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Abstract From the latest developments of algorithms 
for the computation of eigenvalues and ;::igenfunctions 
of Rayleigh waves for flat layered anelastic models of 
the Earth, it is possible to construct, with highly satis­
factory efficiency and accuracy, "complete" synthetic 
seismograms also at high frequencies. Examples are 
given both for continental and oceanic structural mod­
els made up of 70 layers and more and extending to 
depths of about 1,100 km. 
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1. Introduction 

Pekeris (1948), in his pioneering work, has shown the 
possibility of treating the problem of wave propagation 
in homogeneous layered media, both in terms of rays 
(ray-theory) and in terms of modes (normal mode so­
lution); he also proposed the use of ray theory for the 
purpose of determining the beginning of the record at a 
distant point or for determining the steady-state so­
lution up to moderate ranges. On the other hand, if one 
is interested in the steady-state solution at large ranges 
where many rays need to be considered, or in the later 
phases received at large distances, the normal mode 
solution is preferable. Since Pekeris' paper, a consider­
able amount of research has been carried out following 
both approaches. A modern review of the results 
achieved in the determination of seismic wave propaga­
tion in stratified media is given by Kennett (1983). 

From Kennett's book it is quite evident that a great 
concentration of effort to understand the way in which 
the features of observed seismograms are related to the 
properties of the source and structure of the Earth is 
based on a variety of mathematical and physical tools 
essentially inspired by the ray-theory and its develop­
ments. 

On the other hand, modal summation has been 
successfully applied to the generation of synthetic sig­
nals only for periods greater than 10 s (e.g. Liao et al., 
1978; Cuscito and Panza, 1981; Panza and Cuscito, 
1982; Woodhouse, 1983). 

It would seem that lack of an explicit statement of the 
details of high-frequency eigenvalue and eigenfunction 
evaluation has been the main factor delaying large-scale 

application of multimode, synthetic seismograms to 
the interpretation of short-period experimental records. 
There are essentially two types of computational prob­
lems: (a) remove the loss-of-precision contained in the 
original Thomson (1950)- Haskell (1953) technique for 
the computation of Rayleigh-wave dispersion; (b) reach 
the necessary accuracy and efficiency in modal com­
putation at high frequency, where many modes get very 
close to each other. To deal with the loss-of-precision 
problem, two methods exist: Knopoff's (1964a) method 
and the method of delta matrices (Peste! and Leckie, 
1963; Thrower, 1965; Dunkin, 1965; Watson, 1970). 
Very recently, as a result of intensive international co­
operation, Schwab et al. (1984) have shown, both for 
eigenvalue and eigenfunction determinations, that there 
are no loss-of-precision problems when the existing im­
provements of the original formulation are used - also 
for frequencies as high as 10000 Hz. The problem of 
computational efficiency, while retaining very high ac­
curacy, at short periods has been treated with some 
success by Suhadolc et al. (1985). Thus, at present, the 
use of multimode summation for the construction of 
synthetic seismograms can be extended to high frequen­
cies. 

2. Computation of eigenvalues 

Knopoff (1964a) has given the solution to problems of 
elastic wave propagation in multilayered media as the 
quotient of products of matrices. In the case of SH 
waves, the matrices are of order two; in the case of P 
-SV waves the matrices are of order four. The in­
dividual matrix elements are themselves determinants 
of order two or four in the two cases. 

Concerning the determination of the Rayleigh-wave 
phase velocity using Knopoff's method, it was reported 
(Schwab, 1970) that with 16 decimal digits carried dur­
ing computation and 15.4 significant figures required in 
the computed phase velocities, the number of wave­
lengths of a layered structure above the homogeneous 
half-space can be increased to 196 without any loss of 
precision. To control overflow when a large number, 
H/Jc, of wavelengths of layered structure (H is the depth 
to the deepest interface and A is the wavelength) is used 
in the computation, a simple normalization is required 
(Schwab et al., 1984). With normalization included, so 
that large values of H/Jc can be treated, only the follow­
ing overflow/underflow situations must be avoided. 



|00000132||

126 

The matrix elements for the layers with c <!3m< am, 
where c is the phase velocity, !3m is the S-wave velocity 
of the m-th layer and am is the P-wave velocity of the 
m-th layer, contain factors of the form (Schwab, 1970): 

sinh P* sinh Q* 
cosh m cosh m 

where 

P* = - w dm l Q = - w dm r* real 
m C v 1 -~ C ~m 

Q* = - w dm l Q = - w dm r* real 
m C v !-~ C Pm 

(1) 

(2) 

where dm is the thickness of the m-th layer and w is the 
angular frequency. In the notation used here, the as­
terisk denotes the imaginary part of an imaginary 
quantity. For large values of the arguments, the magni­
tude of these factors is approximated by: 

In fact, 

sinh P* = [ exp (P*)- exp (- P*)]/2 

and 

cosh P* = [ exp (P*) + exp (- P*)]/2 

which reduces to 

sinh P* ~ - exp (- P*)/2 cosh P* ~ exp (- P*)/2 

when P* ~0; the same for Q*. 

(3) 

(4) 

Thus, overflow occurs when the last expression is 
approximately equal to the maximum value permitted 
by the computer. Denoting this last quantity as MAX, 
it is easy to find the limiting values 

(d) _cln(4·MAX) 
m maximum- ( * + * ) w r~m rPm 

cminimum 
wdm(r~*;,. +r/J 
ln(4· MAX) 

cln(4· MAX) 
wmaximum 

dm(r~*;,. +r/J 

(5) 

to avoid overflow during the evaluation of the matrix 
elements for any given layer. If these limits are reached, 
splitting the thick layers into thinner ones having the 
same properties does not solve the problem (Schwab et 
a!., 1984). A powerful, general solution to the problem 
of handling homogeneous layers, when they are many 
wavelengths thick, is the following. When c < f3m <am 
and dmf A is large, for layer m, it is possible to use 
the approximation 

sinh Pm* = -1 exp (k r~*m dm) 

cosh P,.* =1 exp (k r~*m dm) 
(6) 

where k = wjc. The same is valid for sinh Q! and 
cosh Q!. It is important to note that these approxi-

mated expressions are exact for a finite-precision com­
puter when the magnitudes of P,.* and Q! increase 
beyond a certain point. In fact 

cosh 1 1 
. h x=2exp(x)±2exp( -x). 

Sill 
(7) 

If x increases, reaching the point where 

1 exp ( -x) =10M 1 exp(x), (8) 

where M is the number of decimal digits carried by the 
computer, then it is algorithmically exact to use 

coshx= -sinhx=-texp( -x) x<O. (9) 

Thus, in Eq. (1) it is possible to factor out the quantity 

(10) 

which is always positive. Since the interest is limited to 
changes in sign of the dispersion function, this factor 
can be deleted when treating layer m and consequently 
there is no more need to deal with exponentials having 
arguments above a certain level. 

The case !3m< c <am and large dmf A can be treated 
by analogy and it is possible to delete terms like 

(11) 

The power of this approach has been extensively tested 
by Schwab et a!. (1984) and Suhadolc et a!. (1985). 

Once the phase velocity, c, is obtained for a given 
angular frequency w, the group velocity, u, is obtained 
from 

(12) 

where standard implicit function theory is applied to 
the dispersion function, F, to obtain 

(13) 

For details, see Schwab and Knopoff (1972). From Eq. 
(12) it is evident that the computation of u requires as 
input the phase velocity, c. Thus the accuracy with 
which u can be computed, <5u, depends on the accuracy, 
be, of c. Extensive tests of such dependence have been 
carried out by Schwab et a!. (1985) who show the 
existence of a quite general linear relation between bu 
and be. Their results show that it is necessary to com­
pute the phase velocity with at least seven significant 
figures to ensure three significant figures in group ve­
locity. However, as will be shown later, a greater accu­
racy in c is needed to compute accurate eigenfunctions. 

3. Computations of eigenfunctions 

The algorithmic details of eigenfunction evaluation 
with Knopoffs method are rather involved - although 
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in principle only a straightforward application of 
Cramer's rule is required - whereas the details for the 
original formulation (Haskell, 1953) are quite simple. 
Full details concerning Knopoffs method are given by 
Schwab et al. (1984); here, it is sufficient to remember 
the following. Using Haskell notation, the displace­
ments - urn (radial), wm (vertical) - or equivalently the 
corresponding velocities lim and wm, and the stresses -
am (normal), 'm (tangential) - in the m-th layer are 
given by: 

c lim =Am cos Pm -iBm sin Pm 

+rPm em cos qm- i rPm Dm sin qm, 

cwm= -iramAmsinpm+ramBmcospm 

+ i em sin qm -Dm cosqm, 

(Jm = PmCYm -1) Am COS Pm -i Pm(Ym -1) 

. Bm sin Pm + Pm Ym rPm em cos qm 

-i Pm YmrPm Dmsin qm, 

'm = i Pm YmramAm sinpm- Pm Ym ram 

· Bmcospm-iPm(Ym-1)emsinqm 

+ Pm(Ym -1) Dm COS qm, 

- i sin Pmfr am 

cosPm 

(14) 
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Thus Knopoffs submatrix A<0 ) can be written m the 
form 

0 
(17) 

At the m-th interface, the continuity of displacement 
and stress yields 

AmcosP,. -iBm sin P,. +rPm em cos Qm- irpmDm sin Qm 

=Am+1 +rPm+ I em+1' 
- iram Am sin Pm +ram Bm cos Pm + i em sin Qm- Dm cos Qm 

=ram+IBm+1 -Dm+1' 

Pm(Ym -!)Am cos Pm -i Pm(Ym -1) Bm sin Pm 

+ Pm YmrPm em cos Qm -i Pm Ym rPmDm sin Qm 

=pm+1(Ym+1 -l)Am+1 +Pm+1 Ym+1rPm+l em+1' 

i Pm Ym ram Am sin pm- Pm Ym ramBm cos pm 

-i Pm(Ym -1) em sin Qm + Pm(Ym -1) Dm cos Qm 

= -pm+1 Ym+1ram+IBm+1 +Pm+1(Ym+1 -l)Dm+1' (18) 

where Pm=kramdm, Qm=krpmdm and dm is the layer 
thickness. Thus, Knopoffs 4 x 8 interface submatrices 
have the form 

cosQm 

i sin Qm/rpm 

- ipm(Ym -1) sin Pmfram Pm Ym COS Qm 
-PmYmCOSPm - ipm(Ym -1) sin Qm/rpm 

-irPm sinQm -1 0 
-cosQm 0 -1 

- ipm Ym rPm sin Qm -pm+1(Ym+1-1) 0 

Pm(Ym -1) COS Qm 0 Pm+1Ym+1 

where 

Am= -IX~(,1~+Ll~}, Bm= -IX~(LJ~-Ll~}, 

em= -2 f3~(w~ -w~), Dm = -2 f3~(w~ + w~), 
P =kr [z-z<m- 1)] q =kr [z-z<m- 1)] 

m Clm ' m f3m ' 

(15) 

Pm is the density, z<m- 1) is the depth of the upper 
interface of the m-th layer and Ll~, Ll~, w~, w~ are 
Haskell (1953) constants appearing in the depth-depen­
dent part of the dilatational and rotational wave solu­
tions: 

Ll~ exp (- i k ram z) + Ll~ exp(i k ram z), 

w~ exp(- i k rPm z) + w~ exp (i k rPm z). 

For a continental model, the vanishing of the two 
components of stress at the free surface yields: 

-p1(y1 -l)A1 -p1 Y1 rp, e1 =0, 

P1 Y1 ra, B1 -p1(Y1 -1)D1 =0. 
(16) 

-1 

0 

-P.+.L. _J (19) 

and, noting that in the half-space An= Bn = -IX~ Ll~ 
en=Dn= -2{3~w~, the submatrix representing the 
(n-1)th interface has the form 

-1 

(20) 

where the first four columns are the same as those of 
A<m) with m=n-1. It may be worth observing here 
that, for each layer, A(i) (i = 1, n) submatrices represent 
the denominators of Cramer's system solutions when 
the boundary conditions are applied. 

Once the phase velocity is determined, the problem 
of the evaluation of the eigenfunctions reduces to the 
determination of the constants Am, Bm, em, Dm for the 
layers and An, Dn for the half-space. 

Indeed in writing Eq. (19) it was chosen to de­
termine ram Bm and rPm em instead of Bm and em. This 
choice of the layer constants is particularly convenient 
since it makes all the elements yii of Eq. (19), when not 
equal to zero, real quantities if i + j is even and imag­
inary quantities if i + j is odd. The starting point is 
therefore the linear, homogeneous system of 4n- 2 
equations in 4n-2 unknowns (Schwab et al., 1984): 
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u A1 0 

r"'• B1 

Q 
rllt e1 

D1 
A2 

r"'2 B2 
rp2 e2 

D2 '(21) 

Q An-1 
rlln-1 Bn-1 

B rPn-t en-1 
Dn-1 
An 
Dn 0 

The determination of the layer constants can be 
started by deleting the last equation of the system and 
transposing the terms containing Dn to the right-hand 
side of the equations, thus forming a vector of in­
homogeneous terms. 

Furthermore, Dn can be arbitrarily set equal to 1; as 
a consequence r"'mBm and Dm will be real, while Am and 
rPm em will be imaginary. Thus the system can be writ­
ten as: 

0 

0 

(22) 
from which An can be determined. 

To obtain An_ 1, r"'"-• Bn_ 1, rp"_, en_ 1, Dn_ 1, Eq. 
(22) is further reduced by deleting the last equation of 
the system and transposing terms including An to the 
right-hand side of the equations: 

An-1 
r"'"_,Bn-1 
rp"_,en-1 

Dn-1 

where 1/1 1(n)=An+rp" Imaginary 
1/1 2(n)=r"'"An-1 Real. 

This procedure can be continued to obtain the re­
maining layer constants, with the only change being in 
the definition of the two elements of the vector of 
inhomogeneities: 

1/1 1 (m)=Am +rpm em 

I/J2(m)=r"'mBm-Dm 
m<n. 

For more computational details, see Schwab et al. 
(1984). 

4. Energy integral 

In multimode synthesis of theoretical seismograms, the 
following integral of eigenfunctions must be computed: 

00 

11 = J p(z)[yi(z)+y~(z)]dz, (24) 
0 

where 

w(z) w(z) 
y1 = w(O) = w(O) 

u(z) ti(z) 
i y 3 = w(O) = w(O) 

which is usually called the energy integral. For a se-
quence of homogeneous layers, this integral can be 
evaluated analytically from the layer constants (Schwab 
et al., 1984). 

5. Attenuation due to anelastically 

The anelastic nature of the Earth's interior manifests 
itself through the phenomena of attenuation of elastic 
waves. Knopoff (1964b) introduced an additional term 
into the differential equation of motion to account for 
attenuation effects. He introduced the nondimensional 
constant Q, which is related to the space (e-"'x) and 
time (e- 11) attenuation coefficients as follows 

ro 
IX=2Qc 

ro 
y=~ 

2Q 
(25) 

where c is the phase velocity of the plane wave motion 
under consideration. 

Recently, O'Connell and Budiansky (1978) derived 
the relation 

Q =~ (!!!.____IX C) 
2 IXC ro 

(26) 

which is relevant only for small values of ro (long­
period waves and free oscillations). Brune (1962) and 
Knopoff et al. (1964) noted that there are some discrep­
ancies for Q obtained -from propagating wave trains, 
Qx, and that from free oscillations, Q1 • The two values 
are joined by the relation u Q1 = c Qx where c and u are 
phase and group velocity, respectively. 

Attenuation also distorts dispersion properties. Fut­
terman (1962) pointed out that physical dispersion must 
accompany wave attenuation to preserve causality prin­
ciple. In a medium with a constant Q, the correction to 
the dispersion of body waves can be expressed 

A1 (ro)=A1 (ro0 )/ { 1 + [~ A1 (ro0 ) A2(ro0)ln(ro0/ro)J}. 
(27) 

B1 (ro)=B1 (ro0 ) / { 1 + [~ B1 (ro0 ) B2(ro0) ln (ro0/ro)J}. 

where A1(ro) is the P-wave phase velocity, A2 (ro) is the 
P-wave phase attenuation, B1 (ro) is the S-wave phase 
velocity and B2 (ro) is the S-wave phase attenuation. 

In the following computations we have choosen 
ro0 = 2 n radians. The quantities A 1, A 2 , B 1 , B2 are related 
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to the complex body-wave velocities rx and {3, describing 
the properties of anelastic media, by 

1 1 
~=--iA A 2• 
(X 1 

1 1 
-=--iB 
{3 B1 2 

(28) 

(Schwab and Knopoff, 1972). In anelastic media also 
surface-wave phase velocity. c, must be expressed as a 
complex quantity 

1 1 
~=--iC. 
c c1 2 

(29) 

The attenuated phase velocity C1 and the phase attenu­
ation C2 can be estimated by using the variational 
technique (e.g. Takeuchi and Saito, 1972; Aki and Ri­
chards, 1980). As an intermediate step it is necessary to 
compute the integrals 

where y 1 and y 3 are defined as in Sect. 4, 

(j J1 = p ({3 i - {3 ~ - 7J 2) + i 2 p {31 {3 2 ' 

6 A= p [( rxi - rx~ - iX2)- 2 (f3i - {3~ -{J2)] 

+ip2(rx1 rx 2 -2{31 {3 2 ), 

b(A+2p)= p(rxi -rx~ -iX 2 )+i2p rx 1 rx 2 . 

(30) 

(31) 

In these expressions, iX and 7J are the compressional­
and shear-wave velocities in the perfectly elastic case; 
in other words 

with A and p indicating Lame's constants. 
Integrals I 3 and / 4 can be computed analytically 

from the layer constants (Schwab et al., 1985), thus 
obtaining the anelastic phase velocity 

and the phase attenuation 

1 
C2=2 k Im(/4), 

w 13 
(33) 

where c and k are the phase velocity and wavenumber 
in the perfectly elastic case. 
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The exact mathematical treatment of attenuation 
due to anelasticity is described by Schwab and Knopoff 
(1971, 1972, 1973). Its extension to efficient multimode 
computation is presently in progress. 

6. Examples of computations 

The construction of realistic seismograms requires the 
possibility of handling Earth models formed by a large 
number of layers including low-velocity zones. Accord­
ingly, with the more recent models of the crust and 
upper mantle these layers correspond to sedimentary 
layers, to the laccolithic zone of granitic intrusion (si­
alic low-velocity zone), to granulitic layers (lower crustal 
layer) and to the asthenospheric low-velocity layer (e.g. 
Mueller, 1977; Panza, 1980). 

The presence of such velocity inversions removes 
from the phase velocity spectra (multimode phase ve­
locities) regularities sometimes used (e.g. Kerry, 1981) 
to approach the multimode summation in an approxi­
mated way. 

In what follows, examples of exact computations are 
described for a continental and an oceanic structure 
containing low-velocity layers both in the crust and in 
the upper mantle (see Table 1 and Fig. 1). 

As can be seen from Table 1, structural properties 
are specified down to depths of about 1,100 km, where 
the S-wave velocity reaches 6.42 km/s. The possibility of 
handling structural models extending to these depths, 
in an efficient way, makes it possible to synthesize early 
P-wave arrivals from all crustal layers having a P-wave 
velocity less than 6.42 km/s; without the necessity of 
introducing any unrealistic high-velocity half-space, 
with the consequent generation of spurious S-wave arri­
vals as, for instance, in the case of the locked mode 
approximation (Harvey, 1981). 

6.1. Phase velocities 

The Rayleigh-wave dispersion curves for the first 214 
modes for the continental model are shown in Fig. 2. It 
is easy to see the effect of the major discontinuities, 
present in the structure, which are responsible for all 
the "quasi-osculations". The standard sequence chan­
nel-waves crustal-waves (Panza et al., 1972), due to the 
presence of the asthenospheric low-velocity layer, is 
intersected by a family of waves mainly sampling the 
waveguide formed by the sedimentary layers (Chiarut­
tini et al., 1985). This is the reason for the quite com­
plicated pattern visible at frequencies larger than 0.1 Hz 
for phase velocities in the range 4.3~6.3 km/s. Only ten 
higher modes reach velocities less than 4.3 km/s (the S­
wave in the asthenospheric low-velocity layer). When 
this happens, the modes are essentially sampling only 
crust. In fact, crustal layering begins to be visible in the 
phase-velocity curves for frequencies larger than about 
0.4 Hz, even if not in the form of "quasi-osculations". 
This means that to get detailed crustal information it is 
necessary to reach frequencies much larger than 1 Hz. 

Figure 3 shows the Rayleigh-wave dispersion curves 
for the oceanic model. Here the standard channel-wave 
crustal-wave sequence is limited to a smaller number of 
modes because of the presence of a thinner crust. It is 
also interesting to note that, in addition to the family 
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Table 1. 

Input flat continental structure - IMP1 

Depth to Layer Density P-wave phase P-wave phase S-wave phase S-wave phase Qp Layer 
interface thickness velocity attenuation velocity attenuation number 

(km) (km) (g/cm3) (km/s) (10- 5 sfkm) (km/s) (10- 4 s/km) 

0.00 0.10 2.04 1.69 591.70 0.50 500.00 20 1 
0.10 0.15 2.06 1.79 558.70 0.82 305.63 20 2 
0.25 0.50 2.13 2.17 461.50 1.01 247.50 20 3 
0.75 0.50 2.21 2.53 263.20 1.20 138.90 30 4 
1.25 0.50 2.28 2.90 172.40 1.41 88.65 40 5 
1.75 0.50 2.35 3.27 122.40 1.62 61.73 50 6 
2.25 0.50 2.43 3.63 110.10 1.85 54.05 50 7 
2.75 0.50 2.50 4.00 50.00 2.08 24.04 100 8 
3.25 0.50 2.57 4.37 30.53 2.33 14.31 150 9 
3.75 0.50 2.65 4.73 21.33 2.59 9.65 200 10 
4.25 0.50 2.72 5.10 15.69 2.87 6.97 250 11 
4.75 0.50 2.77 5.38 12.40 3.06 5.45 300 12 
5.25 0.50 2.83 5.65 10.11 3.26 4.38 350 13 
5.75 0.25 2.85 5.75 7.73 3.32 3.35 450 14 
6.00 0.50 2.85 5.75 7.73 3.32 3.35 450 15 
6.50 0.50 2.85 5.75 7.73 3.32 3.35 450 16 
7.00 0.50 2.85 5.75 7.73 3.32 3.35 450 17 
7.50 0.50 2.85 5.75 7.73 3.32 3.35 450 18 
8.00 0.50 2.85 5.75 7.73 3.32 3.35 450 19 
8.50 0.50 2.85 5.75 7.73 3.32 3.35 450 20 
9.00 0.50 2.85 5.75 7.73 3.32 3.35 450 21 
9.50 0.50 2.85 5.75 7.73 3.32 3.35 450 22 

10.00 0.50 2.85 5.75 7.73 3.32 3.35 450 23 
10.50 0.50 2.85 5.75 7.73 3.32 3.35 450 24 
11.00 0.30 3.04 6.70 6.63 3.87 2.87 450 25 
11.30 0.30 3.08 6.90 6.44 3.98 2.79 450 26 
11.60 0.30 3.12 7.10 6.26 4.10 2.71 450 27 
11.90 1.10 3.16 7.30 6.09 4.21 2.64 450 28 
13.00 2.00 3.16 7.30 6.09 4.21 2.64 450 29 
15.00 2.00 3.16 7.30 6.09 4.21 2.64 450 30 
17.00 2.00 3.16 7.30 6.09 4.21 2.64 450 31 
19.00 2.00 3.16 7.30 6.09 4.21 2.64 450 32 
21.00 2.00 3.16 7.30 6.09 4.21 2.64 450 33 
23.00 2.00 3.16 7.30 6.09 4.21 2.64 450 34 
25.00 25.00 3.26 7.80 5.70 4.50 2.47 450 35 
50.00 25.00 3.40 8.00 25.00 4.30 11.63 100 36 
75.00 25.00 3.41 8.00 25.00 4.30 11.63 100 37 

100.00 25.00 3.42 8.00 25.00 4.30 11.63 100 38 
125.00 25.00 3.43 8.00 25.00 4.30 11.63 100 39 
150.00 25.00 3.44 8.00 25.00 4.30 11.63 100 40 
175.00 25.00 3.45 8.00 25.00 4.30 11.63 100 41 
200.00 25.00 3.46 8.57 15.69 4.60 7.25 150 42 
225.00 25.00 3.46 8.57 15.69 4.60 7.25 150 43 
250.00 20.00 3.47 8.60 15.50 4.70 7.09 150 44 
270.00 20.00 3.47 8.60 15.50 4.70 7.09 150 45 
290.00 25.00 3.47 8.70 15.33 4.75 7.02 150 46 
315.00 25.00 3.47 8.70 15.33 4.75 7.02 150 47 
340.00 25.00 3.47 8.70 15.33 4.75 7.02 150 48 
365.00 25.00 3.47 8.70 15.33 4.75 7.02 150 49 
390.00 25.00 3.66 8.74 15.15 4.75 6.97 151 50 
415.00 20.00 3.88 8.76 15.11 4.75 6.97 151 51 
435.00 10.00 3.90 9.04 14.65 5.00 6.61 151 52 
445.00 20.00 3.92 9.49 13.95 5.25 6.30 151 53 
465.00 25.00 3.93 9.50 13.94 5.25 6.29 151 54 
490.00 25.00 3.95 9.52 13.91 5.26 6.29 151 55 
515.00 25.00 3.96 9.53 13.90 5.26 6.29 151 56 
540.00 25.00 3.99 9.58 13.83 5.29 6.26 151 57 
565.00 25.00 4.02 9.63 13.75 5.31 6.23 151 58 
590.00 25.00 4.06 9.68 13.67 5.34 6.20 151 59 
615.00 25.00 4.09 9.74 12.50 5.37 5.65 165 60 
640.00 25.00 4.12 9.78 10.40 5.39 4.73 196 61 
665.00 25.00 4.17 10.01 8.80 5.52 3.99 227 62 
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Table 1. (continued) 

Depth to Layer Density P-wave phase P-wave phase S-wave phase S-wave phase Qp Layer 
interface thickness velocity attenuation velocity attenuation number 

(km) (km) (g/cm3 ) (km/s) (10- 5 s/km) (km/s) (10- 4 s/km) 

690.00 25.00 4.21 10.18 7.61 5.63 3.44 258 63 
715.00 25.00 4.26 10.19 6.81 5.75 3.02 288 64 
740.00 25.00 4.30 10.49 5.96 5.85 2.68 319 65 
765.00 25.00 4.48 10.68 5.35 5.95 2.40 350 66 
790.00 25.00 4.63 10.85 4.84 6.04 2.17 381 67 
815.00 25.00 4.80 11.03 4.41 6.14 1.98 411 68 
840.00 25.00 4.94 11.18 4.05 6.23 1.82 441 69 
865.00 25.00 4.94 11.22 3.77 6.25 1.69 473 70 
890.00 25.00 4.95 11.27 3.52 6.28 1.58 504 71 
915.00 25.00 4.95 11.31 3.31 6.30 1.49 533 72 
940.00 25.00 4.95 11.35 3.12 6.32 1.40 565 73 
965.00 25.00 4.95 11.39 2.95 6.34 1.32 597 74 
990.00 25.00 4.95 11.43 2.79 6.36 1.26 624 75 

1015.00 25.00 4.96 11.48 2.65 6.38 1.19 659 76 
1040.00 25.00 4.96 11.52 2.52 6.39 1.14 686 77 
1065.00 25.00 4.96 11.56 2.41 6.41 1.09 716 78 
1090.00 Infinite 4.96 11.60 2.30 6.42 1.04 749 79 

In punt flat oceanic structure - OCEAN 

0.00 5.00 1.03 1.52 0 
5.00 1.00 2.10 2.10 190.48 1.00 100.00 50 1 
6.00 2.00 3.07 6.41 49.92 3.70 21.62 62 2 
8.00 2.00 3.07 6.41 49.92 3.70 21.62 62 3 

10.00 1.00 3.07 6.41 49.92 3.70 21.62 62 4 
11.00 1.00 3.40 8.11 9.86 4.61 4.34 250 5 
12.00 4.00 3.40 8.11 9.86 4.61 4.34 250 6 
16.00 4.00 3.40 8.11 9.86 4.61 4.34 250 7 
20.00 1.50 3.40 8.12 9.85 4.61 4.34 250 8 
21.50 3.50 3.40 8.12 9.85 4.61 4.34 250 9 
25.00 1.50 3.40 8.12 9.85 4.61 4.34 250 10 
26.50 5.00 3.40 8.12 9.85 4.61 4.34 250 11 
31.50 5.00 3.40 8.12 9.85 4.61 4.34 250 12 
36.50 2.50 3.40 8.12 9.85 4.61 4.34 250 13 
39.00 1.00 3.40 8.12 9.85 4.61 4.34 250 14 
40.00 1.00 3.37 8.01 19.98 4.56 8.77 125 15 
41.00 4.00 3.37 8.01 19.98 4.56 8.77 125 16 
45.00 5.00 3.37 8.01 19.98 4.56 8.77 125 17 
50.00 10.00 3.37 8.01 19.98 4.56 8.77 125 18 
60.00 10.00 3.37 7.95 20.13 4.56 8.77 125 19 
70.00 10.00 3.37 7.95 20.13 4.56 8.77 125 20 
80.00 10.00 3.37 7.71 20.75 4.40 9.09 125 21 
90.00 10.00 3.37 7.71 20.75 4.40 9.09 125 22 

100.00 20.00 3.33 7.68 20.83 4.34 9.22 125 23 
120.00 20.00 3.33 7.78 20.57 4.34 9.22 125 24 
140.00 20.00 3.33 7.85 20.83 4.34 9.22 125 25 
160.00 20.00 3.33 8.10 19.75 4.45 8.99 125 26 
180.00 20.00 3.33 8.12 19.70 4.45 8.99 125 27 
200.00 20.00 3.33 8.12 19.70 4.45 8.99 125 28 
220.00 20.00 3.33 8.12 19.70 4.45 8.99 125 29 
240.00 20.00 3.33 8.12 19.70 4.45 8.99 125 30 
260.00 20.00 3.35 8.12 19.70 4.45 8.99 125 31 
280.00 20.00 3.36 8.12 19.70 4.45 8.99 125 32 
300.00 20.00 3.37 8.12 19.70 4.45 8.99 125 33 
320.00 20.00 3.38 8.12 19.70 4.45 8.99 125 34 
340.00 20.00 3.39 8.24 19.42 4.50 8.89 125 35 
360.00 10.00 3.44 8.30 18.54 4.53 8.49 130 36 
370.00 20.00 3.50 8.36 17.72 4.56 8.12 135 37 
390.00 5.00 3.68 8.75 16.33 4.61 7.75 140 38 
395.00 20.00 3.68 8.75 16.33 4.80 7.45 140 39 
415.00 10.00 3.88 9.15 15.07 5.04 6.84 145 40 
425.00 10.00 3.88 9.15 14.57 5.04 6.61 150 41 
435.00 10.00 3.90 9.43 13.68 5.22 6.18 155 42 
445.00 20.00 3.92 9.76 12.81 5.40 5.79 160 43 
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Table 1. (continued) 

Depth to Layer Density 
interface thickness 

(km) (km) (g/cm3 ) 

465.00 25.00 3.93 
490.00 25.00 3.95 
515.00 25.00 3.96 
540.00 25.00 3.99 
565.00 25.00 4.02 
590.00 25.00 4.06 
615.00 25.00 4.09 
640.00 25.00 4.12 
665.00 25.00 4.16 
690.00 25.00 4.21 
715.00 25.00 4.26 
740.00 25.00 4.30 
765.00 25.00 4.48 
790.00 25.00 4.63 
815.00 25.00 4.80 
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Fig. 1. Distribution versus depth of elastic 
and anelastic properties for the two 
structural models used in the computation: 
IMPl is the continental structure, OCEAN 

NJMSLR cr· LAYERS- n is the oceanic structure (see also Table 1) 
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of waves essentially sampling the sedimentary layers 
(sedimentary waves), waves mainly propagating in the 
water layer (water waves) are also visible (Chiaruttini et 
a!., 1985). As in the case of the continental model, the 
effect of these low-velocity layers is visible also for 
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phase velocities exceeding 6.0 km/s. Also for this model, 
only ten higher modes are sampling only the crust, i.e. 
are characterized by phase velocit ies less than about 
4.3 km/s (4.34 km/s is the minimum S-wave velocity in 
the asthenosphere channel). H owever, the main crustal 
discontinuities can be easily seen in the dispersion 
curves. 

A common feature of Figs. 2 and 3 is the pro­
gressive reduction of the spacing between modes as 
frequency increases. Since at the same frequency the 
difference in phase velocities of two adjacent modes can 
be of the order of 10- 5 km/s, phase velocities must be 
computed with an accuracy of more than six figu res. 
This is not a difficult task if use is made of the algo­
rithms previously mentioned, but it is impossible to 
reach the required accuracy if approximated methods 
are used in the computation of phase velocities. As will 
be shown below, to have accurate determination of the 
eigenfunctions, an even higher accuracy is required in 
the determination of the phase velocity. 

6.2. Group velocities 

The group velocities fo r the two models are shown in 
Fig. 4 (continental) and Fig 5 (oceanic). Due to the 
complexity of the pattern it is useless to plot all modes 
in a single figure, this is why the group-velocity dia­
gram has been subdivided into four parts. Figure 4a 
gives the first 31 modes. Though it is practically im­
possible to follow individual modes in their entirety, it 
is relatively easy to follow the behaviour of channel 
and crustal waves as well as that of the sedimentary 
waves for frequencies larger than about 0.09 Hz. The 
stationary phases formed by the combination of several 
higher modes, visible in the group velocity interval 2.8-
3.7 km/s and starting from frequencies of the order of 
0.15 Hz, correspond to Li and Lg phases (e.g. see Panza 
and Calcagnile, 1974); while the stationary phases with 
group velocity around 2.0 km/s and visible for frequen­
cies larger than about 0.2 Hz, correspond to waves es­
sentially propagating in the low-velocity sediments. For 
group velocities around 2.3-2.5 kmjs, stationary phases 
are visible at frequencies larger than 0.55 H z; these 
phases can be associated with waves propagating near 
the bottom of the sediments. 

For frequencies larger than 0.1 Hz and for group 
velocities around 4.3 km/s, the trapping in the upper­
mantle low-velocity layer is clearly visible - being re­
sponsible for the very flat portions of the group-veloci­
ty curves. Since the S-wave velocity in the channel is 
4.3 km/s, the Sa phase can be identified with the sta­
tionary phases centered around group-velocity values of 
about 4.3 km/s for frequencies less than 0.1 Hz. This 
interpretation of Sa, as a phase mainly controlled by 
the elastic properties of the first 400 km or so of the 
Earth's interior, was given by Calcagnile and Panza 
(1974). For frequencies larger than 0.1 Hz, different 
branches of Sn waves are clearly visible ; the fas test 
tending to a group velocity of about 4.75 kmjs (the 
S-wave velocity in the subchannel), the slowest tend­
ing to 4.50 km/s (the S-wave velocity in the lid). 
Around a group velocity of 3.9-4.0 kmjs, very wide 
stationary portions are visible for frequencies larger 
than about 0.4 Hz; they can be associated with Sb 
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Fig. 4a- d. Rayleigh-wave group velocities fo r the continenta l structure 

waves. The identification of these last phases (Sn and 
Sb) is also possible in F ig. 4b and c. In Figs. 4b-d, the 
highly oscillating portions of the group-velocity curves 
with values above 4.5 km/s can be associated with dif­
ferent body waves (either ?-waves sampling the upper 
layers of S-waves sampling quite deep). A detailed anal­
ysis of this part of the group-velocity diagram allows a 
more precise identification. However, such a n a nalysis 
is beyond the purpose of this paper. 

For the oceanic model, similar observations can be 
made as far as the general properties of the group­
velocity diagram is concerned (Figs. 5 a- d). In general 
stationary phases corresponding to crustal waves, se­
dimentary waves and water waves are easily identified. 
The three families of waves, each of them formed by 

the combination of several higher modes are, in some 
cases, overlapping and they can be distinguished only 
on the basis of the group-velocity value they tend to. 
Thus, stationary portions of the group-velocity curves 
centred a round 3.7 km/s are essentially crustal waves 
(3.7 km/s is the velocity of S-waves in the crustal 
layers), those centred a round 1.0 km/s are essentially 
sed imentary waves (1.0 km/s is the velocity of S-waves 
in the sedimentary layer) and fina lly, those centred 
around 1.5 km/s can be associated with water waves 
( 1.52 km/s is the velocity of ?-waves in the water). 
Other stationary portions, visible in the group-velocity 
range 4.0-4.4 km/s, can be associated with Sa, S n and 
Li. A more detailed analysis of these group-velocity 
spectra is given by Chiaruttini et a !. ( 1985). 
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Fig. Sa- d. Rayleigh-wave group velocities for the oceanic structure 

6.3. Energy integral 

As for group velocities, a single plot of the energy 
integral I 1 is not suitable for interpretation. Thus, also 
in this case four plots have been made. Due to the 
large variations of the energy integral it is convenient 
to plot log I 1 . Figure 6a-d refers to the continental 
model, while Fig. 7 a-d refers to the oceanic one. From 
Fig. 6a the effect of trapping in the upper-mantle low­
velocity layer is clearly visible; in fact, in general, large 
values of I 1 correspond to practically no motion at the 
free surface, while small values of I 1 correspond to 
significant surface displacement. It is quite interesting 
to observe that for frequencies smaller than 0.08 Hz the 
fundamental dominates, while for larger frequencies (up 

- ·- . I . I ' 0 2 o. ,j ').') 0.8 I. 0 

to about 0.2 Hz) several higher modes a re characterized 
by small values of I 1 , i.e. are dominating. In the fre­
quency range 0.15-0.20 Hz the fundamental and the 
first higher mode are the dominant ones, while for 
larger frequencies very many modes may contribute 
significantly to the surface displacement. As a general 
rule it can be stated that significant surface displace­
ments may be expected from all the modes having I 1 
values not exceeding 1,000. (/ 1)min• where (J 1)min indica­
tes the absolute minimum value of I 1 at each frequen­
cy. For the case shown in the figure, significant surface 
displacement can be expected as long as I 1 < 1010 kg/m 2

• 

However, the exact prediction of the surface displace­
ment from I 1 is not stra ightforward since it st rongly 
depends upon many factors, as can be seen from Eq. 
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Fig. 6a- d. Rayleigh-wave energy integral, I 1 , for the continental structure 

(35). In Fig. 6b-d the trapping in the mantle low­
velocity layer is not as visibly dramatic as for the first 
higher modes. This indicates that modes with high­
order number are, in general, sampling the whole struc­
ture in a rather homogeneous way. On the other hand, 
a common feature of all parts of Fig. 6 are the very 
narrow peaks associated with the presence of sedi­
ments. If the source is located in the proximity of the 
sedimentary layers in correspondence with these nar­
row peaks and even if I 1 is quite large, one may expect 
significant surface motion mainly in the horizontal 
component; in fact, in these portions of the spectrum, 
the eigenfunctions are characterized by large lobes con­
centrated in the sedimentary layers and the ellipticity 
(see next section) gets very large. The sedimentary 
layers are also responsible for the fact that the funda-

mental mode is not dominant, i.e. does not have the 
smallest I 1 over the entire spectrum. 

Figure 7 a-d referring to the oceanic model can be 
analysed in the same way. In F ig. 7 a, as it could be 
expected from the observations made when considering 
phase and group velocities, the presence of water and 
sedimentary layers introduces quite narrow peaks 
around frequencies of 0.08, 0.22, 0.40, 0.55, 0.70, 0.90 Hz 
superimposed on the broader peaks, due to the trap­
ping in the upper-mantle low-velocity layer. In Fig. 7b 
the effect of the upper-mantle low-velocity layer is only 
visible for frequencies larger than 0.9 Hz, while the nar­
row peaks characterize the whole plot. 

Before proceeding with the discussion of the main 
ingredients necessary for the costruction of synthetic 
seismograms, it is important to mention here a major 
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point concerning the accuracy necessary in the com­
putation of phase velocity to obtain correct values for 
I 1 . As mentioned earlier, seven significant figures in 
phase-velocity determination are necessary to obtain 
three significant figures in group velocity. One could 
think that the same number of significant figures is 
sufficient to get accurate eigenfunctions. Unfortunately, 
this is not generally true and in some cases, mainly for 
large mode number, the precision required in phase­
velocity determination is larger. 

In Fig. 8 an example is given of the effect, on the 
computation of eigenfunctions, of the truncation of the 
eigenvalue to 13, 10, 9 and 8 figures respectively. The 
truncation to nine figures introduces already an unde­
sirable extra swing at a depth of about 1,100 km; how­
ever, the integration versus depth of these eigenfunc-

tions can still give accurate enough values. The situa­
tion is totally different when the phase velocity is trun­
cated to eight figures. In fact, in this case, the extra swing 
around 1,100 km depth is the dominant feature and the 
integration versus depth of such eigenfunctions gives 
absolutely meaningless values. From the present ex­
perience it can be stated that an accuracy of nine- ten 
figures is generally sufficient to ensure the computation 
of I 1 with the necessary accuracy. Analogous consider­
ations are applicable to the computation of I 3 and I 4 . 

6.4. Ellipticity 

Another important quantity describing Rayleigh modes 
particle motion is the ellipticity e0 = - u* (0)/w(O), i.e. the 
ratio between the horizontal and vertical components 
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Fig. Sa- d. Example of the effect of truncating the precision of phase velocity in the determination of eigenfunctions fo r the 
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eigenfunctions 

of motion at the free surface. It is very important to 
observe that while for the fundamental mode £0 is, in 
general, a smooth function of frequency, for the higher 
modes s0 can have abrupt discontinuities. More pre­
cisely, at some frequencies £ 0 -> ± ro as a consequence 
of the fact that w(O) passes through zero. This is not an 
obvious behaviour and strongly depends upon the elas­
tic properties of the layers closest to the free surface. 
On the basis of tests performed up to now it can be 
stated that, for frequencies not exceeding 1 Hz and for 
Earth models without sedimentary layers, these discon­
tinuities are present only once in a given mode and 
only for modes with large order number. On the con­
trary, if there are sediments at the top of the Earth 
models, several discontinuities are present also in each 
of the first higher modes. An example is given in Fig. 9 
where, around 0.1, 0.3, 0.4, 0.7 and 0.9 Hz, for many 
modes £ 0 -> ± oo as a consequence of the fact that w(O) 
passes through zero at these frequencies. 

The most interesting feature that can be observed 
here is that, due to the presence of sediments, the 
particle motion of several higher modes is essentially 
horizontal, i.e. j£0 j> 10, over quite wide frequency 
ranges. A nice example is shown in Fig. 9a in the fre­
quency bands around 0.3- 0.4 Hz and 0.7- 0.9 Hz. This is 

an extremely important observation which has several 
practical implications : for instance, in engineering seis­
mology, the concentration of Rayleigh motion in the 
horizontal direction may play a relevant role in the so­
called " amplification effect" introduced by sediments. 
Thus, sedimentary layers significantly increase the seis­
mic hazard of a region as a consequence not only of 
the energy trapping, but also because they tend to 
make the horizontal component of motion of Rayleigh 
modes dominant (Chiaruttini et a!., 1985). Very similar 
observations can be applied to the behaviour of s0 in 
the case of the oceanic structure as can be seen from 
Fig. 10 where, as an example, the ellipticity for the first 
3 I modes is shown. 

6.5. Phase attenuation 

For large frequencies, the phase at tenuation of surface 
waves, C2 , can be related to the quality factor (QJ, by 
the relation 

(34) 

where C 1 and C 2 are defined in Sect. 5. 
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Also for Rayleigh waves, the difference between the 
an elastic phase velocity C 1 and the perfectly elastic 
phase velocity c can be either positive or negative, as 
was a lready shown by Schwab and Knopoff (197 1) for 
the first few modes of Love waves. For the considered 
continental model, the phase velocity correction due to 
anelasticity is in the range 0.0002-0.0006 kmjs; this 
range seems to be quite representative for many cases. 
Thus, in the period range we have investigated, com-

putations made for perfectly elastic layers are correct to 
at least four figures. 

Also in this case, for reasons of clarity, it has been 
necessary to subdivide the plot of Qx in to four parts. 
Figure 11 a gives the firs t 31 modes. Though it is pract i­
cally impossible to foll ow individual modes in their 
entirety, it is relatively easy to see the effect of the 
layering of Qa and Qp. For instance, the fundamental 
mode shows a large peak around 0.05 Hz and this 
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corresponds to wave propagation in the lower crust 
and upper mantle where Qp = 450. For frequencies larg­
er than 0.15 Hz several modes are characterized by very 
low values and this indicates wave propagation in the 
upper sedimentary layers where Qp does not exceed 
100. 

As a general remark, it can be observed that Qx has 
a frequency dependence quite similar to that of group 
velocities; however, while group-velocity envelopes of 
crustal and sedimentary waves are quite continuous 
(Fig. 4a), a clear and obvious separation exists between 
Qx values for waves propagating in the sediments and 
in the crust. In fact, crustal waves exhibit fairly large 
values of Qx (200 and more) as a consequence of the 
high QfJ in the crust, while sedimentary waves exhibit 
rather low values of Qx as a consequence of the low Qp 
in the sediments. 

The trapping in the asthenospheric low-velocity 
layer, characterized by Qp = 100, is clearly visible for 
several modes which get very close to each other and 
have almost constant Qx, close to 100. 

In Fig. 11 b the low values of Qx around 0.35 and 
0.40 Hz correspond to sedimentary waves, while the 
high values of Qx around 0.90 Hz correspond to crustal 
waves. In Fig. II c still some effect of sediments is vis­
ible around 0.85 Hz. From the above considerations it 
turns out that in order to perform easily interpretable 
measurements of Qx it is necessary to apply quite ac­
curate time or group velocity windows to the records 
before any further processing. In fact, an indiscriminate 
use of amplitude spectra may lead to reasonable Qx 
values which, however, can not be easily related to the 
anelastic properties of the studied area. 

7. Computation of synthetic seismograms 

Ben-Menahem and Harkrider (1964) developed the for­
malism necessary for the study of point sources in 
multilayered media. A detailed description of the fault 
model of an earthquake used in the following com­
putations is given by Panza et al. (1973). Accordingly in 
the reference system shown in Fig. 12, the asymptotic 
expression of the Fourier time transform of the j-th 
Rayleigh-mode displacement at the free surface of per­
fectly elastic Earth models, at distance r from the 
source, can be written 

U,vc = {IR(w)l exp(i ¢ 0 )} In I kt exp(- i 3 n/4) X (8, h) 

e0 A exp( -i kr)/V(2 n r) 

Uzvc = [e0 exp(i n/2)] - 1 U,vc 

u,fc =0 (35) 

where R(w) is the Fourier transform of the equivalent 
point-force time function, the quantity n is the unit 
vector perpendicular to the fault and has units of 
length, 

¢ 0 =argR(w) 

is the initial phase, k is the wavenumber, 

u*(O) 
eo=- w(O) 

(36) 

(37) 

and w(O and u*(O are the vertical and horizontal com­
ponents of displacement at depth ( for 'plane ' propa­
gating Rayleigh waves (Haskell, 1953). The factor A is 
given by 

oc 

A- 1 =2cu J ~(Od( (38) 
0 

where c is the phase velocity, u is the group velocity, 

(39) 

and p is the density. The azimuthal dependence of the 
response is given by 

x(8,h) = do + i(dl sinli + dz cos 8) + d3 sin28 + d4cos 28. 
(40) 

The quantities d; are 

d0 = t sin 2 sin 2 b B(h), 

d 1 = -sin A. cos 2b C(h), 

d1 = - codcosbC(h), 

d 3 =cod sin f>A(h), 

d4= -tsin.?.sin2bA(h), 

with 

A(h)= _ u*(h) 
w(O)' 

B(h)= -[3-4/3(h)2] u*(h) 
a.(h)2 w(O) 

1 r(h) 
C(h) = - p(h) w(O)/c · 

(41) 

2 O'*(h) 

p (h) a(h)2 w(O)jc' 
(42) 
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If one adopts the far-field relation gtven by Ben-Me­
nahem and Harkrider (1964): 

U, . / 2 
-=e e"' uz 0 ' 

(43) 

then for a wave propagating in the positive r direction 
with retrograde elliptical particle motion, U, leads U= 
by n/2 radians and e0 is positive only if z is chosen to 
increase upward. If, however, as in Panza et a!. ( 1972), 
Haskell ( 1953) and the first part of Harkrider (1964), z 
is chosen positive downward, U, leads Uz by 3 n/2 ra­
dians. If relation (43) is used to define e0 , in this latter 
case retrograde particle motion is defined by negative 
values of the ellipticity. Relat ive to the formalism given 
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Fig. 13a- d. Examples of synthet ic seismograms computed for the continental structure for d ip-slip point sources 

by Ben-Menahem and Harkrider (1964), the following 
observation is relevant in programming. As stated 
above, U, leads Uz by n/2 radians, which corresponds to 
u. and z being positive in the upward direction. How­
ever, the depth-dependent quantities u*(h)/ w(O), 
w(h)/ w(O), a*(h)/ w(O)/c) and r(h)/w(O)/c) are to be com­
puted from the usual Haskell ( 1953) formalism, m 
which z is positive in the downward direction. 

The asymptotic expression just described allows the 
computation of synthetic seismograms with at least 
three significant figures as long as k r?; I 0 (Panza et al., 
1973). 

When considering anelast ic models, the wavenum­
ber k becomes complex 
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Fig. 14a- d. Examples of synthetic seismograms computed for the continental structure fo r strike-slip point sources 

Thus the term ex p( - i k r) can be written as 

The term e - wC2 r, representing the ampl itude damp­
ing is the main term introduced by anelasticity. Smaller 
effects, like those arising from complex group velocities 

and eigenfunctions are not included in the present cal­
culations. 

The extension of these results to the available for­
malism for sources with finite dimensions and durat ion 
(e.g. Ben-Menahem, 1961; Kanamori and Given, 198 1; 
Stewart and Kanamori, 1982) is quite straightforward. 

It is quite important to observe that the expressions 
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for sources of finite dimensions are also valid in the far­
field approximation, which can be roughly expressed by 
the condition that the source-receiver distance must be 
an order of magnitude greater than source dimensions. 
If this condition is not satisfied while the condition 
kr ~ 10 still holds, the synthetic signal can be con­
structed as a proper sum of seismograms given by 
point sources separated in time and space. With the 
modal approach this is easily done. In fact, following 
this method, for a given Earth model, different seismo­
grams correspondir.g to different sources, can be com­
puted with very little computer time; essentially the 
time required for a Fast Fourier transform, since all the 
time-consuming computations (eigenvalues and eigen­
functions) are independent of source specifications. 

Some examples of computations of synthetic seis­
mograms, for point sources with R(w) equal to a unit 
step function and for the continental model shown in 
Table 1, are given in Figs. 13 and 14. Parts a and c of 
Fig. 13 give, respectively, the radial and vertical com­
ponent of motion at a distance of 150 km from a source 
of dip-slip type. It is important to observe that the 
radial component is more than twice the vertical one, 
and this is in quite good agreement with what has been 
observed about the ellipticity in Sect. 6.4. Similar con­
siderations apply to Fig. 13 b and d, where synthetic 
seismograms computed for an epicentral distance of 
100 km are shown. 

From these synthetic seismograms it is easy to see 
the large increment of the duration of the signal with 
increasing distance, mainly due to the dispersion of the 
fundamental and first few higher modes. In Fig. 14 ex­
amples for strike-slip point-sources are given which es­
sentially confirm the previous observations. From a 
comparison of Fig. 13a with Fig. 14a it turns out, quite 
evidently, how difficult it can be to distinguish among 
the two mechanisms if the analysis is limited to the first 
part of the record, while significant differences can be 
seen in the records for a time greater than 60s. On the 
other hand, the difference between Fig. 13 b and 
Fig. 14 b is really very small over the entire duration. 
The same considerations can be applied to the vertical 
component of motion. 

A more detailed discussion of synthetic seismo­
grams, computed using the technique described in this 
paper and some comparisons with experimental data is 
given by Suhadolc and Panza (1985). 

8. Conclusions 

The stage reached in the development of algorithms for 
the computation of eigenvalues and eigenfunctions of 
Rayleigh waves for flat layered anelastic models of the 
Earth allows "complete" synthetic seismograms to 
frequencies as high as 1 Hz to be constructed, with 
satisfactory efficiency. Routinely, it is possible to con­
sider Earth models made up of 70 layers and more. 
Thus, it is feasible also to model any sort of gradient in 
the distribution versus depth of elastic and anelastic 
properties by a rather fine layering. Typical CPU times 
for the frequency-domain computations on an IBM 
370/168 computer are around 1 h, while the construc­
tion of the time series requires about 300 s. This last 
figure decreases to only 30 s for all subsequent seismo-

grams computed for different sources, located at the 
same depth. 

Very preliminary attempts made using the vector 
computer CRA Y-1 gave characteristic times about ten 
times smaller for all computations. This very interesting 
result could be further improved via an optimization of 
the code to the vector machine. This task is presently 
in progress. 

Acknowledgements. I am extremely grateful to Dr. F. Schwab 
for his very important help during the development of the 
present research. I have very much appreciated the encourag­
ing comments and suggestions of Prof. L. Knopoff and Prof. 
B.A. Bolt. The frequent discussions with Dr. C. Chiaruttini, 
Dr. G. Costa, Prof. I. Marson and Dr. P. Suhadolc were very 
useful in giving the manuscript its final form, which was 
critically read by Dr. A. Cichowicz and whom I thank very 
deeply. 

Special thanks go to Mrs. I. Galante for the patient and 
accurate typing of the manuscript and to Mr. M. Gergolet 
and Mr. S. Zidarich for their help in elaborating the dia­
grams. 

This research has been performed with financial support 
of CNR (Grants 83.02248, 83.02432) and MPS (60% and 
40%). 

References 

Aki, K., Richards, P.G.: Quantitative seismology. Theory and 
methods. San Francisco: W.H. Freeman and Co. 1980 

Ben-Menahem, A.: Radiation of seismic surface waves from 
finite moving sources. Bull. Seismol. Soc. Am. 51, 401-435 
1961 

Ben-Menahem, A., Harkrider, D.G.: Radiation patterns of 
seismic surface waves from buried dipolar point sources in 
a flat stratified Earth. J. Geophys. Res. 69, 2605-2620, 
1964 

Brune, J.N.: Attenuation of dispersed wave trains. Bull. Seis­
mol. Soc. Am. 52, 109-112, 1962 

Calcagnile, G., Panza, G.F.: Vertical and SV components of 
Sa. Geophys. J. R. Astron. Soc. 38, 317-325, 1974 

Chiaruttini, C., Costa, G., Panza, G.F.: Wave propagation in 
multilayered media: The effect of waveguides in oceanic 
and continental Earth models. J. Geophys. 58, 189-196, 
1985 

Cuscito, M., Panza, G.F.: Determinazione simultanea del 
momento sismico e dei parametri strutturali usando sis­
mogrammi sintetici completi. Rend. Soc. Geol. It. 4, 477-
478, 1981 

Dunkin, J.W.: Computation of modal solutions in layered 
elastic media at high frequencies. Bull. Seismol. Soc. Am. 
55, 335-358, 1965 

Futtermann, W.: Dispersive body waves. J. Geophys. Res. 67, 
5279-5291, 1962 

Harkrider, D.G.: Surface waves in multilayered elastic media. 
1. Rayleigh and Love waves from buried sources in a 
multilayered elastic half-space. Bull. Seismol. Soc. Am. 54, 
627-679, 1964 

Harvey, D.J.: Seismograms synthesis using normal mode 
superposition: the locked mode approximation. Geophys. 
J. R. Astron. Soc. 66, 37-69, 1981 

Haskell, N.A.: The dispersion of surface-waves on multi­
layered media. Bull. Seismol. Soc. Am. 43, 17-34, 1953 

Kanamori, H., Given, J.W.: Use of long-period surface wave 
for rapid determination of earthquake-source parameters. 
Phys. Earth Planet. Int. 27, 8-31, 1981 

Kennett, B.L.N.: Seismic wave propagation in stratified me­
dia. Cambridge: Cambridge University Press 1983 

Kerry, N.J.: Synthesis of seismic surface waves. Geophys. J. 
R. Astron. Soc. 64, 425-446, 1981 



|00000151||

Knopoff, L.: A matrix method for elastic wave problems. 
Bull. Seismol. Soc. Am. 54, 431--438, 1964a 

Knopoff, L.: Q. Rev. Geophys. 2, 625-660, 1964b 
Knopoff, L., Aki, K., Archambeau, C.B., Ben-Menahem, A., 

Hudson, J.A.: Attenuation of dispersed waves. J. Geophys. 
Res. 69, 1655-1657, 1964 

Liao, A., Schwab, F., Mantovani, E.: Computation of com­
plete theoretical seismograms for torsional waves. Bull. 
Seismol. Soc. Am. 68, 317-324, 1978 

Mueller, S.: A new model of the continental crust. In: The 
Earth's crust, J. Heacock ed.: pp. 289-317, A.G.U., Mo­
nogr. 20, 1977 

O'Connell, R.J., Budiansky, B.: Measure of dissipation in 
viscoelastic media. Geophys. Res. Lett. 5, 5-8, 1978 

Panza, G.F.: Evolution of the Earth's lithosphere. In: Mecha­
nisms of continental drift and plate Tectonics, P.A. Davies 
and S.K. Runcorn eds.: pp. 75-87. Academic Press 1980 

Panza, G.F., Calcagnile, G.: Lg, Li and Rg from Rayleigh 
modes. Geophys. J. R. Astron. Soc. 40, 475-487, 1974 

Panza, G.F., Cuscito, M.: Influence of focal mechanism on 
shape of isoseismals: Irpinia earthquake of November 23, 
1980 Pure Appl. Geophys. 120, 577-582, 1982 

Panza, G.F., Schwab, F., Knopoff, L.: Channel and crustal 
Rayleigh waves. Geophys. J. R. Astron. Soc. 30, 273-280, 
1972 

Panza, G.F., Schwab, F., Knopoff, L.: Multimode surface 
waves for selected focal mechanisms. I. Dip-slip on a 
vertical fault plane. Geophys. J. R. Astron. Soc. 34, 265-
278, 1973 

Pekeris, C.L.: Theory of propagation of explosive sound in 
shallow water. Geol. Soc. Am. Mem. 27, 1-116, 1948 

Peste!, E. C., Leckie, F.A.: Matrix methods in elastomechanics. 
New York: McGraw-Hill 1963 

Schwab, F.: Surface-wave dispersion computations: Knopoffs 
method. Bull. Seismol. Soc. Am. 60, 1491-1520, 1970 

Schwab, F., Knopoff, L.: Surface waves on multilayered an­
elastic media. Bull. Seismol. Soc. Am. 61, 893-912, 1971 

Schwab, F., Knopoff, L.: Fast surface wave and free mode 
computations. In: Methods in computational physics, Vol. 
11. B.A. Bolt, ed.: pp. 87-180. New York: Academic Press 
1972 

145 

Schwab, F., Knopoff, L.: Love waves and the torsional free 
modes of a multilayered anelastic sphere. Bull. Seismol. 
Soc. Am. 63, 1107-1117, 1973 

Schwab, F., Nakanishi, K., Cuscito, M., Panza, G.F., Liang, 
G., Frez, J.: Surface-wave computations and the synthesis 
of theoretical seismograms at high frequencies. Bull. Seis­
mol. Soc. Am. 1984 (in press) 

Schwab, F., Cuscito, M., Panza, G.F., Nakanishi, K.: Surface­
wave computations and the synthesis of theoretical seis­
mograms at high frequency. II. Group velocity, attenua­
tion due to anelasticity and frequency intervals. In pre­
paration, 1985 

Stewart, G.S., Kanamori, H.: Complexity of rupture in large 
strike-slip earthquakes in Turkey. Phys. Earth Planet. Int. 
28, 70-84, 1982 

Suhadolc, P., Panza, G.F.: Some applications of seismosyn­
thesis through the summation of modes of Rayleigh waves. 
J. Geophys. 58, 183-188, 1985 

Suhadolc, P., Panza, G.F., Cuscito, M., Schwab, F.: Fully 
automatic computation of synthetic seismograms for P-SV 
motion in 1Hz. In preparation, 1985 

Takeuchi, H., Saito, M.: Seismic surface wave. In: Methods in 
computational physics, Vol. 11, B.A. Bolt, ed.: pp. 217-
295. New York: Academic Press 1972 

Thomson, W.T.: Transmission of elastic wave& through a 
stratified solid medium. J. Appl. Phys. 21, 89-93, 1950 

Thrower, E.N.: The computation of dispersion of elastic 
waves in layered media. J. Sound. Vib. 2, 210-226, 1965 

Watson, T.H.: A note on fast computation of Rayleigh wave 
dispersion in the multilayered half-space. Bull. Seismol. 
Soc. Am. 60, 161-166, 1970 

Woodhouse, J.H.: The joint inversion of seismic wave forms 
for lateral variations in Earth structure and earthquake 
source parameters. In: Earthquakes: Observations, theory 
and interpretation, H. Kanamori and E. Boschi, eds. Am­
sterdam: North-Holland Pub!. Co 1983 

Received February 26, 1985; revised version May 20, 1985 
Accepted July 3, 1985 


