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Abstract. From the latest developments of algorithms
for the computation of eigenvalues and cigenfunctions
of Rayleigh waves for flat layered anelastic models of
the Earth, it is possible to construct, with highly satis-
factory efficiency and accuracy, “complete” synthetic
seismograms also at high frequencies. Examples are
given both for continental and oceanic structural mod-
els made up of 70 layers and more and extending to
depths of about 1,100 km.
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1. Introduction

Pekeris (1948), in his pioneering work, has shown the
possibility of treating the problem of wave propagation
in homogeneous layered media, both in terms of rays
(ray-theory) and in terms of modes (normal mode so-
lution); he also proposed the use of ray theory for the
purpose of determining the beginning of the record at a
distant point or for determining the steady-state so-
lution up to moderate ranges. On the other hand, if one
is interested in the steady-state solution at large ranges
where many rays need to be considered, or in the later
phases received at large distances, the normal mode
solution is preferable. Since Pekeris’ paper, a consider-
able amount of research has been carried out following
both approaches. A modern review of the results
achieved in the determination of seismic wave propaga-
tion in stratified media is given by Kennett (1983).

From Kennett’s book it is quite evident that a great
concentration of effort to understand the way in which
the features of observed seismograms are related to the
properties of the source and structure of the Earth is
based on a variety of mathematical and physical tools
essentially inspired by the ray-theory and its develop-
ments.

On the other hand, modal summation has been
successfully applied to the generation of synthetic sig-
nals only for periods greater than 10s (e.g. Liao et al,,
1978; Cuscito and Panza, 1981; Panza and Cuscito,
1982; Woodhouse, 1983).

It would seem that lack of an explicit statement of the
details of high-frequency eigenvalue and eigenfunction
evaluation has been the main factor delaying large-scale

application of multimode, synthetic seismograms to
the interpretation of short-period experimental records.
There are essentially two types of computational prob-
lems: (a) remove the loss-of-precision contained in the
original Thomson (1950) — Haskell (1953) technique for
the computation of Rayleigh-wave dispersion; (b) reach
the necessary accuracy and efficiency in modal com-
putation at high frequency, where many modes get very
close to each other. To deal with the loss-of-precision
problem, two methods exist: Knopoff's (1964a) method
and the method of delta matrices (Pestel and Leckie,
1963; Thrower, 1965; Dunkin, 1965; Watson, 1970).
Very recently, as a result of intensive international co-
operation, Schwab et al. (1984) have shown, both for
eigenvalue and eigenfunction determinations, that there
are no loss-of-precision problems when the existing im-
provements of the original formulation are used — also
for frequencies as high as 10000 Hz. The problem of
computational efficiency, while retaining very high ac-
curacy, at short periods has been treated with some
success by Suhadolc et al. (1985). Thus, at present, the
use of multimode summation for the construction of
synthetic seismograms can be extended to high frequen-
cies.

2. Computation of eigenvalues

Knopoff (1964a) has given the solution to problems of
elastic wave propagation in multilayered media as the
quotient of products of matrices. In the case of SH
waves, the matrices are of order two; in the case of P
—SV waves the matrices are of order four. The in-
dividual matrix elements are themselves determinants
of order two or four in the two cases.

Concerning the determination of the Rayleigh-wave
phase velocity using Knopoff’s method, it was reported
(Schwab, 1970) that with 16 decimal digits carried dur-
ing computation and 15.4 significant figures required in
the computed phase velocities, the number of wave-
lengths of a layered structure above the homogeneous
half-space can be increased to 196 without any loss of
precision. To control overflow when a large number,
H/2, of wavelengths of layered structure (H is the depth
to the deepest interface and 4 is the wavelength) is used
in the computation, a simple normalization is required
(Schwab et al., 1984). With normalization included, so
that large values of H/A can be treated, only the follow-
ing overflow/underflow situations must be avoided.
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The matrix elements for the layers with c¢<f, <a,,
where c is the phase velocity, f,, is the S-wave velocity
of the m-th layer and «,, is the P-wave velocity of the
m-th layer, contain factors of the form (Schwab, 1970):
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cosh ™ cosh on )
where
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[ c "
wd c? ) @
Qk=— C"' I—B—2= - "y, real

where d,, is the thickness of the m-th layer and w is the
angular frequency. In the notation used here, the as-
terisk denotes the imaginary part of an imaginary
quantity. For large values of the arguments, the magni-
tude of these factors is approximated by:

Zom [20m )| ®
In fact,

sinh P* =[exp(P*)—exp(— P¥*)]/2

and “4)
cosh P*=[exp (P*)+exp(—P*)]/2

which reduces to

sinh P*~ —exp(—P*)/2  cosh P* ~exp(—P*)/2

when P* <0; the same for Q*.

Thus, overflow occurs when the last expression is
approximately equal to the maximum value permitted
by the computer. Denoting this last quantity as MAX,
it is easy to find the limiting values
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to avoid overflow during the evaluation of the matrix
elements for any given layer. If these limits are reached,
splitting the thick layers into thinner ones having the
same properties does not solve the problem (Schwab et
al., 1984). A powerful, general solution to the problem
of handling homogeneous layers, when they are many
wavelengths thick, is the following. When c¢<f, <a,
and d,/A is large, for layer m, it is possible to use
the approximation

sinh P¥= —%exp(kr} d,)
cosh B¥=Jexp(kr} d,)

(6)

where k=w/c. The same is valid for sinhQ} and
coshQ*. It is important to note that these approxi-

mated expressions are exact for a finite-precision com-
puter when the magnitudes of P* and QF increase
beyond a certain point. In fact

cosh A L
i ¥ =3 exP () £E exp(—x). %)

If x increases, reaching the point where
zexp(—x)=10"Jexp(x), 8)

where M is the number of decimal digits carried by the
computer, then it is algorithmically exact to use

coshx= —sinhx=21exp(—x) x<O0. 9)

Thus, in Eq. (1) it is possible to factor out the quantity

zexplkd,, (i +7 )] (10)

which is always positive. Since the interest is limited to
changes in sign of the dispersion function, this factor
can be deleted when treating layer m and consequently
there is no more need to deal with exponentials having
arguments above a certain level.

The case f§,, <c<a, and large d,/A can be treated
by analogy and it is possible to delete terms like

sexp(kd,r}). (11)

The power of this approach has been extensively tested
by Schwab et al. (1984) and Suhadolc et al. (1985).

Once the phase velocity, ¢, is obtained for a given
angular frequency w, the group velocity, u, is obtained
from

u=c/(l—£;—:)) (12)

where standard implicit function theory is applied to
the dispersion function, F, to obtain

o leo). | o). 03

For details, see Schwab and Knopoff (1972). From Eq.
(12) it is evident that the computation of u requires as
input the phase velocity, c¢. Thus the accuracy with
which u can be computed, du, depends on the accuracy,
oc, of c. Extensive tests of such dependence have been
carried out by Schwab et al. (1985) who show the
existence of a quite general linear relation between du
and dc. Their results show that it is necessary to com-
pute the phase velocity with at least seven significant
figures to ensure three significant figures in group ve-
locity. However, as will be shown later, a greater accu-
racy in ¢ is needed to compute accurate eigenfunctions.

3. Computations of eigenfunctions

The algorithmic details of eigenfunction evaluation
with Knopoff's method are rather involved — although



in principle only a straightforward application of
Cramer’s rule is required — whereas the details for the
original formulation (Haskell, 1953) are quite simple.
Full details concerning Knopoff's method are given by
Schwab et al. (1984); here, it is sufficient to remember
the following. Using Haskell notation, the displace-
ments — u,, (radial), w,, (vertical) — or equivalently the
corresponding velocities u, and w,, and the stresses —
0, (normal), 7, (tangential) — in the m-th layer are
given by:
cu,=A,cosp,—iB,sinp,

+71,, C,c08q,,—iry, D,sing,,
cw, = —

+iC,,ssing,,—D,, cosq,,

O-m=pm(ym_1)Am Cos p,, _lpm(Vm - 1)

* B, Sinp,+p, Vs, Cncosq,

_ipm))merDmSinqm’ (14)
T =1 P VT Am SN Py = Py Vi o,

* B, cosp,,—ip,(y,—1) C,sing,,
+0,(y,,—1)D,,cosq,,

ir, A,sinp,+r, B, cosp,
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Thus Knopoffs submatrix A” can be written in the
form

A(0)=|:_p1(V1_1) 0 —P1 71 0

.17
0 P17 0 _P1(71_1)] (n

At the m-th interface, the continuity of displacement
and stress yields

A,cosb,—iB,sink +ry C,cosQ,—ir, D,sinQ,
=AM+1+rﬂm+1C'n+1’
—ir, A,sinP,+r, B, cosPB,+iC,sinQ,—D,cosQ,
=ram+le+1_Dm+1’
PV —1) A, cO8 B, —ip,(y,,—1)B,sinE,
+pmymrﬂmcmcosQm_ipmymrﬂmDmSian
=pm+1(vm+1_I)Am+1+pm+1ym+lrﬂm+1Cm+17
P VmVay Am SIN B, — V7, By, COSE
=PV —1) Cpsin @, + pp(v,, — 1) D, cOS Q,,
:_pm+1Vm+1ram+1Bm+1+pm+1(Vm+1_I)Dm+17 (18)
where P =kr, d,, Q,=kr, d, and d, is the layer

thickness. Thus, Knopoff's 4 x8 interface submatrices
have the form

cos P, —isinB,/r, cosQ,,
A _ —ir, sinpB, cos P, isinQ,/ry
Pm(Ym—1)cosB, —ip,(y,,—1)sinP,/fr, PmVm €OSQ,,
1P Vmts, SINE, — PV COS B, —ipw(Vm—1)sInQ,/r;
—irg sinQ,, —1 0 0
—cos 0 -1 1
. Q,,f (19)
_lpmymrﬂm Sanm _pm+1(ym+1_1) 0 _pm+1ym+1 0
pm(ym_l)cost 0 pm+1vm+1 _pm+1(ym+1_1)
and, noting that in the half-space A,=B,=—a24,
where C,=D,=—2B>w,, the submatrix representing the

A, = —o2(4,+47), B, = —ai(4,—A47),

Cm: _2Bi(w:n_w;r,z), Dm = —2[351((0;"-{-60;,',),
pm:kram[z_z(m_l):L qm =krﬂm[z_z(m_l)]7
Tm=2(B/0)*. (15)

p, is the density, z™~" is the depth of the upper
interface of the m-th layer and 4,, 4,, ., o, are
Haskell (1953) constants appearing in the depth-depen-
dent part of the dilatational and rotational wave solu-

tions:
4, exp(—ikr, z)+ 4, exp(ikr, z),
w, exp(—ikry z)+w,exp(ikry z).

For a continental model, the vanishing of the two
components of stress at the free surface yields:

—pi(y1—1)A;—p, V11g, C, =0,

(16)
Py 711, By —pi(y, —1) D, =0.

(n—1)th interface has the form

-1 ~Tbn
Aqo-n_| - —r, 1 ’ (20)
e 2Vl Ry S
Pu¥nTa, —pa(7,—1)

where the first four columns are the same as those of
A™ with m=n—1. It may be worth observing here
that, for each layer, A (i=1,n) submatrices represent
the denominators of Cramer’s system solutions when
the boundary conditions are applied.

Once the phase velocity is determined, the problem
of the evaluation of the eigenfunctions reduces to the
determination of the constants 4,, B,,, C,., D,, for the
layers and A,, D, for the half-space.

Indeed in writing Eq. (19) it was chosen to de-
termine r, B, and r, C, instead of B, and C,. This
choice of the layer constants is particularly convenient
since it makes all the elements y,; of Eq. (19), when not
equal to zero, real quantities if i+ is even and imag-
inary quantities if i+j is odd. The starting point is
therefore the linear, homogeneous system of 4n—2
equations in 4n —2 unknowns (Schwab et al., 1984):
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The determination of the layer constants can be
started by deleting the last equation of the system and
transposing the terms containing D, to the right-hand
side of the equations, thus forming a vector of in-
homogeneous terms.

Furthermore, D, can be arbitrarily set equal to 1; as
a consequence 7, B, and D, will be real, while 4,, and
73,.C,, Will be imaginary. Thus the system can be writ-
ten as:

_ B 4, _ C o
at,._an—l — 0
rﬂn—lcn—l B rﬁn

D,_, -1
An pnynrﬂn
(22)
from which A, can be determined.
To obtain’ Ay 15 1y By_1s 1, Co_y, Dy_y, Eq.

(22) is further reduced by deleting the last equation of
the system and transposing terms including A, to the
right-hand side of the equations:

A1 0
An 1 |
.. Boi| | O
rﬂn 1 Cn 1 llll(n)
Dn 1 Wz (n)
. (23)
where y,(n)=A4,+r; ~ Imaginary

Y,(m)=r, A,—1 Real.

This procedure can be continued to obtain the re-
maining layer constants, with the only change being in
the definition of the two elements of the vector of
inhomogeneities:

Y (m=4,+r, C,
Y,(m)=r, B,—D,

m<n.

For more computational details, see Schwab et al
(1984).

4. Energy integral

In multimode synthesis of theoretical seismograms, the
following integral of eigenfunctions must be computed:

I,=[ p(2) [} (2)+y3(2)]dz, (24)
0

where
_w(z) w(z)

Y1750) "% 0)
u(z) u'(z)

V3TN0 w0)

which is usually called the energy integral. For a se-
quence of homogeneous layers, this integral can be
evaluated analytically from the layer constants (Schwab
et al., 1984).

5. Attenuation due to anelastically

The anelastic nature of the Earth’s interior manifests
itself through the phenomena of attenuation of elastic
waves. Knopoff (1964b) introduced an additional term
into the differential equation of motion to account for
attenuation effects. He introduced the nondimensional
constant Q, which is related to the space (e~ **) and
time (e~ ") attenuation coefficients as follows

W W
20c "T20 (25)
where ¢ is the phase velocity of the plane wave motion
under consideration.

Recently, O’Connell and Budiansky (1978) derived
the relation

l({w «ac
¢ 2 (occ w)
which is relevant only for small values of w (long-
period waves and free oscillations). Brune (1962) and
Knopoff et al. (1964) noted that there are some discrep-
ancies for Q obtained -from propagating wave trains,
0., and that from free oscillations, Q,. The two values
are joined by the relation uQ,=cQ, where ¢ and u are
phase and group velocity, respectively.

Attenuation also distorts dispersion properties. Fut-
terman (1962) pointed out that physical dispersion must
accompany wave attenuation to preserve causality prin-
ciple. In a medium with a constant Q, the correction to
the dispersion of body waves can be expressed

(26)

2
A4, (@)=4,(0)/ {1 +]2 100 4x(@0) n (wo/w)]},
@7

Bu@=B,00)/ {1+]2 B0 Batwo ntwofo]

where A,(w) is the P-wave phase velocity, 4,(w) is the
P-wave phase attenuation, B,(w) is the S-wave phase
velocity and B,(w) is the S-wave phase attenuation.

In the following computations we have choosen
w,=2n radians. The quantities 4,, 4,, B,, B, are related



to the complex body-wave velocities a and f, describing
the properties of anelastic media, by

1 1 1 1
—=——jA,, —=——iB 28
o Al l 2 ﬁ Bl 1 2 ( )
(Schwab and Knopoff, 1972). In anelastic media also
surface-wave phase velocity. ¢, must be expressed as a
complex quantity

1 1

e iC,. (29)
The attenuated phase velocity C, and the phase attenu-
ation C, can be estimated by using the variational
technique (e.g. Takeuchi and Saito, 1972; Aki and Ri-
chards, 1980). As an intermediate step it is necessary to
compute the integrals

0 /12
1= {[(Hzm—mm] %

1 A
+E (Y1Y4_MY2Y3)}‘12 (30)

— (2 +2kA
G425 2+ V2Y3)

+k? (1+—'1~2—) y2]
(A+2p?) 73

1 2k
LEC I ) BELES k) 2] iz, (3
+5lluzy4+ [(l+2u)(y2y3+ y3) } 4 (31)

where y, and y; are defined as in Sect. 4,

a(z) 7(2)
= —— 1 = —
Ya w(0) Va w(0)’
ou=p(B1—B3—B*)+i2p B, B,
62=pl(ot —ok —5) —2(8} — B3~ )]

+ip2(oy0,—2p,B,),

S(A+2w=p(al—al—a*)+i2pa, a,.
In these expressions, & and B are the compressional-

and shear-wave velocities in the perfectly elastic case;
in other words

p(By+iB,)?=p+du P(0‘1+i°‘z)2:(l+2lf‘)+5(l+2ﬂ),

with A and y indicating Lamé’s constants.

Integrals I, and I, can be computed analytically
from the layer constants (Schwab et al, 1985), thus
obtaining the anelastic phase velocity

_ 1
and the phase attenuation

1

CZ:sz13 Im(1,), (33)

where ¢ and k are the phase velocity and wavenumber
in the perfectly elastic case.
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The exact mathematical treatment of attenuation
due to anelasticity is described by Schwab and Knopoff
(1971, 1972, 1973). Its extension to efficient multimode
computation is presently in progress.

6. Examples of computations

The construction of realistic seismograms requires the
possibility of handling Earth models formed by a large
number of layers including low-velocity zones. Accord-
ingly, with the more recent models of the crust and
upper mantle these layers correspond to sedimentary
layers, to the laccolithic zone of granitic intrusion (si-
alic low-velocity zone), to granulitic layers (lower crustal
layer) and to the asthenospheric low-velocity layer (e.g.
Mueller, 1977; Panza, 1980).

The presence of such velocity inversions removes
from the phase velocity spectra (multimode phase ve-
locities) regularities sometimes used (e.g. Kerry, 1981)
to approach the multimode summation in an approxi-
mated way.

In what follows, examples of exact computations are
described for a continental and an oceanic structure
containing low-velocity layers both in the crust and in
the upper mantle (see Table 1 and Fig. 1).

As can be seen from Table 1, structural properties
are specified down to depths of about 1,100 km, where
the S-wave velocity reaches 6.42 km/s. The possibility of
handling structural models extending to these depths,
in an efficient way, makes it possible to synthesize early
P-wave arrivals from all crustal layers having a P-wave
velocity less than 6.42 km/s; without the necessity of
introducing any unrealistic high-velocity half-space,
with the consequent generation of spurious S-wave arri-
vals as, for instance, in the case of the locked mode
approximation (Harvey, 1981).

6.1. Phase velocities

The Rayleigh-wave dispersion curves for the first 214
modes for the continental model are shown in Fig. 2. It
is easy to see the effect of the major discontinuities,
present in the structure, which are responsible for all
the “quasi-osculations”. The standard sequence chan-
nel-waves crustal-waves (Panza et al., 1972), due to the
presence of the asthenospheric low-velocity layer, is
intersected by a family of waves mainly sampling the
waveguide formed by the sedimentary layers (Chiarut-
tini et al., 1985). This is the reason for the quite com-
plicated pattern visible at frequencies larger than 0.1 Hz
for phase velocities in the range 4.3-6.3 km/s. Only ten
higher modes reach velocities less than 4.3 km/s (the S-
wave in the asthenospheric low-velocity layer). When
this happens, the modes are essentially sampling only
crust. In fact, crustal layering begins to be visible in the
phase-velocity curves for frequencies larger than about
0.4 Hz, even if not in the form of “quasi-osculations”.
This means that to get detailed crustal information it is
necessary to reach frequencies much larger than 1 Hz.
Figure 3 shows the Rayleigh-wave dispersion curves
for the oceanic model. Here the standard channel-wave
crustal-wave sequence is limited to a smaller number of
modes because of the presence of a thinner crust. It is
also interesting to note that, in addition to the family
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Table 1.

Input flat continental structure — IMP1

Depth to Layer Density P-wave phase P-wave phase S-wave phase S-wave phase P Layer
interface thickness velocity attenuation velocity attenuation number
(km) (km) (g/cm?) (km/s) (10~ % s/km) (km/s) (10~ 4 s/km)
0.00 0.10 2.04 1.69 591.70 0.50 500.00 20 1
0.10 0.15 2.06 1.79 558.70 0.82 305.63 20 2
0.25 0.50 213 217 461.50 1.01 247.50 20 3
0.75 0.50 2.21 2.53 263.20 1.20 138.90 30 4
1.25 0.50 2.28 2.90 172.40 1.41 88.65 40 5
1.75 0.50 2.35 3.27 122.40 1.62 61.73 50 6
2.25 0.50 2.43 3.63 110.10 1.85 54.05 50 7
2.75 0.50 2.50 4.00 50.00 2.08 24.04 100 8
3.25 0.50 2.57 4.37 30.53 2.33 14.31 150 9
3.75 0.50 2.65 4.73 21.33 2.59 9.65 200 10
4.25 0.50 2.72 5.10 15.69 2.87 6.97 250 11
4.75 0.50 2.77 5.38 12.40 3.06 5.45 300 12
5.25 0.50 2.83 5.65 10.11 3.26 4.38 350 13
5.75 0.25 2.85 5.75 7.73 3.32 3.35 450 14
6.00 0.50 2.85 5.75 7.73 3.32 3.35 450 15
6.50 0.50 2.85 5.75 7.73 3.32 3.35 450 16
7.00 0.50 2.85 5.75 7.73 3.32 3.35 450 17
7.50 0.50 2.85 5.75 7.73 3.32 3.35 450 18
8.00 0.50 2.85 5.75 7.73 3.32 3.35 450 19
8.50 0.50 2.85 5.75 7.73 3.32 3.35 450 20
9.00 0.50 2.85 5.75 7.73 3.32 3.35 450 21
9.50 0.50 2.85 5.75 7.73 3.32 3.35 450 22
10.00 0.50 2.85 5.75 7.73 3.32 3.35 450 23
10.50 0.50 2.85 5.75 7.73 3.32 3.35 450 24
11.00 0.30 3.04 6.70 6.63 3.87 2.87 450 25
11.30 0.30 3.08 6.90 6.44 3.98 2.79 450 26
11.60 0.30 3.12 7.10 6.26 4.10 2.71 450 27
11.90 1.10 3.16 7.30 6.09 421 2.64 450 28
13.00 2.00 3.16 7.30 6.09 421 2.64 450 29
15.00 2.00 3.16 7.30 6.09 4.21 2.64 450 30
17.00 2.00 3.16 7.30 6.09 4.21 2.64 450 31
19.00 2.00 3.16 7.30 6.09 4.21 2.64 450 32
21.00 2.00 3.16 7.30 6.09 4.21 2.64 450 33
23.00 2.00 3.16 7.30 6.09 421 2.64 450 34
25.00 25.00 3.26 7.80 5.70 4.50 2.47 450 35
50.00 25.00 3.40 8.00 25.00 4.30 11.63 100 36
75.00 25.00 3.41 8.00 25.00 4.30 11.63 100 37
100.00 25.00 3.42 8.00 25.00 4.30 11.63 100 38
125.00 25.00 3.43 8.00 25.00 4.30 11.63 100 39
150.00 25.00 3.44 8.00 25.00 4.30 11.63 100 40
175.00 25.00 345 8.00 25.00 4.30 11.63 100 41
200.00 25.00 3.46 8.57 15.69 4.60 7.25 150 42
225.00 25.00 3.46 8.57 15.69 4.60 7.25 150 43
250.00 20.00 3.47 8.60 15.50 4.70 7.09 150 44
270.00 20.00 3.47 8.60 15.50 4.70 7.09 150 45
290.00 25.00 3.47 8.70 15.33 4.75 7.02 150 46
315.00 25.00 3.47 8.70 15.33 4.75 7.02 150 47
340.00 25.00 3.47 8.70 15.33 4.75 7.02 150 48
365.00 25.00 3.47 8.70 15.33 4.75 7.02 150 49
390.00 25.00 3.66 8.74 15.15 4.75 6.97 151 50
415.00 20.00 3.88 8.76 15.11 4.75 6.97 151 51
435.00 10.00 3.90 9.04 14.65 5.00 6.61 151 52
445.00 20.00 3.92 9.49 13.95 5.25 6.30 151 53
465.00 25.00 3.93 9.50 13.94 5.25 6.29 151 54
490.00 25.00 3.95 9.52 13.91 5.26 6.29 151 55
515.00 25.00 3.96 9.53 13.90 5.26 6.29 151 56
540.00 25.00 3.99 9.58 13.83 5.29 6.26 151 57
565.00 25.00 4.02 9.63 13.75 5.31 6.23 151 58
590.00 25.00 4.06 9.68 13.67 5.34 6.20 151 59
615.00 25.00 4.09 9.74 12.50 5.37 5.65 165 60
640.00 25.00 4.12 9.78 10.40 5.39 4.73 196 61

665.00 25.00 4.17 10.01 8.80 5.52 3.99 227 62
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Table 1. (continued)

Depth to Layer Density P-wave phase P-wave phase S-wave phase S-wave phase 0 Layer
interface thickness velocity attenuation velocity attenuation number
(km) (km) (g/cm?) (km/s) (1073 s/km) (km/s) (10™* s/km)
690.00 25.00 4.21 10.18 7.61 5.63 3.44 258 63
715.00 25.00 4.26 10.19 6.81 5.75 3.02 288 64
740.00 25.00 4.30 10.49 5.96 5.85 2.68 319 65
765.00 25.00 4.48 10.68 5.35 5.95 2.40 350 66
790.00 25.00 4.63 10.85 4.84 6.04 217 381 67
815.00 25.00 4.80 11.03 4.41 6.14 1.98 411 68
840.00 25.00 4.94 11.18 4.05 6.23 1.82 441 69
865.00 25.00 4.94 11.22 3.77 6.25 1.69 473 70
890.00 25.00 4.95 11.27 3.52 6.28 1.58 504 !
915.00 25.00 4.95 11.31 331 6.30 1.49 533 72
940.00 25.00 4.95 11.35 3.12 6.32 1.40 565 73
965.00 25.00 4.95 11.39 2.95 6.34 1.32 597 74
990.00 25.00 4.95 11.43 2.79 6.36 1.26 624 75
1015.00 25.00 4.96 11.48 2.65 6.38 1.19 659 76
1040.00 25.00 4.96 11.52 2.52 6.39 1.14 686 71
1065.00 25.00 4.96 11.56 2.41 6.41 1.09 716 78
1090.00 Infinite 4.96 11.60 2.30 6.42 1.04 749 79

Inpunt flat oceanic structure - OCEAN

0.00 5.00 1.03 1.52 0
5.00 1.00 2.10 2.10 190.48 1.00 100.00 50 1
6.00 2.00 3.07 6.41 49.92 3.70 21.62 62 2
8.00 2.00 3.07 6.41 49.92 3.70 21.62 62 3
10.00 1.00 3.07 6.41 49.92 3.70 21.62 62 4
11.00 1.00 3.40 8.11 9.86 4.61 4.34 250 S
12.00 4.00 3.40 8.11 9.86 4.61 4.34 250 6
16.00 4.00 3.40 8.11 9.86 4.61 4.34 250 7
20.00 1.50 3.40 8.12 9.85 4.61 4.34 250 8
21.50 3.50 3.40 8.12 9.85 4.61 4.34 250 9
25.00 1.50 3.40 8.12 9.85 4.61 4.34 250 10
26.50 5.00 3.40 8.12 9.85 4.61 4.34 250 11
31.50 5.00 3.40 8.12 9.85 4.61 4.34 250 12
36.50 2.50 3.40 8.12 9.85 4.61 4.34 250 13
39.00 1.00 3.40 8.12 9.85 4.61 4.34 250 14
40.00 1.00 3.37 8.01 19.98 4.56 8.717 125 15
41.00 4.00 3.37 8.01 19.98 4.56 8.71 125 16
45.00 5.00 3.37 8.01 19.98 4.56 8.71 125 17
50.00 10.00 3.37 8.01 19.98 4.56 8.77 125 18
60.00 10.00 3.37 7.95 20.13 4.56 8.77 125 19
70.00 10.00 3.37 7.95 20.13 4.56 8.77 125 20
80.00 10.00 3.37 7.7 20.75 4.40 9.09 125 21
90.00 10.00 3.37 7.7 20.75 4.40 9.09 125 22
100.00 20.00 3.33 7.68 20.83 4.34 9.22 125 23
120.00 20.00 3.33 7.78 20.57 4.34 9.22 125 24
140.00 20.00 3.33 7.85 20.83 4.34 9.22 125 25
160.00 20.00 3.33 8.10 19.75 4.45 8.99 125 26
180.00 20.00 3.33 8.12 19.70 4.45 8.99 125 27
200.00 20.00 3.33 8.12 19.70 4.45 8.99 125 28
220.00 20.00 3.33 8.12 19.70 4.45 8.99 125 29
240.00 20.00 3.33 8.12 19.70 4.45 8.99 125 30
260.00 20.00 3.35 8.12 19.70 4.45 8.99 125 31
280.00 20.00 3.36 8.12 19.70 4.45 8.99 125 32
300.00 20.00 3.37 8.12 19.70 4.45 8.99 125 33
320.00 20.00 3.38 8.12 19.70 4.45 8.99 125 34
340.00 20.00 3.39 8.24 19.42 4.50 8.89 125 35
360.00 10.00 3.44 8.30 18.54 4.53 8.49 130 36
370.00 20.00 3.50 8.36 17.72 4.56 8.12 135 37
390.00 5.00 3.68 8.75 16.33 4.61 7.75 140 38
395.00 20.00 3.68 8.75 16.33 4.80 7.45 140 39
415.00 10.00 3.88 9.15 15.07 5.04 6.84 145 40
425.00 10.00 3.88 9.15 14.57 5.04 6.61 150 41
435.00 10.00 3.90 9.43 13.68 5.22 6.18 155 42

445.00 20.00 3.92 9.76 12.81 5.40 5.79 160 43
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Table 1. (continued)

Depth to Layer Density P-wave phase P-wave phase S-wave phase S-wave phase 9 Layer
interface thickness velocity attenuation velocity attenuation number
(km) (km) (g/cm?) (km/s) (10~ % s/km) (km/s) (10~* s/km)
465.00 25.00 3.93 9.77 12.41 5.40 5.61 165 44
490.00 25.00 3.95 9.78 12.04 5.40 5.45 170 45
515.00 25.00 3.96 9.78 12.03 5.40 5.45 170 46
540.00 25.00 3.99 9.78 12.02 5.40 5.45 170 47
565.00 25.00 4.02 9.79 12.02 5.40 5.45 170 48
590.00 25.00 4.06 9.79 12.02 5.40 5.45 170 49
615.00 25.00 4.09 9.80 12.01 5.40 5.45 170 50
640.00 25.00 4.12 9.80 10.47 5.40 4.75 195 51
665.00 25.00 4.16 10.16 8.20 5.60 3.72 240 52
690.00 25.00 421 10.49 6.69 5.80 3.02 285 53
715.00 25.00 4.26 10.82 5.60 6.10 2.48 330 54
740.00 25.00 4.30 11.12 4.80 6.20 2.15 375 55
765.00 25.00 4.48 11.14 4.28 6.21 1.92 420 56
790.00 25.00 4.63 11.15 3.86 6.21 1.73 465 57
815.00 25.00 4.80 11.17 3.55 6.22 1.59 505 58
The rest as for structure IPM1
P WAVES S - WAVES
CENSITY JELRLITY “OC ATTENUATION JELDULTY LOC ATTENUAT!ION 271
G/eMY . N (Ki1/$) - (S/7MM} , {Ki1/$) (S/MM)
Lo
DPEPTH (K
STRUCTURE : M7
P - WAVES S - WAVES.
DENSITY VELDLETY QL ATTFNUATION JELQLITY LOC ATTENUATIOM an
G/eMY (Ki1/S) (S/7MM) . (Ki1/$) . \ (S/MM) . -
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Fig. 1. Distribution versus depth of elastic
and anelastic properties for the two

" LAYERS- 706G

structural models used in the computation:
IMP1 is the continental structure, OCEAN
is the oceanic structure (see also Table 1)




































144

for sources of finite dimensions are also valid in the far-
field approximation, which can be roughly expressed by
the condition that the source-receiver distance must be
an order of magnitude greater than source dimensions.
If this condition is not satisfied while the condition
kr=10 still holds, the synthetic signal can be con-
structed as a proper sum of seismograms given by
point sources separated in time and space. With the
modal approach this is easily done. In fact, following
this method, for a given Earth model, different seismo-
grams corresponding to different sources, can be com-
puted with very little computer time; essentially the
time required for a Fast Fourier transform, since all the
time-consuming computations (eigenvalues and eigen-
functions) are independent of source specifications.

Some examples of computations of synthetic seis-
mograms, for point sources with R(w) equal to a unit
step function and for the continental model shown in
Table 1, are given in Figs. 13 and 14. Parts a and ¢ of
Fig. 13 give, respectively, the radial and vertical com-
ponent of motion at a distance of 150 km from a source
of dip-slip type. It is important to observe that the
radial component is more than twice the vertical one,
and this is in quite good agreement with what has been
observed about the ellipticity in Sect. 6.4. Similar con-
siderations apply to Fig.13b and d, where synthetic
seismograms computed for an epicentral distance of
100 km are shown.

From these synthetic seismograms it is easy to see
the large increment of the duration of the signal with
increasing distance, mainly due to the dispersion of the
fundamental and first few higher modes. In Fig. 14 ex-
amples for strike-slip point-sources are given which es-
sentially confirm the previous observations. From a
comparison of Fig. 13a with Fig. 14a it turns out, quite
evidently, how difficult it can be to distinguish among
the two mechanisms if the analysis is limited to the first
part of the record, while significant differences can be
seen in the records for a time greater than 60s. On the
other hand, the difference between Fig. 13b and
Fig. 14b is really very small over the entire duration.
The same considerations can be applied to the vertical
component of motion.

A more detailed discussion of synthetic seismo-
grams, computed using the technique described in this
paper and some comparisons with experimental data is
given by Suhadolc and Panza (1985).

8. Conclusions

The stage reached in the development of algorithms for
the computation of eigenvalues and eigenfunctions of
Rayleigh waves for flat layered anelastic models of the
Earth allows “complete” synthetic seismograms to
frequencies as high as 1Hz to be constructed, with
satisfactory efficiency. Routinely, it is possible to con-
sider Earth models made up of 70 layers and more.
Thus, it is feasible also to model any sort of gradient in
the distribution versus depth of elastic and anelastic
properties by a rather fine layering. Typical CPU times
for the frequency-domain computations on an IBM
370/168 computer are around 1h, while the construc-
tion of the time series requires about 300s. This last
figure decreases to only 30s for all subsequent seismo-

grams computed for different sources, located at the
same depth.

Very preliminary attempts made using the vector
computer CRAY-1 gave characteristic times about ten
times smaller for all computations. This very interesting
result could be further improved via an optimization of
the code to the vector machine. This task is presently
in progress.
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