (12), (13) depends on the
smoothness of the function f(f). It can be shown that, if the
function f(¢) satisfies the Dirichlet conditions, then as k¥ — o
the series converge rapidly. The above method allows one to
calculate complete theoretical seismograms on the computer
BESM-6 up to distances exceeding 100 4, (4, is the dominant
wavelength generated by the source).

The total error in the determination of the displacement
vector, caused by inaccuracy of the difference schemes and the
truncation of the series, does not exceed 3 %-4%. The method is
easily generalized for anisotropic media. In this case only the
coefficients in the difference equations are changed.

Other details can be found in Alekseev and Mikhailenko
(1978).



2.2. Half-Space Inhomogeneous in the Horizontal Direction

Consider the application of the method to the calculation of
wave fields in media where the elastic parameters are arbitrary
functions of epicentral distance. In the system of Cartesian
coordinates (x, z) propagation of SH waves from a line source is
described by the equation

o ( oU *U  *U
— o(x)d(z—h) f(t 19
(15 S S p309 =) S0 (19)
with the boundary condition
e, (20)
0z |z-0
and the initial values
ou
Uleo=,| =0 1)

where p(x) is Lamé’s constant, and p(x) is density.
For application of the finite integral transformation we
introduce the boundary condition

ou

=l =0 22

z=2z¢

and select z, sufficiently far from the origin. The wave field is
then considered up to the time t=T, where T is the time taken
for wave propagation to the reflecting surface at z=z,.

We employ the cosine transformation with finite limits

z0
S(x,n, )= { U(x, z, t) cos nnz dz, (23)
0 Zo

U(x, z, t)=—1—S(x 0, t)+3 Y S(x,n, t)cos—

Orll

(24)

Multiplying Eq. (19) by cos ’7Z£ and integrating from zero to
0

z,, making use of conditions (20), (22), we obtain

o ( oS n? n? 0*Ss nmh
Il (u a) —u = S_pw—pé(x) cos:f(t), (2%)
oS
S,_o=—| =0. 26
|t=O at —o ( )

Problem (25), (26) is solved by finite-difference methods for fixed
values of 1. Summing the values S(x,#,t) for n=0,1,2,...,N,
according to formula (24), we find U(x, z, t).

2.3. Radially Symmetric Medium

In the spherical system of coordinates r, @, ¢

(0<r=a, 00=n, 0Zp=2n),

we consider a radially symmetric elastic medium where Lamé’s
constants A, 4 and density p are arbitrary, piecewise-continuous

functions of the coordinate r. At the point r=d, ® =0, a vertical
force is applied

( )

F=5(~d)

f (t)e, (27

This force has axial symmetry and generates the displacement
field
U=U,(r, 0,t)e,+Uy(r, O,1) e,. (28)

The components U,(r, ©, t) and Ug(r, O, t) are defined from the
system of equations of the dynamic elasticity theory,

(A+2p graddivU—protrot U+divU grad 4

’Uu
+2(gradu~E)+pF=pW, (29)
for zero initial values
ou
S (30)
and with boundary conditions at the free surface
Trr r=a=0’ t9r|r=a=07 (31)

where E is the deformation tensor, and 7,,,
tangential stresses, respectively.
If, at the depth r=d, an impulsive SH-torque is applied

( )

14, are vertical and

F=25(r—d) 5~

g/ Oe, (32)

then only SH-waves arise in the medium. The component
U,(r, ©, 1) is determined from the equation

£ ) b Y
r?2 00 \0O U cot® ar 1M \ar +3r or r

2u (6 ) o’ U,
P e =p—°2 33
8 Upcot® ) cotO+pF=p—5=, (33)
with the initial values
ou,
U =2 =0 4
(p|t=0 ot —o ’ (3 )
and the boundary condition at the free surface
ou, U,
L (_«’__v’) =0. (35)
or  r/lr-a

If the Earth’s core is liquid, then a similar boundary condition is

introduced at the boundary of the core at r=r,.
We seek a solution of Egs. (29)-(31) in the form

U, 8,t)= ), R(r,n,t)E(cos ®), (36)

n=0

0P (cos @)

Uy(r, ©, t)= Z Sr.m. 050

n=

(37)
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where the B (cos @) are Legendre polynomials. To determine the
functions R(r, n, t) and S(r, n, t) a new boundary value problem,

OR 2
a_{l 52 R

£ [ 0R (s-r—r D)t pr= R
+r2{46rr 4R+n(n+1) (3S—R—r—)r+pF=p -5, (38)

e )
or o or r r
0’8
P

_nn+1) S]H”@_R}
r or

9
+£ [5R+3R6—S—S—2n(n+1)s]= (39)
r r

must be solved.
The boundary conditions at the free surface at r=a are

OR 22 A
A+2u)—+—R——n(n+1)S$S=0
or r r

(40)

The initial conditions take the form

J0R oS
— =0, S|,_o=—| =0
61? —o |t—0

41
Fri (41)

o=

Problem (38)-(41) is solved by finite-difference methods for
different values of the parameter # which is the summation index
in formulae (36), (37). We will not discuss the peculiarities of the
numerical solution of problem (38)-(41); they are described in
Alekseev and Mikhailenko (1977). Summing the functions
S(r,n,t) and R(r, n,t) according to formulae (36), (37), we de-
termine the displacement components U, (r, ©, t) and Ug(r, O, ?).

The number of terms of the series (36) and (37) depends on
the smoothness of the function f(t), i.e., on the frequency of the
signal from the source. This number increases linearly with
frequency. Theoretical seismograms for waves with periods lon-
ger than 5-10s can be calculated on the computer BESM-6.
For other details see Alekseev and Mikhailenko (1977).

2.4. Diffraction by a Wedge in an Inhomogeneous Medium
In a cylindrical system of coordinates 0<r<a, 0<¢ <2r, con-

sider the wave equation with the variable velocity v,(r) and a
line source located outside a wedge, at the point (r,, @,):

02U +1 3U+ 1 0*U
arr ' rar  r? 0g?
1 2°U 2n
= - o t
20 07 1 3(9=9o) 0(r=1o) f(1). (42)
On the boundaries of the wedge the conditions
Ulyeo=0, Ul,_,= (43)

are fulfilled, where « is the angle of the wedge (n <a<2n). The
initial values are
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ou

Ul,_,=0, —| =0. 4

|t=0 at o ( 4)
Applying the sine transformation with finite limits,
R(r,n, t)= j U, o, 1) sin 129 d(p, (45)
2 L
UG, o, t)—— Z R(r,n, 1) sin ! (46)
g

we obtain a new problem

0*R 10R n?n® 1 0°R 4n . nmo

T o PR T g CCT @ (4D

O0R

Rl,_o=—| =0.

li=o Fri (48)

Problem (47), (48) is solved by finite-difference methods at fixed
values of n. The displacement U(r, ¢, t) is then found from (46).
If the boundary conditions on the sides of the wedge are of the
form

ou

e=0  Or

ou
or

=0, (49)

9=a

then a cosine transformation with finite limits is applied.
Changing the velocity and the angle of the wedge, sufficiently
complicated models of the media can be obtained.

2.5. Other Diffraction Problems: Block Structures

Without significant modifications the method is applied both to
diffraction by a cylinder in an inhomogeneous medium and
diffraction of a spherical wave by an opaque cone. In the first
case we use the Fourier series with respect to the angular
coordinate (0 <r < o0, 0< ¢ <2m); in the second case the finite-
integral Legendre transformation with respect to the angular
coordinate @(0<r< o0, 00 <o) is used.

Employing finite transformations within the limits 0 to a and
b, and connecting the solutions with the help of the finite-
difference method, one can solve problems for inhomogeneous
media with block structure, each block having its own parame-
ters A(z), u(z) and density p(z2).

At present, the method has been applied to construct
theoretical seismograms for certain types of visco-elastic me-
dia, porous media and pre-stressed media. If Lamé’s constants
A, u and density p are arbitrary functions of some space
variables, the classical separation of variables does not take
place. In this case, employing finite integral transformations
can be suggested as a rather effective method for calculation of
theoretical seismograms (Mikhailenko 1978, 1979).

3. Certain Dynamical Peculiarities of Seismic Waves
in Inhomogeneous Media: Non-Ray Effects

In this section, we will present examples of computations of
theoretical seismograms for some simple models. These exam-
ples are not of methodological character, but they demonstrate
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Fig. 3. Horizontal and vertical displacements U, (dotted curve)
and U, (solid curve) on the surface of a homogeneous halfspace
(z=0) for different epicentral distances R. An impulsive vertical-
force point-source is located at a depth of 2 km. The source
time-function with a duration of 1 s is shown at the bottom-left.
At the top are shown P and S wave velocity-depth graphs and
the density-depth graph for the model used for computations
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Fig. 4. Thin layer embedded in a halfspace model of Fig. 4

The process generating the interference head-wave along a
thin high-velocity layer is closely connected with the interference
group of multiply-reflected waves propagating within the layer.
This interference group of multiply-reflected waves forms a
distinct wave. Computations show that the amplitudes of in-
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Fig. 5. Horizontal displacement U within the model of Fig. 4 a
depth of 3.25km and at the epicentral distance 9 km for dif-
ferent I/1,, where [ is the thickness of the layer and 1, is the
wavelength within the layer. A point SH-torque source is lo-
cated at the free surface. The source time-function with a
duration of 1 s is shown at the bottom-left.

At the top are shown S wave velocity-depth and density-depth
graphs for the model used for computations

terference head-waves depend not only on I/1,, but also on the
velocities inside and outside the layer. For a larger velocity
change (say, v,,/v,, =0.5), the maximum amplitudes have been
observed for I/A,~0.1. The velocity of propagation of the in-
terference head-wave is approximately 6 %-7 % lower than the
velocity of head-wave propagation along an interface between
two halfspaces. For a smaller velocity change (v,,/v,,>0.7) the
amplitudes of interference head-waves decrease with decreasing
l/4,. The change of velocity is not observed in this case.
Another interesting non-ray wave, connected with the high-
velocity layer, is the tunnel wave (also called the screened wave).
The generation of the tunnel wave cannot be explained by ray
theory, it does not propagate through the layer along a ray-path,
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Fig. 6. Model of an anti-waveguide and corresponding rays
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Fig. 7. Horizontal and vertical displacements U, (dotted curve)
and U, (solid curve) at the surface of an inhomogeneous half-
space (Fig. 6) for different epicentral distances R. An explosive-
type point-source is located within the inhomogeneous anti-
waveguide at a depth of 1 km. The source time-function with a
duration of 1 s is shown at the bottom-left.

At the top are shown P and S wave velocity-depth graphs and
the density-depth graph for the model used for computations
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Fig. 8. Model of a waveguide and corresponding limiting ray
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Fig. 9. Horizontal displacement U, at the free surface of the
waveguide (Fig. 8) for different epicentral distances R. A point
SH-torque source is located at the free surface. S, is a channel
wave. The source time-function with a duration of 1 s is shown
at the bottom-left. At the top are shown S wave velocity-depth
and density-depth graphs for the model used for computations

it ‘tunnells’. Only lower frequencies are tunnelled, higher
frequencies are screened. Thus, the dominant frequencies of the
tunnel wave decrease. The amplitudes of tunnel waves depend
on l/4,; they decrease with increasing I/4,.

Theoretical seismograms for various values of //4,, for the
epicentral distance R=9 km are shown in Fig. 5. The source is
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Conclusion

The method suggested has some advantages compared to known
methods of calculation of theoretical seismograms. It does not
require large amounts of computer store and is much more
efficient and accurate than ordinary finite-difference methods,
applicable to the solution of plane and axially-symmetric elastic-
ity-theory problems with coefficients dependent on one space
variable. It is not very difficult to apply the method to the
calculation of theoretical seismograms for inhomogeneous, an-
isotropic, viscoelastic media as well as to porous and prestressed
media, complete theoretical seismograms being computed in
each case.

At present the method has been developed further for the
calculation of theoretical seismograms for media whose parame-
ters are arbitrary functions of two or three space variables.
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