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Abstract An extended reflectivity method is described 
by which complete seismograms for a point source in a 
layered half-space can be calculated. Starting with the 
differential equations and boundary conditions, the re­
flection and transmission of plane waves at layered me­
dia is treated first, followed by the synthesis of point­
source wave fields. The frequency-domain displace­
ments of the half-space surface are expressed as slow­
ness integrals, and the most prominent parts of the in­
tegrands are the reflectivities of the layers below and 
above the point source and a function which is closely 
related to the transmissivity of the layers above the 
source. Reflectivities and transmissivities are calculated 
by recursive methods which are numerically stable for 
all frequencies and slownesses. Near- and far-field re­
sults are given for single-force and moment-tensor 
point sources. From the general results for the com­
plete medium response, partial responses can easily be 
extracted, e.g. the original form of the reflectivity meth­
od which calculates only the response from the layers 
below the source. Thus, the extended reflectivity meth­
od has a flexibility which is not available if propagator 
methods are used for the calculation of the integrands. 
Various other aspects of seismogram calculation are 
addressed, such as extended sources, an earth-flattening 
transformation and the inclusion of absorption for con­
stant and frequency-dependent Q. Theoretical seismo­
grams are shown, first for body-wave propagation from 
explosions in a crustal model and in a model which 
came from seismic prospecting, and second for surface­
wave propagation from a double-couple source. 

Due to the tutorial nature of this paper the de­
rivations are mostly rather detailed. It is hoped that 
this will help interested newcomers to the field of 
theoretical seismograms to get started. 

Key words: Reflectivity method - Reflection and trans­
mission coefficients - Synthetic seismograms - Dissi­
pation 

1. Introduction 

The theory of seismic wave propagation in horizontally 
stratified media, i.e. in media whose elastic and anelas­
tic properties depend only on depth, has been a main 
subject of research in seismology over the past decades. 

Currently, however, the interest of seismologists and 
theoreticians focuses strongly on methods which allow 
the treatment of laterally heterogeneous media. This de­
velopment has been prompted by many clear percep­
tions, collected in several disciplines of geosciences, that 
the earth is a dynamic body with relatively rapid in­
ternal motions. These processes and related horizontal 
temperature differences may lead to pronounced lateral 
variations in elastic and anelastic properties. Thus, for 
the seismologist, who is interested in depth ranges from 
the lower crust to the core, the earth becomes what it 
has always been for those engaged in seismic prospect­
ing: a medium with truly three-dimensional inhomo­
geneities. 

Methods for horizontally stratified earth models 
will, of course, continue to have their importance and 
find applications in studies of structural properties and 
sources of seismic waves. Hence, a good understanding 
of the relevant theory will always be a necessity. The 
purpose of these lecture notes is to contribute to this 
understanding by presenting a self-contained theory of 
one of the methods for horizontally layered media, the 
reflectivity method, including all material that is neces­
sary for the development of corresponding computer 
programs for theoretical seismograms. 

Before we start with the details, a few words about 
the general scene of methods for horizontally stratified 
media are in order. This scene is very vast now, and it 
is practically impossible to mention all the different 
methods that are in use. Much background material 
can be found in the text books and monographs by Pi­
lant (1979), Aki and Richards (1980), Ben-Menahem 
and Singh (1981) and Kennett (1983). The most impor­
tant theories and methods for wave propagation and 
seismogram synthesis are the following (the references 
given are only examples and far from complete): 
Generalized ray theory (Helmberger, 1968; Muller, 
1969; Ben-Menahem and Vered, 1973): the medium is 
approximated by homogeneous layers, and the wave 
field is decomposed into elementary seismograms corre­
sponding to rays. 
Full-wave theory (Cormier and Richards, 1977): a ray 
theory for inhomogeneous layers which takes account 
of frequency-dependent effects connected, e.g., with 
caustics and shadow zones. 
WKBJ theory (Chapman, 1978): a ray theory for in­
homogeneous layers which is more limited than full-
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wave theory, as far as frequency-dependent effects are 
concerned, but which allows very rapid computations. 
Wavenumber or slowness integration methods (Kind, 
1978; Cormier, 1980; Wang and Herrmann, 1980; 
Ingate et al., 1983; Ha, 1984): representation of the 
Fourier-transformed wave field of a layered medium by 
integrals over horizontal wavenumber or slowness; the 
reflectivity method belongs to this class of methods (see 
below). 
Wavenumber summation methods (Alekseev and Mik­
hailenko, 1980; Bouchon, 1981; Korn and Muller, 
1983; Spudich and Ascher, 1983; Olson et al., 1984; 
Campillo et al., 1984): both time- and frequency-do­
main methods which are in principle very similar to 
wavenumber integration methods, but the continuous 
distribution of wavenumbers is replaced by a discrete 
one. 
Modal summation method (Harvey, 1981; Panza, 1985): 
representation of the wave field by normal modes of 
Rayleigh and Love waves alone, either with the as­
sumption of a perfect reflector at depth or without. 

The first three of these methods are suitable for the 
calculation of body-wave contributions to seismograms, 
whereas the last three also allow surface waves to be 
in~luded, i.e. these methods are methods for complete 
se1smograms. 

The reflectivity method, which is described below in 
more detail, is a wavenumber or slowness integration 
method. The name stems from the fact that the func­
tion which is integrated is mainly the reflection coef­
ficient or reflectivity of a layered medium. At first, this 
is true only for a layered medium without a free surface 
and with a source on one side of those layers whose 
reflections are sought; this is the geometry for which 
the reflectivity method was developed originally (Fuchs, 
1968; Fuchs and Muller, 1971). However, Kennett and 
Kerry (1979) and Kennett (1983) have shown that in 
the case of a layered half-space, having a free surface 
and a source at arbitrary depth, the integrand of the 
wavenumber or slowness integrals can be expressed 
mainly by the reflectivities of two partitions of the 
medium - the layers above the source and those below. 
This form of the theory justifies the continued use of 
the name reflectivity method. However, we emphasize 
that there is no difference to the wavenumber or slow­
ness integration methods quoted above in which the 
integrand is calculated differently, namely by matrix or 
propagator techniques. That notations here indeed have 
a certain degree of arbitrariness, is illustrated by the fact 
that Luco and Apse! (1983) and Apse! and Luco (1983), 
whose treatment of the layered half-space comes closest 
to the results presented below, call their method simply 
a wavenumber-integration method. 

These lecture notes are organized as follows. After a 
discussion of the differential equations for wave propa­
gation in horizontally stratified media and of the 
boundary conditions in Section 2, we derive in Section 
3 the reflection and transmission coefficients (or reflec­
tivities and transmissivities) for plane waves, incident 
on a plane interface or a stack of homogeneous layers 
separating two homogeneous half-spaces. The coef­
ficients for an interface are given analytically and those 
for a stack of layers are derived by a recursive algo­
rithm first described by Kennett (1974). In Section 4 we 

start with the displacement potentials for a point 
source in a homogeneous medium and their well­
known representation by Sommerfeld integrals in the 
wavenumber or slowness domain. Similar representa­
tions are valid for the displacement components at 
points with arbitrary location in a layered medium. 
The upgoing wave field in the layer with the source 
is synthesized as the sum of the direct wave from the 
source and all possible interactions between the layer 
stack above the source and that below the source. 
The interaction terms contain the reflectivities of 
these zones: in the case of P-SV waves, they are 
2 x 2 matrices whose elements are the P - P, SV- P, 
P-SV, SV -SV reflection coefficients; in the case of SH 
waves, they are scalars. The upgoing wave field in the 
source layer is then transmitted through the layer stack 
above the source with the aid of the transmissivity of 
this zone, and the complete wave field in the half-space 
on top of the medium is obtained. An analytical limit­
ing process which turns this half-space into vacuum 
gives, for points on the uppermost interface, the final 
expressions for the displacement components. The basic 
ideas of this wave field synthesis follow Kennett and 
Kerry (1979) and Kennett (1983), but some details are 
different - mainly the treatment of transmission 
through the layers above the source. The theory is pre­
sented here for the simplest type of point source, 
radiating P, SV and SH waves, a single force of arbi­
trary orientation. Final results for a general moment­
tensor point source, including an explosion, are also 
given. 

In Section 5 we discuss the possibility of extracting, 
from the expressions for the complete wave field, sim­
pler expressions which represent only partial responses 
of the layered medium. Moreover, compact far-field for­
mulas for extended sources consisting of several point 
sources are compiled, and a few computational aspects 
of the reflectivity method are mentioned. Section 6 first 
presents an earth-flattening transformation by which 
the reflectivity method can also be used for media with 
spherical geometry; it is adequate for many body and 
surface waves propagating in a spherical earth. Then 
we describe how the theory of wave propagation for 
purely elastic media is modified for dissipative media. 
Under the usual, experimentally confirmed assumption 
of a linear relation between stress and strain also in 
dissipative media at low strains, these media are com­
pletely described by complex elastic moduli and hence 
by complex wave velocities. A few possibilities of 
choosing these velocities, according to non-causal or 
causal absorption, are described. Finally, in Section 7 
we present results of some synthetic-seismogram calcu­
lations. 

2. Differential equations and boundary conditions 

We assume that the medium consists of homogeneous 
layers, separated by first-order discontinuities. If a me­
dium is continuously inhomogeneous (throughout or 
piecewise), it is replaced by a sufficiently large number 
of homogeneous layers; in smooth gradient zones it is 
usually enough to choose roughly half the dominant 
wavelength as layer thickness, whereas in transition 
zones with larger velocity gradients the layer thickness 
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should be reduced further. The advantage of the homo­
geneous-layer approximation is that inside each layer 
the equation of motion takes a relatively simple form. 
Its disadvantage is that boundary conditions have to be 
fulfilled at many interfaces. Analytical methods for in­
homogeneous layers (in contrast to numerical, e.g. fi­
nite-difference, methods) are not yet developed to a 
point where they really can compete with the methods 
for homogeneous layers. 

The equation of motion of a homogeneous, isotro­
pic elastic medium is 

pu,tt =(A+ 2µ) grad div u- µ rot rot u, (1) 

where u is the displacement vector, p the density and ,1. 
and µ the Lame parameters. Body forces due to gravity 
and seismic sources are not included in Eq. (1): it is 
assumed that gravity has no other effect than to de­
termine, via self-compression, the (constant) values of p, 
,1. and µ, and sources of seismic waves are included 
through their known contributions to u (see Section 4). 

Next we introduce displacement potentials, from 
which the displacements follow by spatial differen­
tiation. For the first case of reflection and transmission 
that we consider later, i.e. reflection and transmission of 
plane waves (Section 3), we use Cartesian coordinates 
(x, y, z), place the interfaces at constant values of z and 
assume independence of the y coordinate. Then it is 
most appropriate to derive the displacements ux and uz 
from potentials ¢ and 1/J: 

(2) 

For the displacement uy, no potential is used. Inserting 
the corresponding representation of the displacement 
vector 

(3) 

(ey=unit vector in y-direction) into Eq. (1), one obtains 
wave equations for ¢, 1/1 and uY: 

2 1 
V 1/1= fJ2 I/J,i,, (4) 

Here, 17 2 = a2 /ax 2 + a2 /az2 is the Laplace operator in 
two dimensions, ix= [(,1_ + 2 µ)/ p J 112 the velocity of P 
waves and fJ=(µ/p) 112 the velocity of S waves. Equations 
(4) imply decoupled propagation of P and S waves 
within the layers. 

In the second case considered below, reflection and 
transmission of waves from a point source (Section 4), 
cylindrical coordinates (r, <p, z) are most appropriate. 
Then we use displacement potentials for all displace­
ment components and obtain instead of Eqs. (2) and (3) 
(e,=unit vector in z-direction): 

u= grad¢+ rot rot(e, P) + rot(e, x) 

1 
u, =c/> ,+ p ,z+-x m , , r ,y 

1 1 
Um=-cp m+- p mz-X r 

y r •Y r •Y • 

1 1 
Uz = cp z - lJI rr -- lJI ,--2 lJI mm• 

· · r ' r •YY 

(5) 

(6) 
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By inserting Eq. (5) into Eq. (1), again wave equations 
are found, this time for all potentials: 

2 1 
V x=fJ2X,w (7) 

The second of these equations can be used to simplify 
the displacement component u2 in Eq. (6): 

(6') 

The boundary conditions require continuity of the trac­
tion and displacement vectors across internal interfaces 
in solid media. At a free surface the traction vanishes, 
and the displacements are unspecified. 

If Cartesian coordinates are used, the traction com­
ponents, i.e. normal and tangential stresses, are: 

Inserting Eq. (2) here, we obtain the first three bound­
ary conditions which require continuity of the quan­
tities 

1 
µ(2¢,xz-21/J.zz+ fJ21/J,tt), µuy,z' 

,1. 
IX2 c/>,tt+2µ(¢.zz+I/J.xz) (8a) 

at all interfaces, including a free surface where these 
quantities vanish. The conditions for displacements at 
internal interfaces additionally require continuity of the 
quantities 

(8b) 

In the case of cylindrical coordinates, the relevant 
stresses are 

Pz,=µ(uz,,+u,), Pzq:,=µ (uq:,,z+~uz,q:,), 

Pzz = ,1. div u+ 2 µ uz,z· 

Inserting Eqs. (6) and (6'), one finds those quantities 
which are continuous at interfaces, in analogy to Eqs. 
(8a) and (8b). These quantities are not reproduced here. 
Closer inspection shows that they are continuous if the 
simpler quantities 

µ ( c/>,z +2 P,zz - ;2 P,tt), 

}, ( 1 ) 
µx,z, IX2 c/>,tt+2µ c/>,zz+ P,zzz- fJ2 P,ttz (9a) 

and 

(9b) 

are continuous; these quantities contain no derivatives 
with respect to the horizontal coordinates r and <p. For 
instance, if the first two functions in Eq. (9b) are con­
tinuous, so are the displacements u, and u"' in Eq. (6). 

If the medium contains liquid layers, e.g. in cases 
where wave propagation through the ocean or the 
earth's core is to be modelled, the displacement vector 
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is irrotational, u = grad </>, and the boundary conditions 
are in principle different from those given above. How­
ever, computational experience shows that liquid layers 
are modelled perfectly by solid layers whose S velocity 
is of the order of 0.001 times the P velocity. Thus, algo­
rithms for solid media are sufficient for all practical 
purposes. 

The continuity of the quantities in Eq. (8a and b) at 
interfaces implies that interaction takes place between 
P waves, derived from </>, and S waves, derived from i/1. 
The S waves, represented by uY and polarized horizon­
tally, propagate independently. The S waves derived 
from ijJ are called SV waves and those derived from u , 
SH waves. Similar conclusions follow from (9a and b): 
'P is the potential of the SV waves, and x the potential 
of the SH waves. Note that, according to Eq. (6), SV 
waves contribute also to the horizontal transverse com­
ponent u"' and SH waves to the horizontal radial com­
ponent u,.. Both contributions are, however, near-field 
terms for point sources. In the far-field of point sources, 
SV waves are polarized in rz-planes and SH waves, per­
pendicular to r z-planes. 

3. Plane waves in layered media 

3.1. Reflection and transmission at an interface 

Here we consider the case of one interface, separating 
two homogeneous half-spaces, and determine the reflec­
tion and transmission coefficients of this interface for 
plane harmonic waves. These coefficients are essential 
quantities for the treatment of layered media, as will be­
come clear in Section 3.2, but they are also of general 
interest to seismologists because they can sometimes be 
used for simple estimates of body-wave amplitudes. We 
use Cartesian coordinates and the corresponding dis­
placement components, equations and boundary con­
ditions compiled above. The interface is at z =0. 

The two cases sketched in Fig. 1 have to be treated, 
that of a downgoing incident wave (case I) and that of 
an upgoing incident wave (case II). In case I the in­
cident wave travels in half-space 1, in case II in half­
space 2. We consider case I in more detail. 

If the incident wave is a P wave, the secondary 
waves produced at the interface are of P and SV type. 
Then we assume the following expressions for the dis­
placement potentials in both half-spaces (j = imaginary 
unit): 

<Pi =ej(wt-kx-liz) 

+ Rd ej(wt-kx+l1z) 
pp 

,/, =Rd ej(wt-kx+f'tz) 
'I' 1 ps 

,-/, = Td ej(wt-kx-l2z) 
'+'2 pp 

,/, = Td ej(wt-kx-l2z) 
'I' 2 ps 

(incident P wave), 

(reflected P wave) 

(reflected SV wave), 

(transmitted P wave), 

(transmitted SV wave). 

(10) 

The incident P wave has unit potential amplitude. 
Then, the amplitudes of the secondary waves are identi­
cal with the reflection and transmission coefficients for 
potential amplitudes. These coefficients have a super­
script d, indicating that they correspond to a down­
going incident wave. All terms in Eq. (10) have plane­
wave form and satisfy the wave equations (4). All waves 
travel horizontally with the same horizontal wavenum-

Case 

2 X 

z 

Fig. 1. Incidence of a plane wave at the interface z = 0 be­
tween two half-spaces 1 and 2. 9 is the angle of incidence 

ber k, in fulfilment of Snell's law. The relation between 
k and the angle of incidence 9 (Fig. 1) is 

k=~sin9. ( 11) 
IX1 

The vertical wavenumbers 11 _2 and l~, 2 are 

( w2 )1;2 ( w2 )1;2 
11,2 = T-k2 ' l~.2 = ~/32 -k2 ' 

1, 2 1,2 

(12) 

and the signs in front of them in Eq. (10) are negative 
(positive) for propagation in positive (negative) z-direc­
tion. 
The boundary conditions for z = 0 can be formulated 
with the ¢- and ijJ-dependent quantities in Eq. (8a and 
b) and with Eq. (10). For instance, continuity of the 
horizontal displacement ux yields: 

<P1,x-1/11,z=<P2,x-1/12,z (z=0). 

The following four equations for the reflection and 
transmission coefficients are obtained in matrix form: 

( 
~1k =~ /: -kl~ ) 

l1W 2-2µ1k 2 -2µ1kl~ 2µ2k 2-p2W2 -2µ2kl~ 

2µ1kl1 P1W2-2µ1k 2 2µ2kl2 2µ2k 2-P2W2 

(13) 

The apparent frequency dependence of these equations 
can be removed if the wavenumbers are replaced by 
slownesses: 

k sin 9 
u =-=-- (horizontal slowness), (14) 

W IX 1 

a -~-(a-2 -u2)1;2 j 1,2- W - 1,2 
(vertical slownesses). 

b =1i.2=(/3-2 -u2)112 
1,2 W 1,2 

(15) 

Then, Eq. (13) tranforms into the equation 

-u a2 

-2µ1 ub1 2µ2 u2 -p2 

P1 -2µ1 u2 2µ2 ua2 
(16) 
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Table 1. Plane-wave reflection and transmission coefficients of 
a plane interface between two half-spaces (P velocities cx)i,z' S 
velocities /3 1 , 2 , densities Pi,z, horizontal slowness u). R and 
Td are coefficients for potential amplitudes of P -SV waves, rd 
and td coefficients for displacement amplitudes of SH waves. 
The incident wave travels in the medium with index 1 (down­
ward propagation, case I of Fig. 1) 

D~-Df 

Df+D~ 

2ua 1 2 2 2 
--d--d {(cu -p1 +p2)(cu + p2)+c(cu -p 1)a 2 b2 } 

D1+D2 

2plal 2 2 
-d--d {(cu +p2)b1 -(cu -p 1)b 2 } 
D1+D2 

2p1Ua1 . 2 
--d--d {cu -p1+P2+ca2b1} 

D1+D2 

D~ -Df-2p 1 p2(a 1 b 2 -a2 b1) 

Df +D~ 

2ub1 z z z 
-d--d {(cu -p 1 +p2)(cu +p2)+c(cu -p 1)a 2 b2 } 
D1 +Dz 

2plbl 2 2 
-d--d {(cu + p2)a1 -(cu -p 1)a 2 } 
D1 +Dz 

2p1ub1 . z 
-d--d {cu -p1+P2+ca1b2} 
D1 +Dz 

µ1b1-µzb2 

µ1b1+µ2b2 

2µ1 bl 

D~ =(cu2 -p1 + p 2)2 u2 + (cu 2 -p1)2 a2 b2 + P1 p2 a2 b1 

D~ = c2 u2 a 1 a2 b1 b2 + (cu 2 + p2)2 a1 b1 + p 1 P2 a 1 b2 

positive real or a1,2 =(cx;-,1-u2)112 

b1, z =(/3;-,1-u2)112 
negative imaginary for w > 0 or 
positive imaginary for w < 0 

C = 2(µ1 - µ2), µ 1, 2 = p 1, 2 /3i, 2 

Application of Cramer's rule to this equation is cum­
bersome but rewarding, since relatively compact ex­
pressions for the reflection and transmission coefficients 
result. They are given in Table 1. 

The case of an incident SV wave can be treated 
along the same lines, starting with the appropriate po­
tentials instead of Eq. (10). The reflection and trans­
mission coefficients follow from the equation 

u 

-u a2 

-2µ1 u b1 2µ2 u2 -pz 

P1 -2µ1 u2 2µ2ua2 

(17) 

and are included in Table 1. 
The case of an incident SH wave is much simpler 
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than the P-SV case, since there is no conversion to P 
or SV waves. at the interface. The displacements are: 

Uy! =ej(wt-kx-l',z) (incident SH wave), 

+rdei<w<-kx+l\z) (reflected SH wave), (18) 

(transmitted SH wave). 

The reflection and transmission coefficients, which here 
are coefficients for displacement amplitudes, follow from 
the continuity conditions for uY and µ uy,z at z = 0 [ see 
Eq. (8a and b)]. They are also given in Table 1. 

P -SV reflection and transmission coefficients for 
displacement amplitudes follow from the potential coef­
ficients in Table 1 by multiplication with factors which 
are quotients of the velocity of the incident wave and 
the velocity of the secondary wave. 

The coefficients in Table 1 depend only on the ve­
locities and densities of the two half-spaces and on 
slowness or angle of incidence, according to Eq. (14). 
They can become complex, if one or more of the verti­
cal slownesses a 1 , 2 and b 1 , 2 are imaginary. In this case 
some of the secondary waves are inhomogeneous waves 
which propagate horizontally and whose amplitudes 
decay exponentially with increasing vertical distance 
from the interface; this follows from Eqs. (10) or (18). 
In this case there is a slight frequency-dependence of 
the reflection and transmission coefficients according to 
the sign of w, as indicated in Table 1. For numerical cal­
culations it is usually sufficient to consider w~O; then 
the reflection and transmission coefficients of an inter­
face are frequency-independent. 

The reflection and transmission coefficients in case 
II of Fig. 1, i.e. for incidence at the interface z = 0 from 
below, follow from those in Table 1 by two changes. 
The first is an interchange of the parameters of both 
media, the second a sign change for those P-SV coef­
ficients which imply wave conversion at the interface. 
This sign change is a consequence of the change, with 
respect to case I, in propagation directions relative to 
the z-axis. The coefficients are summarized in Table 2; 
their superscript u indicates that the incident wave is 
upgoing. 

The coefficients in Tables 1 and 2 are the essential 
basis for the calculation of reflection and transmission 
coefficients of layered media with an arbitrary number 
of interfaces. The recursive calculation of these reflectiv­
ities and transmissivities will be described in the next 
section. 

3.2 Reflection and transmission at a layer stack 

We consider a stack of n - l layers between two homo­
geneous half-spaces. The upper half-space has the index 
0, the half-space at the bottom the index n, the parame­
ters of the medium i are IX;, /3;, P; and the thickness d;, 
and the layers i and i + 1 are separated by the interface 
z = z;+ 1 . We treat the case of incident waves travelling 
downwards in the upper half-space in some detail. The 
results for the case of incident waves, travelling up­
wards in the lower half-space, are summarized in Sec­
tion 3.2.3. 
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Table 2. Plane-wave reflection and transmission coefficients as 
in Table!, but for an incident wave travelling in the medium 
with index 2 (upward propagation, case II of Fig. 1) 

D~-D~ 

D~+D~ 

2 u a2 2 2 2 
D"+D" {(cu -p 1 +p2)(cu -p1)+c(cu +p 2)a 1 b1 } 

1 2 

2p2a2 2 2 
D"+D" {(cu +P2)b1 -(cu -p1)b 2} 

1 2 

2pzua2 2 
- D" + D" {cu - p 1 + p 2 + ca 1 b 2 } 

1 2 

D~ -D~ -2p 1 p2 (a 2 b1 -a1 b2) 

D~+D~ 

2ub 
- D" +~" {(cuz -p1 + P2)(cu2 -pi)+ c(cu2 + Pz) a1 b1} 

1 2 

r" 

t" 

2pzbz 2 2 
D"+D" {(cu +P2la1 -(cu -p1)a2} 

1 2 

2p2Ub2 2 
D" + D" {cu - p 1 + p 2 + ca 2 b 1 } 

1 2 

µ2b2-µ1b1 

µlb! +µ2b2 

2µ2 b2 

D~ =(c u2 -pt+ p 2)2 u2 + (cu2 + P2)2 a 1 b1 +pt Pz a1 b2 

D~ =c 2 u2 a 1 a2 b1 b2 +(cu2 -p 1) 2 a2 b2 + p 1 p2 a2b 1 

Other quantities as in Table I 

3.2.1 P-SV case. In the P-SV case the displacement 
potentials in layer i are, in analogy to Eq. (10): 

<pi= e-jkx [A; e-jl;(z-z,) + Bi e+ jl;(z-z,)]} . -

tf; i =e-jkx [ Ci e-jl:(z-z;) + D; e+jl:(z-z;)] 1-0, 1, ... ' n. 

(19) 

The time factor eiwt has been suppressed. The first 
terms in Eq. (19) represent all downgoing waves in 
layer i, the second terms all upgoing waves. Then we 
define reflectivities at the top of layer i by the ampli­
tude ratios of upgoing and downgoing waves: 

B. 
PPI;=_!._, 

A; 

B. 
SPY;=_!._, 

C; 

D. 
PSI;=_!._, 

A; 

D. 
SST;= c'· 

' 
The first letter of each reflectivity denotes the type of 
the incident wave, the second letter denotes the type of 
the secondary wave and T stands for top. We combine 
the reflectivities in the local reflectivity matrix 

MT= (PPI; 
' PSI; 

SPY;). 
SST; 

Similarly, we have for the bottom of layer i: 

(20) 

p SV 

~/{ ~}1 
Layer i 

Z=Zi+1 

0\fa2 \f2 Layeri+1 

Fig. 2. Potential amplitudes of downgoing and upgoing waves 
immediately above and below the interface z = z;+ 1 

MB.= (PPB; 
I PSB; 

(21) 

The relation between the reflectivity matrices at the top 
and the bottom of layer i is 

(22) 

with the phase matrix 

(23) 

The relation between the reflectivity matrices at the 
bottom of layer i, MBi, and at the top of layer i + 1, 
MTi+ 1 , is more complicated; here the reflection and 
transmission coefficients of the interface z = zi+ 1 come 
into play. We abbreviate the potential amplitudes of 
downgoing and upgoing waves at the bottom of layer 
i, i.e. immediately above the interface, by a 1 , b 1 , c 1 , d 1 

(Fig. 2); similarly a2 , b 2 , c 2 , d 2 define the amplitudes 
immediately below the interface (there should be no 
confusion with slownesses and layer thicknesses). The 
relation between these amplitudes is: 

a2 =T:Pa 1 +R;Pb2 +T,dPc 1 +R~Pd2 

c2 = T:5 a 1 +R;5 b2 + 'f.~c 1 +R~5 d2 

b 1 =R!Pa 1 +T;Pb2 +R~Pc 1 +'f.~d2 

d1 =R!5 a 1 + TP",b 2 +R~5 C 1 + 'f.~d 2 . 

(24) 

The coefficients Rd,u and Td,u are the plane-wave re­
flection and transmission coefficients of the interface z 
= zi+ 1 ; they follow from Tables 1 and 2 by replacing 
the parameters a1 , /3 1 , p 1 there by IX;, /3;, P; and a2 , /3 2 , 

Pz by IX;+ 1 , /3;+ 1, Pi+ 1 . The left sides of Eq. (24) are the 
amplitudes of the four waves travelling away from the 
interface; they are linear combinations of the ampli­
tudes of all four incident waves, the weights being the 
appropriate reflection and transmission coefficients. We 
combine these coefficients into matrices of interj ace re­
flection and transmission coefficients 

(Rd,u Rd,u) 
Rd,u _ PP sp 

i+l - Rd,u Rd,u ' 
ps ss 

cd,u yd,u) 
(25) Td,u _ PP sp 

i+l - yd,u yd,u ' 
ps ss 
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and replace Eq. (24) by two vector equations: 

(26) 

(27) 

The amplitudes b 1 , d1 , b2 , d2 of the upgoing waves can 
also be expressed with the aid of the reflectivities at the 
bottom of layer i and at the top of layer i + 1: 

b1 =a1 PPB;+ c1 SPB;} (b 1) = MBi (a1) 
d1 =a1 PSB;+c 1 SSB; d1 c1 

(28) 

(29) 

Equation (26) is inserted into Eq. (29): 

(!:)=MTi+l [T~. (::)+R~+l (!:)l 

The solution of this equation is 

(b2) u -1 d (al) dz =[1-MTi+tRi+tJ MTi+tTi+t C1 (30) 

where I is the 2 x 2 identity matrix. From Eqs. (27) and 
(28) one obtains 

Inserting Eq. (30) here, we find the desired relation 
between MBi and MTi+ 1 : 

Equations (31) and (22) together relate the reflectivity 
matrices at the top of layers i + I and i. 

Our final aim is to calculate the overall reflectivity 
matrix 

(32) 

at the bottom of the upper half-space, since the ele­
ments of this matrix are just the desired reflection coef­
ficients or reflectivities of the medium (for potential 
amplitudes). Therefore, we apply Eqs. (31) and (22) re­
cursively. We start with i=n-1 and MTn=O, which is 
the logical condition for any level inside the lower half­
space. Then, the reflectivity matrix at the bottom of 
layer n -1 is just the matrix of reflection coefficients of 
the interface z = zn for downgoing incident waves: 
MBn-t = R!. By successive applications of Eqs. (22) and 
(31) one moves upwards through the medium, until i 
= 0 is reached. The reflectivity matrix becomes increas­
ingly more complicated, since it now also represents 
multiples and conversions produced at the interfaces. 

For practical purposes it may be useful to relate the 
reflectivity matrix to a level inside the upper half-space; 
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this is achieved by another application of Eq. (22) and 
introduces only phase shifts. 

The great advantage of the recursive algorithm de­
scribed is that it is unconditionally stable for all 
frequencies and slownesses. Other methods sometimes 
suffer from overflow problems in the calculation of ex­
ponential functions for high frequencies and slownesses 
(see e.g., Kennett, 1983, Sec. 6.2.2). Here, exponential 
functions appear only in the phase matrix (23), and the 
sign of their arguments guarantees that they are always 
bounded. 

The transmission properties of the layered medium 
for incident waves coming from above can be found in 
a similar way to the reflection properties. We define 
transmissivities at the top of layer i by comparing the 
amplitudes of the downgoing waves there and in the 
upper half-space [see Eq. (19)]: 

~- A 
PPT;=-', 

Ao 

- A 
SPT; =-', 

Co 

We combine them into a local transmissivity matrix 

- (PPT; SP'f;) MTi= -- -- . 
PST; SST; 

Similarly we have for the bottom of layer i: 

~- (PPB 
MBi = PSP' 

! 

SPB.) -
-' =E-MT. 
SSB; I I 

with the phase matrix Ei from Eq. (23). 

(33) 

The relation between MBi and MTi+t follows from 
a consideration of the interface z = Z;+ 1 , similar to that 
above (Fig. 2). We have: 

(34) 

(35) 

On the other hand, from Eqs. (26) and (29): 

(a2) d (al) u (b2) 
Cz =Ti+t C1 +Ri+t d2 

=T1+1 e:) + R~+l MTi+l e:)-
Hence: 

e:) = [I - R~+l MTi+1J- 1 T~. e:). 
Inserting Eqs. (34) and (35), we obtain 

(36) 
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The recursion, based on Eqs. (36) and (33), starts with i 
= 0 and MB0 = I. The overall transmissivit y matrix is 

(37) 

and has as its elements the transmission coefficients or 
transmissivities of the medium (again for potential 
amplitudes). 

It is, however, not advisable to perform the recur­
sion in this form in practice because it would require 
that the reflectivity matrices MT;+ 1 be calculated and 
stored prior to the calculation of TTd. Rather, one uses 
the form 

(38) 

where 

(39) 

(E0 = I, MT n = 0). If the matrix multiplication in Eq. 
(38) is performed from left to right, the calculation of 
TTd can directly be combined with the calculation of 
the reflectivity matrix RRd. 

TTd is the transmissivity of the depth range between 
the uppermost and the lowermost interface of the me­
dium. If it is desirable also to include parts of the half­
spaces, Eq. (38) can also be used with additional phase 
matrices (23) multiplied from right and left. 

3.2.2 SH case. In this section we give only the results 
for the scalar reflectivity RRd and the scalar transmis­
sivity TTd, which here express the displacement-ampli­
tude ratio of the secondary (reflected or transmitted) 
and the incident SH wave. As in the P-SV case, RRd 
refers to the interface z = z 1 between the upper half­
space and the first layer, and TTd to the lowermost in­
terface z = z" . It is clear that the principles of the deri­
vation of RRd and TTd are the same as in the P-SV 
case, but the derivation itself is much simpler; it is ac­
tually a good exercise for the interested reader. One ob­
tains: 

(40) 

i = n - I , n - 2, ... , 0 ( 4 I ) 

n - 1 

(42) 

(43) 

In Eq . (41) one uses MT"= 0, and the factor F0 in Eq. 
( 43) is obtained by setting d O = 0. The interface coef­
ficients rd·" and td·" follow from Tables I and 2. Com­
parison of the SH results with those for the P - SV 
case, e.g. of Eq. (41) and Eqs. (31) plus (22), shows the 
great similarity in basic structure. 

3.2.3 Wave incidence from below. The layered medium is 
the same as before, but now the incident waves travel 
upwards in the lower half-space. In this case the overall 
reflectivity matrix RR" expresses, for a level at the top 
of the lower half-space, the potential-amplitude ratios 
of downgoing reflected and upgoing incident waves. 
The overall transmissivity matrix TTu relates the ampli­
tudes of upgoing transmitted waves at the bottom of 
the upper half-space and the amplitudes of the upgoing 
incident waves at the top of the lower half-space. Simi­
lar definitions hold for the scalar SH reflectivity RR" 
and transmissivity TT". 

The recursion, leading to RR", is as follows: 

i = 0, 1, ... , n - I ( 44) 

(45) 

The local reflectivity matrices NT; and NB; correspond 
to the top and the bottom of layer i, respectively. They 
are different from the matrices MT; and MB; in Section 
3.2.1, because they relate downgoing reflected and 
upgoing incident waves, whereas MT; and MB; relate 
upgoing reflected and downgoing incident waves. 

The overall transmissivity matrix Tr is: 

(46) 

(47) 

The matrix multiplication in Eq. (46) is performed from 
left to right, since the calculation of TT" can then be 
directly combined with that of RR". 

The results for SH waves are: 

n - 1 

TT"= fl G; 

t~+ I e- jt;d, 

1- r/+ 1 NB/ 

i = 0, 1, ... , n - 1 

4. Waves from point sources in layered media 

4.1 Elementary displacement potentials 
for cylindrical coordinates 

(48) 

(49) 

(50) 

(51) 

Elementary solutions of the wave equations (7) for the 
P - SV potentials in layer i of the medium, which will 
be used later for the synthesis of point-source wave 
fields, are the following: 
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<P· = {c~s l ((J} J (kr) [A. e-jl,(z-z;) + B. e+ jl,(z-z;)J l 
' sml<p ' ' ' 

{ 
l } i=O, 1, ... ,n. 

P= c~s ((J J(kr);.-[c.e-jl;<z-z;)+D-e+jl;<z-z,JJ 
' sm l <p , J k ' ' 

(52) 

Ji(k r) is the Bessel function of integer order 1 
= 0, 1, 2, ... , and the time factor ejw, has been omitted 
as in the corresponding plane-wave (Cartesian coor­
dinate) expressions, Eq. (19). 

In the SV potential 'P; the term U k)- 1 has been fac­
tored out since the equations for the coefficients A;, B;, 
C;, D;, which follow from the boundary conditions at 
interfaces [see Eq. (9a and b)], then agree exactly with 
the equations for the coefficients in Eq. (19) which are 
based on the continuity of the quantities (8a and b). 
This has the important consequence that the plane­
wave reflectivity and transmissivity matrices that have 
been derived in Section 3 can be used directly here. For 
instance, the amplitudes of the upgoing wave field at 
the uppermost interface z=z 1 , B 0 and D 0 , follow from 
the amplitudes of the downgoing wave field, A 0 and 
C0 , with the aid of the reflectivity matrix RRd in Eq. 
(32): 

(53) 

Similarly, if the amplitudes of the upgoing wave field at 
the lowermost interface z=zn, Bn and Dn, are given, B0 

and D 0 follow from 

(54) 

where TT° is the transmissivity matrix in Eq. (46). 
The elementary SH potential in layer i is 

X; = {c~sll ((J} J,(kr) 
sm <p 

. [E; e-jl;(z-z;) + F; e+ jl;(z-z,JJ, (55) 

and the scalar reflectivity and transm1ss1v1ty of the 
plane-wave case can also be used here: 

F0 =RRd E 0 (56) 

with RRd from Eqs. (40) and (41), or 

(57) 

with TTu according to Eqs. (50) and (51). 
Up till now, reflectivities and transmissivities have 

been described for the complete layered medium. It is 
clear that they can also be defined for partitions of the 
medium by simply deleting those layers which are not 
of interest. The reflectivities and transmissivities in this 
form will be used later on. 

4.2 Displacement potentials for a single force 

We consider now the layered medium with a single­
force point source at depth z5 in layer m (Fig. 3). The 
single force F is harmonic in time and has frequency-

-----------------------
dependent components F1 , F2 , F3 . These components 
refer to a Cartesian coordinate system with, say, the x­
axis pointing north, the y-axis pointing east and the z­
axis pointing down. The displacement potentials of the 
single force have the following slowness-integral repre­
sentations for an observer with cylindrical coordinates 
(r, <p, z) in an infinite medium whose material properties 
are those of layer m: 

00 

4npm<l>s=81 s sign(z-zs)ulo(uwr)e-jwamlz-zsldu 
0 

oo u2 . 
+82 J-. -J1(uwr)e-1wamlz-zsldu (58) 

oJam 
00 u . 

4n Pm If;= 81 J-. -b-Jo(U w r) e-JWbmlz-zsl du 
o]W m 

00 -1 . 
4np x =r, J --J (uwr)e-JWbmlz-zsldu (60) 

m s O /3;,,j bm 1 

am=(rx;;;2-u2)1;2 

bm=(/3;;;2-u2)1/2 
(positive real or 
negative imaginary), 

8 1 =F3 , 8 2 =F1 cos<p+F2 sin<p, 

r, = -F1 sin <p + F2 cos <p. 

(61) 

(62) 

These source-potential representations are very similar 
to the well-known Sommerfeld integral for an explosive 
point source. They have been taken from Muller (1969) 
and were corrected for a misprint in the second term of 
the original form of Eq. (58). 

Layer 
index 

0 , 
2 

m- 1 

m Point 
m + l 

i <X; 

n 
~z 

Receivers(z=OI 
X X X X X X X 

source- - -

(Ji Yi o(; 

X 

- -

....r 

--
Zm 

Zs 

Zi 

Zn 

Fig. 3. Layered medium, cons1stmg of n - 1 homogeneous 
layers between two homogeneous half-spaces. Layer parame­
ters are: a;= P velocity, /3; = S velocity, P; = density, d; = thick­
ness, z; = depth to the top. On the left it is indicated to which 
partition of the medium the reflectivities R ±, R ± and the 
transmissivity T+, T+ correspond 
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The integrands in Eqs. (58H6O) have, in principle, 
the form of the elementary potentials (52) and (55) for l 
= 0 and I= 1 if the wavenumbers there are replaced by 
slownesses, 

with a; and b; defined in analogy to Eq. (61). Hence, it 
is clear that the interaction of the source wave field 
with the layer stacks above and below the source can 
also be represented by such slowness integrals. All that 
has to be done is to extract from Eqs. (58H6O) source 
amplitudes As, Bs, ... , Fs and then to describe the inter­
action by equations similar to Eqs. (53) and (54) or Eqs. 
(56) and (57). 

The source amplitudes are different for downgoing 
and upgoing waves, and in the P-SV case they are 
also different for the terms with different types of cp de­
pendence. For downgoing waves (z > zs) we obtain: 

if) 

4 TC Pm</>~ = J (e 1 As Jo+ ezAs211) e- jwam(z-zm) du (63) 
0 

4n Pm If'/ 
if) 1 . 

= s-. -(81 csl lo+ ez Csz 11) e-JWbm(Z-Zm) du 
o]UW 

00 

4npmx~= s r,EJ1 e-jwbm(Z-Zm)du 
0 

-1 
Es=132 "b ep 

ml m 

Similar expressions hold for upgoing waves (z < zs): 

00 

4np ,./..U= J (e B J +e B J )e+jwam(Z-Zm)du m '+' s 1 s I O 2 s2 I 
0 

ro 

4npmx~= s r,FJ1 e+jwbm(Z-Zm)du 
0 

u2 
Bs1=-ue;1, Bsz=-.-e;l 

Jam 
u2 

D -1 D · -I sl=bep' sz=-ruep' 
m 

(64) 

(65) 

(66) 

(67) 

(68) 

(69) 

(70) 

(71) 

For later use, it is favourable to combine the P-SV 
source amplitudes into source amplitude vectors: 

sd = (Asl. 2) 
1,2 C , 

sl,2 
S" = (Bs1,2). 

1,2 D 
sl,2 

(72) 

Moreover, we write 

(73) 

for the SH source amplitudes, in order to have unified 
notation. 

4.3 Synthesis of the wave field at z = 0 

The first step in the wave-field synthesis is to determine 
the complete upgoing wave field in layer m. This field is 
the sum of the direct upgoing waves, Eqs. (68), (69) and 
(70), and all possible reflections and multiple reflections 
at the layer stacks above and below the level z = zm (in 
the sense of z;:;) in layer m. Each of these contributions, 
and also their sum, can be written in a form similar to 
Eq. (68), (69) or (70): 

ro 

4n Pm q>u = s (el Bl lo+ ez Bz 11) e+jwam(Z-Zm) du 
0 

00 1 . 
4np IJIU= J -(e D J +t: D J )e+JWbm(Z-Zm)du (74) 

m O ju W 1 1 0 2 2 1 

00 

4n Pm Xu= s rJ V Jl e+ jwbm(Z-Zm) du. 
0 

The contributions differ in the P-SV amplitude vectors 

V = (B1,2) 
1.2 D 

1, 2 

(75) 

and in the scalar SH amplitude V, respectively, depend­
ing on the type of interaction that is considered. In or­
der to determine these amplitudes explicitly, we first 
define P-SV reflectivity matrices R- for the part z>zm 
of the medium and R + for the part z ;£ zm and, likewise, 
scalar SH reflectivities R- and R + (see Fig. 3). R-, R-, 
R+, R + are reflectivities of the type specified by Eq. 
(32), (40), (45) and (49), respectively. The practical com­
putation of these quantities should be clear from the 
details that have been given in Section 3. 

In the P-SV case, the amplitude vectors V1 , 2 are: 

for the direct wave field (/' ), 

for the first multiple of the 
direct wave field (IV'), 

for the second multiple (IV\/'), 

for the reflected wave field ( V ), 

for the first multiple of the 
reflected wave field ( \f'-.../' ), 

The sum of all these wave fields has the amplitude vec­
tors 

vl,2 =(l+R-R++R-R+R-R++ ... )(St2 +R-st2) 

=[I-R-R+J- 1 (S~.2+R-st2), (76) 

Their components [see Eq. (75)], when inserted into 
Eq. (74), specify the complete upgoing P-SV wave field 
in layer m. 



|00000169||

The corresponding SH potential is the expression 
for x" in Eq. (74) with 

(77) 

Note the structural similarity of Eqs. (76) and (77). 
The second step in the synthesis of the wave field for 

z=0 is to determine, from the potentials (74), the po­
tentials ¢ 0 , P 0 and x0 in the upper half-space of the 
layered medium and from these the displacement com­
ponents at z = 0. The P -SV amplitude vectors in the 
upper half-space, Vt 2 , follow from those in layer m, 
V1 , 2 in Eq. (76), by multiplication from the left with the 
transmissivity matrix T+ of the layers between z = z;;; 
and z=z1 =0- [see Eq. (54) and Fig.3]: 

Vo (B?,2) T+V 
1,2 = Do = 1,2· 

1, 2 

Then the potentials ¢ 0 and P 0 are (z~0): 

00 

4n Pm ¢ 0 = J (8 1 B? 10 +82 BP1) e+jwaoz du 
0 

The SH potential is, accordingly, 

00 

4npmxo= s r,T+ VJl e+jwbozdu 
0 

(78) 

(79) 

(80) 

with V from Eq. (77), and with the scalar transmissivity 
y+ defined in the same way as T+. The calculation of 
T+ and y+ is performed with Eqs. (46) and (50), respec­
tively; in these formulas the index n is replaced by m. 

The displacement components follow from inserting 
Eqs. (79) and (80) into Eq. (6) and (6'), respectively. 
The results are given below for far-field and near-field 
terms separately. They can be written in a compact 
form, if the following definitions are used: 

(81) 

(82) 

The vector u should not be confused with the displace­
ment vector. The far-field displacements at the level z 
=0 are 

00 

4npmu{f = -wry J 10 (uwr)uT+ Vdu 
0 

V=(l-R- R+)- 1(S"+R-sd). 

(83) 

(84) 
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The near-field displacements are: 

(85) 

The total displacement vector is the sum of the near­
field and far-field vectors. Closer inspection shows that 
at the origin this vector (in Cartesian coordinates) is 
finite and independent of cp, as it should be. 

The results (83)---(85) reflect the well-known fact that, 
in the far field of a point source, P -SV waves are re­
stricted to the radial and the vertical component and 
SH waves to the transverse component. Only in the 
near field do P-SV waves appear also on the trans­
verse and SH waves also on the radial component. 
Moreover, the two terms in Eq. (83) are easily identified 
as the displacements due to a vertical force (i = 1) and a 
horizontal force (i = 2). A purely vertical force produces 
no near-field displacements (8 2 = 11 = 0). 

The results (83-{85), supplemented by the factor 
ejwi, are the displacements due to the harmonic single 
force F = (F1 , F2 , F3 ) · ejwt_ As they stand, they can also 
be considered as the Fourier transforms of the displace­
ments due to time-dependent force components, with F; 
= F;(w) being the Fourier transform of the i-th com­
ponent. With this in mind, one obtains time-domain dis­
placement seismograms by inverse Fourier transfor­
mation of Eqs. (83)--(85). 

Equations (83)---(85) represent the complete displace­
ment field of the medium, including body and surface 
waves, in spite of their derivation in terms of body­
wave notions such as reflection, transmission, upward 
and downward propagation and decomposition into 
multiple waves. Surface waves in the sense of normal 
modes are related to poles of the integrands on the 
positive real u-axis which follow from the dispersion 
equations: 

det[J-R-R+J- 1 =0 (Rayleigh waves) 

l -R- R+ =0 (Love waves). 
(86) 

Further theoretical discussion of these equations and 
how they are solved for the slowness-frequency relation 
of Rayleigh and Love waves can be found in Kennett 
(1983). Here, where the interest is concentrated on the 
calculation of theoretical seismograms, it is sufficient to 
remark that the poles of the integrands are shifted 
away from the real u-axis if absorption is introduced 
via complex wave velocities (see Section 6.2). Hence, 
straightforward numerical integration of Eqs. (83)-(85) 
poses no problem in principle and both body- and sur­
face-wave contributions to theoretical seismograms are 
obtained. It is, of course, possible to calculate only 
body or surface waves by integrating only over the cor­
responding slownesses. 

4.4 Exact results for a free surface 

The displacements (83)-(85) were derived for the case 
that the layered medium has a homogeneous upper half-
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space with non-zero velocities cx 0 , /3 0 and density p 0 . 

Realistic seismogram calculations, corresponding to a 
free surface z = 0, can probably be performed by choos­
ing cx 0 and p 0 approximately as the values of air, and 
{3 0 ~ cx 0 . It is more elegant, however, to obtain exact 
free-surface conditions by the limiting process cx 0 --> 0, 
/3 0 -->0, p0 -->0. The parameters cx 0 , /3 0 , Po appear in the 
matrix U, in the vector u [see Eq. (81)] and in the 
transmissivities T+ and y+. The transmissivities follow 
from Eqs. (46) and (50), respectively, with the index n 
replaced by the index m of the layer with the source 
(see Fig. 3): 

T+=TrG, G=G1 G2···Gm-l 

y+ =t~ G, G=G 1 G2 ... Gm_ 1. 

(87) 

(88) 

Tr is the matrix of P-SV transmission coefficients of 
the interface z = z 1 = 0 for wave incidence from below, 
as defined in Eq. (25), and t~ is the corresponding SH 
transmission coefficient. These coefficients follow from 
Table 2 by changing the half-space index 1 to O and the 
index 2 to 1. Only in Tr and t~ do the parameters cx 0 , 

/3 0 , Po appear; G and G are free of them. 
We then introduce in the P -SV case the new quan­

tities 

and perform in them and in t~ the limiting process 
cx 0 --> 0 (hence a0 --> oo ), {3 0 --> 0 (hence b0 --> oo) and 
p0 --> 0. At first sight this does not look trivial in the P 
-SV case, but actually it is simple since only terms 
which contain the product a0 b0 have to be taken into 
account. We obtain: 

( 2/3i ua 1 b 1 

(1 - 2 /3i u 2 ) a 1 

hT = first row of H 

t~ =2. 

(1-2~iu 2)b 1 ) 

-2{3 1 ua 1 b 1 

(89) 

Then the following substitutions are made in Eqs. (83}­
(85): 

(90) 

G and G are defined by Eqs. (87) and (88), respectively, 
and calculated with the aid of Eqs. (47) and (51). 

Equations (83)--{85) together with Eq. (90) are the 
final results for the exact free-surface response of a 
layered half-space to excitation by a single force. 

In their essential structure our P - SV results are 
simpler than the forms presented in Kennett [1983, 
Eqs. (7.36) and (7.53)]. These forms contain a slightly 
different transmissivity from our results and require the 
calculation of a third reflectivity matrix in addition to 
R- and R+. The relative simplicity of the form obtained 
here will probably also imply some savings in comput­
ing time. We mention also that the above special treat­
ment of the free surface z = 0 leads to results which ap­
pear to be identical in structure with the results of 

Luco and Apse! (1983), whose approach starts directly 
with the free-surface boundary conditions. 

4.5 Results for a moment-tensor point source 

A generalized point source is represented by the sym­
metric moment tensor 

(91) 

This tensor represents a superpos1t10n of three single 
couples without moment along the x-, y- and z-axes of 
the Cartesian coordinate system introduced earlier and 
three double couples in the x y-, x z- and y z-planes. 
The tensor components may be frequency dependent. 
The moment-tensor point source includes, as special ca­
ses, simpler point sources such as an explosion or a 
double couple of arbitrary orientation; it does not in­
clude single forces. 

For instance, an explosion in layer m, having the 
reduced displacement potential F(t), is represented by 
Eq. (91) with vanishing mixed components and 

(92) 

where F(w) is the Fourier transform of F(t) (Muller, 
1973). For a double couple of arbitrary orientation, 
specified by two orthogonal unit vectors f and n and by 
the moment function M(t), the moment tensor com­
ponents are 

(93) 

where M(w) is the Fourier transform of M(t). The vec­
tors f and n are nodal-plane normals and have between 
them a quadrant with P-wave motions towards the 
focus. 

The wave field of each of the couples, combined in 
Eq. (91 ), is found by spatial differentiation of the wave 
fields of a single force with respect to the source coor­
dinates. Details are omitted here; they can be found in 
the text books mentioned in the introduction. In this 
way source displacement potentials similar to Eqs. (58)­
(60), representing a moment tensor in its general form 
(91), can be found. The subsequent treatment, leading 
to the displacements at the top of the layered medium, 
is exactly the same as in the case of the single force. 

In the following we give first the results for the far­
field displacements at z = 0 in a form similar to Eqs. (83) 
and (84): 

2npm (u~;) =w2 ± Ki Ji uT+VJu 
uz i= 1 0 

Vi= [I-R-R+J- 1 (sr+ R-st) 
(94) 

2 00 

2np uff =w2 "°' X J1·-uy+ Vdu m <p ~ I l l 

i= 1 0 

f!;=(l -R- R+)- 1 (s~+R- sf). (95) 
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In these equations we have: 

K 1 =½(M 11 cos2 cp + M 22 sin2 cp + M 12 sin2cp), 

K 2 = ½ M 3 3 , K 3 = M 1 3 cos cp + M 2 3 sin cp, 

Jc 1 =½(M 11 -Mzz)sin2cp-M 12 cos2cp, 
(96) 

Jc 2 = M 1 3 sin cp - M 2 3 cos cp 

j1=h=J1, 

j3 =J2 [J 1 , 2 from Eq. (82)] (97) 

j 1 =11 (u wr), j 2 = -J0 (u wr). 

The source amplitudes are [ea and ep from Eq. (67)]: 

(J·u
3 

) 
-1 ~ea 

u am 
S1 = j u2 e;; 1 ' 

(98) 

(99) 

The remaining quantities in Eqs. (94) and (95) are 
identical with those in Eqs. (83) and (84). The near-field 
displacements are: 

(100) 

00 J 
2np u"f =j0 WK J __l_vTT+v du m z 4 1 

0 ur 

K 4 = ½(M 22 - M 11 ) cos 2 cp - M 12 sin 2 cp. (101) 

In these expressions the Bessel functions 10 and 11 have 
been written without their argument u w r, the column 
vector v has the components a0 and - u, and all other 
quantities are the same as in Eqs. (94) and (95); the 
column vector u is defined in Eq. (81). 

Exact results for a free surface follow, as in the case 
of a single force, by the substitutions (90) supplemented 
by vTT+=2kT G, where kT is a row vector formed by 
the second row of matrix H in Eq. (89). Moreover, the 
total displacement field is regular at the origin. 
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5. Discussion 

5.1 Partial responses 

In the following discussion reference is made only to 
the far-field P -SV displacements for a single force in 
the form 

(102) 

The conclusions apply, of course, also to near-field dis­
placements, SH waves and moment-tensor sources. 

Equation (102) yields, in the far-field approximation, 
the complete medium response, i.e. all possible interac­
tions and wave types are included. Various partial re­
sponses are immediately evident and they may be of 
great practical importance. For instance, the original 
form of the reflectivity method is obtained by setting Vi 
= R-st, i.e. by considering only downgoing waves at 
the source which are reflected once at the layers below, 
without any further reverberation between the layers 
above and below the source. The matrix G 
= G 1 G 2 ... Gm-t with Gi from Eq. (47) can be calculat­
ed either exactly, in cases where multiples and conver­
sions produced by the upgoing wave field in the layers 
between the source and the free surface are of interest, 
or with the approximation Gi = Ei Ti~ 1 which implies 
only phase shifts in the layers and transmission losses 
at the interfaces. Note that the reduced wave field con­
tains the P-P, SV-P, P-SV and SV-SV reflections 
from the layers below the source which may still be 
more than actually desired. In this case, one introduces 
vanishing elements into R- and possibly also into Ti~t. 

Another important partial response is obtained by 
choosing Vi=R-(R+sr+st). This is similar to the fore­
going case but, additionally, the reflection of the source 
wave field at the layers above the source is included. In 
seismological terms this means, for instance, that be­
sides the mantle P phase the surface reflections pP and 
s P at the source are also obtained. R+ is calculated 
with the aid of Eqs. (44) and (45), where n is replaced 
by m. Often the approximation in Eq. (44), NTi+t =Rf+ 1 

+ Ti~ 1 NBi Ti~ 1 or even NTi+ 1 = Rr+ 1 + NBi, is sufficient. 
These brief examples of partial responses illustrate 

that the formalism presented here has great flexibility 
and that it is worthwhile to include a few such options 
in a computer program together with the full calcu­
lation. The flexibility of the reflectivity method is its 
main advantage in comparison with propagator meth­
ods which usually give the complete response of the 
medium. (An exception is Kind's (1985) treatment, by 
propagator methods, of different source and receiver 
structures which implies an incomplete response.) 

5.2 Extended sources 

Extended sources, modelled by a superposition of sev­
eral point sources, will often require the use of both 
far- and near-field displacements. In this case it is ad­
visable to change from cylindrical to Cartesian coor­
dinates before the displacement fields of the individual 
point sources are superposed. 
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If the receiver distance from the source region is 
large compared with the source dimensions, and if all 
point sources are located in the same layer m, simple 
displacement formulas can be found which occasionally 
may be useful. 

We start with the generalization of Eq. (102) and 
assume that the N point sources, which here are single 
forces, have the spectral representations F;, = (Flk, Fn, 
F3k) and act at the hypocentres (xsk' Ysk' zsk) at the times 
tk (so far tk = 0). Moreover, we assume the origin of the 
Cartesian and cylindrical coordinate systems to be di­
rectly above the source region and the receiver coor­
dinate r to be so large that the receiver azimuth, with 
respect to each point source, is cp with good accuracy. 
Then we have from Eq. (62) elk=F3k and e2k=Flkcoscp 
+ F2k sin cp, and not only can the vertical displacements 
due to the different point sources be added, but also 
the horizontal radial displacements; their sum is the 
displacement along the azimuth direction of the re­
ceiver with good accuracy. 

In the far field the Bessel functions in the matrices 
(82) can be replaced by the asymptotic form of the cor­
responding Hankel functions of the second kind, which 
implies that only waves propagating away from the 
source are considered. This yields: 

(103) 

where b 1 = - j and b 2 = I, and rk is the horizontal dis­
tance from the receiver to the k-th point source; rk in 
the denominator, but not in the exponential function, 
can be replaced by r. Finally, also the source amplitude 
vectors sr/ [see Eq. (72)] are different for different 
point sources: the source depth zs in Eq. (67) has to be 
replaced by zsk· All other quantities in Eq. (102) are 
independent of sources and receiver. 

After some algebra, one obtains the following far­
field P-SV displacements for the extended source: 

2 N 

ssu,d= L L 8ikssr/ 
i~ I k~ 1 

E ssu,d __ su,d 
1k - U lk 

E ssu,d _ j-su,d 
2k - U 2k 

(104) 

(105) 

(106) 

(107) 

ssr/ from Eqs. (72), (66), (67) and (71) with zs replaced 
by zsk· 

Equation (104) looks essentially like the point­
source result (102) with new source amplitude vectors 
SS0 and SSd. These vectors are now frequency and azi­
muth dependent, i.e. they reflect the directivity proper­
ties of the composite source. Equation (104) is, of 
course, also useful for far-field calculations for only one 
point source (N = 1). 

The SH displacement, corresponding to the P -SV 
displacements ( 104), is: 

4n Pm uff = -(l -j) (~)112 f u1I2 GVdu 
"' nr 0 

V=(l -R- R+)- 1(SS"+R- SSa) 
N 

s su,d = L Y/k s sr·d 
k~ 1 

SStd =j Esr,d, 

(108) 

(109) 

(110) 

E from Eq. (107), sr,d from Eq. (73), Y/k from Eq. (62) for 
the k-th single force. 

Finally, we give the far-field results for an extend­
ed source, consisting of several moment-tensor point 
sources. The P - SV displacements are: 

( 
uff ) w3/2 co 

2npm 'ff =(l-j)--11-2 Ju 112 HGVdu 
-u 2 (nr) 0 

V = [I-R-R+J- 1 (ss0 + R-ssd) 
3 N 

SS0 'd= L L K;k ssr/ 
i~l k~l 

E SSu,d _J. _ 5u,d 
3k - U 3k, 

sr1/ from Eq. (98) with Zs replaced by zsk· 
The SH displacement is: 

w3!2 oo 

2np uff= -(1-1·)--Ju1I2 GVdu 
m <P (n r)l/2 o 

V = ( 1 - R - R +) - 1 ( s s" + R - s sa) 
2 N 

ss"·d= L L A;kssr/ 
i~l k~l 

s s~·/ = E s~·ka, s s~·/ = j Es~/, 

srkd from Eq. (99) with Zs replaced by zsk· 

(111) 

(112) 

(113) 

(114) 

(115) 

(116) 

The factors K;k in Eq. (112) and Aikin Eq. (115) fol­
low from Eq. (96) for the k-th moment tensor, and E is 
given in Eq. (107). 

The main applications of these results is in the 
modelling of extended earthquake sources. Such 
sources are represented by a sufficient number of shear 
dislocations or double couples with moment tensors 
according to Eq. (93), and these moment tensors are 
inserted above. 

5.3 Computational aspects 

Remarks on the numerical calculation of theoretical 
seismograms with the reflectivity method, i.e. on the 
calculation of integrals like Eqs. (83) and (84) or Eqs. 
(111) and (114), have been made by many authors (e.g. 
Fuchs and Muller, 1971; Kennett, 1979, 1980, 1983; Tem­
me and Muller, 1982). So the following comments 
will be relatively brief. 

1) The calculation of the reflectivities and trans­
missivities is usually the most time-consuming part in 
the computation, since it has to be done typically for 
several hundred slownesses and several ten to several 
hundred frequencies. The frequency-dependence is in-
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troduced mainly through the phase matrices (23). The 
interface reflection and transmission coefficients (Ta­
bles 1 and 2) are frequency independent in the purely 
elastic case, but they become slightly frequency depen­
dent if causal absorption is introduced, since then the 
wave velocities are frequency dependent (see Section 
6.2). We found it usually sufficient to calculate these 
coefficients for the dominant frequency of the problem 
under study, such that they continue to depend only on 
slowness. 

2) The slowness integration is performed with the 
trapezoidal rule and restricted to the slownesses of in­
terest. Numerical phases with the limiting slownesses 
are often produced by this and they may occasionally 
be a serious disturbance. Their amplitudes can be re­
duced by application of cosine tapers at the ends of the 
slowness interval. 

3) Fast Fourier transformation is used to go from 
the time domain to the frequency domain and back 
and the usual rules for sampling in both domains are 
applied. The length of the seismograms which deter­
mines the frequency interval may be very long, in par­
ticular, when the complete-response integrals are used. 
Then the number of frequencies may be very large. If a 
partial-response integral is sufficient for the problem 
under study, this number may be reduced. 

4) In many cases it is favourable to use a reduced 
time scale t-r/c -t0 with suitably chosen values of re­
duction velocity c and minimum reduced time t 0 , since 
then the calculation starts closer to the first arrival and 
the seismogram length is reduced. In the frequency do­
main this means multiplication of the slowness integrals 
by the factor ejw(r/c+taJ_ 

5) If, in spite of these possibilities, the seismogram 
length has to be chosen shorter than the duration of 
the medium response, the resulting time-domain alias­
ing, i.e. appearance of late energy early in the seismo­
gram, can be reduced or even avoided if one uses com­
plex frequencies w- j/, instead of w (Bouchon, 1979). 
This implies, as a consequence of the damping theorem 
of Fourier transformation, that instead of the desired 
seismogram u(t) the damped version u(t) e- 11• is calcu­
lated. Depending on ,, this version actually has a shor­
ter effective length and therefore is less disturbed by 
time-domain aliasing. Multiplication by e+t/r gives the 
desired seismogram u(t). , is usually taken between 
20 % and 50 % of the chosen seismogram length. This 
method often gives satisfactory results, but sometimes it 
does just the opposite. This happens when there would 
be energy in the seismogram prior to the time at which 
the computation starts; the main source of such energy 
are the numerical phases mentioned above. Then blown­
up amplitudes of this energy show up late in the 
seismogram (after multiplication by e+ 11·) and they may 
exceed the amplitudes of the physical arrivals. Hence, 
the suppression of time-domain aliasing via complex 
frequencies cannot be performed routinely but requires 
special consideration in each case. 

6) The reflectivity method can be programmed in 
such a way that efficient use can be made of modern 
vector computers (Sandmeier and Wenzel, 1985). Ac­
cording to these authors the speed of computation can 
be increased by a factor of 20 to 30 relative to a 
modern general-purpose computer; Sandmeier and 
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Wenzel compared the CDC CYBER 205, a vector com­
puter, and the SIEMENS 7880. Such gains in speed 
open up completely new possibilities in seismogram 
calculations for highly complicated layering and broad 
frequency bands. 

6. Supplements 

6.1 Earth-flattening transformation 

Spherical earth models can be treated with the reflec­
tivity method in the form described here after an earth­
flattening transformation, i.e. the spherical earth is re­
placed by an equivalent or almost equivalent flat earth. 
Various ray and wave theoretical aspects of this trans­
formation have been discussed by Gerver and Marku­
shevich (1966), Biswas and Knopoff (1970), Chapman 
(1973) and Miiller (1977a); the following is a compi­
lation of its main features. 

The depth and velocity transformation is 

R 
z=Rln-, 

r 

R 
v 1 (z) =-V8 (r), 

r 
(117) 

where v,(r) is the P or S velocity in the spherical earth 
at the radial distance r from the centre, R the earth's 
radius, z the depth in the flat earth and v 1 (z) the trans­
formed velocity. Tracing of seismic rays through both 
media shows that the spherical earth is mapped on a 
cylindrical portion of the flat earth whose radius is the 
epicentral distance n R of the antipode. The earth's cen­
tre is mapped on a point with infinite depth and veloci­
ties. Rays, leaving the source in both media under the 
same radiation angle with respect to the vertical, always 
form identical angles with the vertical at corresponding 
depths. They also have identical travel times with the 
consequence that travel-time curves, e.g. at the surface, 
agree. These properties characterize Eq. (117) as a high­
frequency transformation. 

The density transformation is not unique, but this is 
no serious problem since the wave amplitudes are influ­
enced much less by the density structure than by the 
velocities except in the case of vertical wave propaga­
tion. In this case the wave amplitudes depend mainly 
on the impedance, i.e. on the velocity times density pro­
duct, and therefore it is logical to make the impedances 
in the spherical and the flat earth identical. This yields 
the density transformation 

(118) 

Tests show that Eq. (118) is accurate enough also for 
non-vertical wave propagation. 

The transformations ( 117) and ( 118) are applied prior 
to the calculation of theoretical seismograms. This cal­
culation is performed under the assumption that the 
same single force or moment tensor acts at the original 
and the transformed source, although the medium 
properties there are usually different. The seismograms 
so obtained do not yet correspond to the spherical 
earth. For this, they have to be multiplied, in the case 
of points at the surface, by the factor (see Miiller, 
1977a) 
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K= (~)q (~)1;2, 
r0 smLI 

(119) 

where r0 is the radial distance of the source from the 
earth's centre, LI the epicentral distance, q = 1 for a sin­
gle force and q = 2 for a moment-tensor source. The 
first factor in Eq. (119) serves as a correction for the 
differences in velocity and density at the original and 
the transformed source just mentioned. For deep-focus 
earthquakes this factor can be 1.2-1.3 and, hence, it 
should not be neglected in calculations of absolute 
amplitudes. The second factor in Eq. (119) is well­
known and takes account of the different ways in which 
the wavefront expands in the spherical and the flat 
earth. 

In spite of its high-frequency character, the earth­
flattening transformation, Eqs. (117)--{119), has a broad 
range of applicability. It is useful for practically all 
body and surface waves travelling through the earth's 
mantle and also for most body waves traversing the 
core ( e.g. Hage, 1983). Difficulties are manifest only for 
waves propagating very close to the earth's centre 
where the transformation (117) breaks down and where 
the velocity structure in the spherical earth, corre­
sponding to the homogeneous-layer representation of 
the flat earth, oscillates strongly and hence deviates 
from the true structure (Mi.iller, 1977b). In such cases, 
methods for synthetic seismograms, which work di­
rectly in spherical geometry, are definitely superior ( e.g. 
Rial and Cormier, 1980). 

6.2 Dissipative media 

The following discussion of a way in which dissipation 
of wave energy can be taken into account in seismo­
gram calculations is tailored directly to the needs of 
seismology. The literature on anelastic and rheological 
properties of earth materials is very vast. As a starting 
point for the interested reader, we mention only a book 
by Christensen (1982) on viscoelasticity in general and 
a review article by Minster (1980) which is geophysi­
cally oriented. 

Dissipation or absorption of wave energy is often 
described by linear laws, i.e. it is assumed that stress 
and strain are linearly related as in purely elastic me­
dia. The difference to this case is that now phase shifts 
occur between stress and strain. This implies that the 
elastic moduli are no longer real, but complex and pos­
sibly frequency dependent. The simple one-dimensional 
stress-strain relation is 

p(w) = M(w) s(w). (120) 

If £ is a shear strain, p a shear stress, then M is identi­
cal with twice the complex rigidity µ. If £ is a volume 
strain or cubic dilatation, p a pressure (apart from the 
sign), then M is the complex bulk modulus k. As a 
third example, if £ is the strain along a rod or wire, p 
the corresponding uniaxial stress, then M is the com­
plex Young's modulus. We will call M(w) the viscoelas­
tic modulus without specifying the mode of deformation. 
The general three-dimensional viscoelastic stress-strain 
relation of an isotropic substance is 

(121) 

where 0 is the cubic dilatation and otherwise familiar 
notation has been used. 

The viscoelastic modulus in Eq. (120) is separated 
into real and imaginary parts, M = M 1 + j M 2 , or into 
magnitude and phase, M = A ejq'. All these quantities in 
principle have to be considered as frequency depen­
dent. The quality factor Q is defined by 

(122) 

Increasing dissipation increases the phase shift cp be­
tween stress and strain and hence decreases Q. It can 
be shown that, if Q ~ 1, Q- 1 is proportional to the en­
ergy loss per period in a harmonic loading experi­
ment and therefore has a simple physical meaning. Q 
can be measured by different techniques, including 
amplitude measurements of propagating waves, width 
measurements of spectral lines in spectra of free oscil­
lations and, of course, phase-shift measurements be­
tween stress and strain in forced oscillations. 

An important point to note is that Eq. (120), and 
similarly Eq. (121), can be considered as a linear filter 
equation. The filter, represented by the viscoelastic 
modulus, must be causal, i.e. the filter output p(t) in the 
time domain must not start earlier than the filter input 
s(t). This requirement imposes relations between M 1 

and M 2 , or A and cp, which are called dispersion or 
Kramers-Kronig relations. Those relating magnitude A 
and phase cp [and hence Q, according to Eq. (122)] are 
the most important in the present context: 

1 + 00 cp(w') 
lnA(w)=B--P J -,-dw' 

n -row -w 

1 + 00 In A ( w') 
cp(w)=-P J --dw'. 

n _ 00 w' -w 

(123) 

(124) 

Here, only Eq. (123) is needed. For simple types of fre­
quency dependence of Q, the principal-value integral 
can be calculated analytically and the constant B can 
be determined either at high or at low frequencies. As a 
consequence, the viscoelastic modulus is known for all 
frequencies. If this procedure is followed for the rigidity 
µ(w) and the bulk modulus k(w), and if these complex 
moduli are used instead of the real moduli in the so­
lution of an elastic wave-propagation problem, then the 
frequency-domain solution of the corresponding visco­
elastic problem is obtained. This is the correspondence 
principle of the linear theory of viscoelasticity. The 
time-domain solution of the viscoelastic problem fol­
lows as usual by inverse Fourier transformation. 

Working with µ(w) and k(w) is, however, not the 
procedure that is normally used. Rather, one works 
with wave velocities and hence replaces real velocities 
by complex velocities. For P and S waves, we have the 
complex velocities 

- [Ma(w)] 1/2 a/w)- , 
p 

[M (w)] 112 
f3c(w)= _p - ' 

p 
(125) 

where p is the (real) density. The viscoelastic modulus 
for P waves is 

(126) 
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with the quality factor Qa following from 

Q-1= 4/32Q- I+ (1-4 /32)Q - I. 
a 3 (J.2 µ 3 (J.2 k 

For S waves we have, accordingly: 

Mp(w) = µ(w) 

Qµ=Qµ. 

(127) 

(128) 

(129) 

Qµ and Qk are the quality factors ofµ and k, and a and 
/3 in Eq. (127) are rea l wave velocities taken for a typi­
cal frequency. A familiar assumption is Qk ~ Qw i.e. that 
there is much less dissipation in volume deformation 
than in shear deformation. Then Qa depends only on 
Qµ, and Qa and Qp have the same frequency depen­
dence. In effect this implies a real, frequency-indepen­
dent bulk modulus, at least in the seismic frequency 
band. An often used relation is Qa = 2.25 Qp, correpond­
ing to a2 = 3 {3 2

• 

The procedure to find the complex velocities ( 125) is 
to make assumptions about Qa and Qp as functions of 
frequency, to use Eqs. ( 122) and ( 123) for the determi­
nation of Ma and MP and then to insert these moduli 
into Eq. ( 125). In the following we will again disregard 
the distinction of P and S waves and work with M(w), 
Q(w) and the complex velocity 

(130) 

If Q is a frequency-independent constant, or if it follows 
from the power law 

Q(w)=Q(w,) (:J ( 131) 

with the reference frequency w, and an exponent y be­
tween - 1 and + 1, the steps leading to the complex 
velocity ( 130) are rather straightforward (Muller, 1983) 
and will not be repeated here. These Q laws and related 

absorption-band models have been investigated many 
times in the literature (for a review, see Minster, 1980), 
although often with unnecessary complications such as 
cut-off frequencies introduced for mathematical con­
venience alone. Here we give the results for the case of 
seismological interest, Q ~ 1. If Q is constant, this con­
dition applies for all frequencies, and in the case of the 
power law ( 131) we consider only frequencies for which 
Q ~ 1. In the constant- Q case one obtains the well­
known result 

(132) 

and in the case of the power law (131) 

v0 (w) = v{1 +½ [Q(~,)- Q:w)] 

y n j } 
·cot2+ 2Q(w) . ( 133) 

In these expressions, v is a real velocity. The real part 
of the complex velocity, 

c(w) = Re vc(w), c(w,) = v, ( 134) 

is the phase velocity of body-wave propagation. This 
follows from the plane-wave expression 

~ exp V w (t - x j ) } 

c(w) (1 + 2Q) 

{ ( 
X )} { WX } ~exp jw t --- exp - -- , 

c(w) 2c(w) Q 
( 135) 

which represents a wave with phase velocity c(w). The 
imaginary part of the complex velocity is responsible 
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theoretical seismograms are shown in F ig. 6 

for absorption, since it leads to the exponential decay 
of the wave amplitudes in Eq. ( 135) with increasing 
propagation distance x. 

The frequency dependence of c(w) reflects the dis­
persion that is connected with absorption. Dispersion is 
slight, of course, and both positive and negative ex­
ponents y lead to an increase of phase velocity with 
frequency (Fig. 4). Group velocity can formally be cal­
culated from the phase velocity and has been included 
in Fig. 4. We have calculated synthetic seismograms for 
cases with relatively strong absorpt ion and found that 
first-arrival times agree quite well with travel times 
computed from group velocity at the dominant fre­
quency. Group velocity therefore appears to be a mean­
ingful velocity also in the case of weak dispersion. 

Synthetic-seismogram calculat ions for dissipat ive 
media with the reflectivity method require the specifi­
cation of the reference frequency w,, the real layer ve­
locity c(w,) for P and S waves, the quality factor Q or 
Q(w,) of each layer for P and S waves and the exponent 

y in the case of the power law ( 131 ). The Preliminary 
Reference Earth Model of Dziewonski and Anderson 
(198 1) contains such a specification. Its reference fre­
quency is w, = 2 n s- 1

, and Qa and Qp are assumed con­
stant such that Eq. ( 132) applies and relates the veloci­
ties for d ifferent frequencies. O'Neill and Hill ( 1979) 
have performed seismogram calculations with the re­
flectivity method and Eq. ( 132). They compared the re­
sults with seismograms calculated for the dispers ion­
free, frequency-independent complex velocity 

( 136) 

which leads to acausal body-wave arrivals. Therefore, 
this simple velocity law is not well suited for body­
wave calculat ions, but it is often sufficient for surface 
waves. Incorporation of the three velocity laws ( 132), 
( 133) and (136) in a computer program for theoretical 
seismograms offers enough possibil ities for the modell­
ing of absorption effects. 

An alternat ive to the use of complex velocit ies is 
sometimes the use of dissipation operators which are 
convolved with seismograms, computed for purely elas­
tic media. D issipation operators follow from the plane­
wave delta-funct ion response of a homogeneous ab­
sorbing medium by appropriate averaging of the quali­
ty factor of an inhomogeneous medium along seismic 
rays. The use of such operators, normally correspond­
ing to frequency-independent Q, is very common in 
conjunction with seismogram calculations by general­
ized or asymptotic ray theory. Operators for the power 
law (131) are given by Muller (1983). The use of dissi­
pat ion operators, however, is restricted to body-wave 
investigat ions with little or no interference of phases 
propagating along different rays. Interfering body 
waves and surface waves usually have to be treated 
with the aid of complex velocities. 
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7. Examples of theoretical seismograms 

7./ Explosion-generated body waves 

The first example of theoretical seismograms consists of 
reflection and refraction seismological records, generat­
ed by an explosive point source in a relat ively simple 
model of the earth's crust. The P velocities of this mod­
el are shown in Fig. 5 and the theoretical seismograms 
in Fig. 6. Reasonable assumptions about the S veloci­
ties and the densities were made which need not be de­
tailed here. In the whole model, Q. is 500 and Qp is 
250. The complex-velocity law ( 132) was applied, corre­
sponding to frequency-independent Q and causal ab­
sorption. The source is at depth 30 m and radiates a 
far-field pulse, e.g. for displacement or particle velocity, 
with a dominant frequency of 5 Hz and an effective fre­
quency band from 0 to 15 Hz; 307 frequencies were 
used. 

The complete P - SV response of the model was cal­
culated with far-field expressions similar to Eqs. ( I 04) 
or ( 111 ). Therefore, reflect ions and multiple reflections, 
produced by the earth's surface, are included. Due to 
the nature of the explosion there is no direct radiation 
of S waves. However, because of the proximity of the 
explosion to the surface, S waves are effectively ra­
diated in the form of the surface reflection p S and the 
non-geometrical wave S* (Hron and M ikha ilenko, 
1981 ). 

The phase-velocity range in the calculation was 
3.54- 1, I 00 km/s, corresponding to the slowness window 
0.0009- 0.2825 s/ km and including all body-wave veloci­
ties of the model; 1,300 equidista nt slownesses were 
used. In spite of cosine taper ing from 3.54 to 3.56 km/s 
a nd from 1,000 to 1,100 km/s, the amplitudes of the 
numerical phases, mentioned in Section 5.3, are rather 
strong at short distances. The Rayleigh wave tied to the 
surface of the model is suppressed, because its slowness 
falls outside the slowness window. 

The theoretical seismograms in F ig. 6 show the di­
rect wave 1:, and the Moho reflections PM P, PM S+ SM P 
a nd SMS as the main phases. Multiple reflections are 
very weak. As mentioned above, SM P and SM S actually 
do not leave the source as SV waves but are produced 
at the surface by P-to-SV conversion and S* exci­
ta tion. The amplitude behaviour of the Moho reflec­
tions is mainly determined by the refl ectivities of the 
Moho transition. Time-domain a liasing has not been 
suppressed. As a consequence, SMS jumps from (cor­
rect) late arrival t imes to (incorrect) early arrival times 
at a distance of about 140 km. T he reverse jump is seen 
in the fast numerical phase at about 20 km. 

One purpose of the seismogram calculations for the 
crustal model of Fig. 5 and other models was to inves­
tigate quantitatively the amplitude ratio of steep-angle 
and wide-angle Moho reflections PM P. Steep-angle re­
flect ions are st rongly influenced by the specia l form of 
the velocity and density transition from the lower crust 
to the uppermost ma ntle, whereas wide-angle reflec­
tions around the critical point have more similar ampli­
tudes. A first-order d iscontinuity is connected with an 
amplitude rat io of steep- to wide-a ngle reflections 
around 0.5. La minated transitions, characterized by ve­
locity a nd density reversals, which have been suggested 
several t imes (e.g. F uchs, 1969; Deichmann and An-
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Fig. 7. P velocity-depth function of a model relevant to seis­
mic prospecting for coal. The synthetic seismograms are 
shown in Fig. 8 

sorge, I 983), produce even larger am plitude ratios. The 
observational evidence from explosion-seismological ex­
periments is rather to the contrary, i.e. steep-angle 
Moho reflections appear to be considerably weaker 
than wide-angle reflect ions. This points to a Moho 
transition similar in character to the transit ion assumed 
in Fig. 5, with partly gradual and partly step-like veloc­
ity and density increase without pronounced la mi­
nation. 

Theoretical P - SV seismograms for a complicated 
model (Fig. 7), taken from seismic prospect ing for coal, 
are shown in Fig. 8 as a second example. The model 
represents carboniferous rocks conta ining several 
groups of coal seams and overla in by a complicated 
overburden. The source is a n explosion a t depth 30 m, 
i.e. in the first layer. The frequency range is 0- 300 Hz 
wi th a dominant frequency of 100 Hz; 307 frequencies 
have been used. The phase-velocity range is I ­
I, I 00 km/s, and 1,300 slownesses are distributed over 
this ra nge. Since the lowest S velocity of the model is 
1.01 km/s, the seismograms include a ll body waves of 
the model, but the Rayleigh waves, connected with the 
waveguide formed by the first layer a nd represented by 
the low frequencies at the end of the seismograms in 
Fig. 8, may no t be modelled completely. Q. is 1,000 and 
Q11 is 500 throughout the model. Time-domain aliasing 
has been successfully suppressed by choosing the time r 
(see Section 5.3) equal to 0.25 s; this is about 25 % of 
the seismogram length. 

The seismograms of Fig. 8 are t ru ly complicated re­
cords with much interference and only few phases 
which can be rela ted to particular layers of the model. 
The band of strong amplitudes running across the re­
cord section corresponds to waves in the top layers of 
the overburden. The weaker energy prio r to this band 
is due to waves that have travelled deeper th rough the 
overburden. The weak phases in the time interval 0.4-
0.55 s at short distances are compressional reflections 
from the groups of coal seams. 

7.2 Earthquake-generated swface waves 

The theoretical seismograms in Fig. 9 illustrate the 
possibility of calculating surface waves with the reflec­
tivity method and of obtaining absolute amplitudes, e.g. 
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for displacement or particle velocity. A simple three­
layer crust-mantle model has been assumed: the layer 
thicknesses are 15/5/oo km, the P velocities 
5.0/ 7.2/8.1 km/s, the S velocities 2.9/4.2/4.7 km/s, the 
densities 2. 7 / 3.0/3.3 g/cm 3, the quality factors 
700/700/ 225 for P waves and 300/300/ 100 for S waves. 
Thicknesses, velocities and densities were slightly modi­
fied by the earth-flattening transformation. A strike-slip 

double couple is located at depth 10 km. Its moment 
function, whose spectrum M(w) enters the double-cou­
ple moment tensor (93), corresponds to the build-up of 
the moment 102 5 dyne cm over a rise time of 10 s. The 
frequency range is 0-0.4 Hz and 400 frequencies were 
used. The simple complex-velocity law (136) was as­
sumed, the phase-velocity range is 2- 15 km/s and the 
number of slownesses 500. 
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The synthetic seismograms for particle velocity 
in Fig. 9 at epicentral distances of 1,000, 1,500 and 
2,000 km were calculated with the aid of Eqs. (111) and 
(114), respectively. The receivers have an azimuth of 
30° with respect to one of the two vertical nodal planes 
of the double couple. The main wave groups in Fig. 9 
are surface waves, and the Love waves are much stron­
ger than the Rayleigh waves. In both cases, the main 
contributions come from the fundamental and the first 
higher mode. The Love waves show the typical surface­
wave picture, i.e. regular dispersion in the first part of 
the seismograms and pronounced (fundamental-mode) 
Airy phases. The fundamental-mode Rayleigh wave 
contributes the inversely dispersed Rg wave, and the 
first higher-mode Rayleigh wave is dominated by an 
Airy phase with maximum group velocity. 

Seismogram calculations like those for Fig. 9 are 
useful, among others, for determinations of the moment 
and moment rise time of earthquakes from long-period 
seismograms. The rise time is a rough measure of the 
rupture duration, and an estimate of rupture length fol­
lows from it by multiplication with a reasonable value 
for the rupture velocity. Modelling of Love waves at 
distances up to 20° can be very successful, even with 
simple average models of the crust (Brustle and Muller, 
1983). Rayleigh waves appear to be more strongly influ­
enced by details of the crust-mantle waveguide. 

8. Conclusions 

The extended form of the reflectivity method presented 
here will probably occupy an important place in the 
spectrum of synthetic-seismogram methods for verti­
cally inhomogeneous media. The main advantage in 
comparison with propagator methods in their usual 
form (e.g. Kind, 1978; Woodhouse, 1980; Kind and 
Odom, 1983) is the possibility of calculating partial re­
sponses of the medium. The main advantage in compari­
son with wavenumber summation methods working in 
the time domain, e.g. the Alekseev-Mikhailenko meth­
od (Alekseev and Mikhailenko, 1980), is that absorp­
tion is easily modelled by complex wave velocities. 
However, the reflectivity method cannot be considered 
as being the optimum method in all cases. For instance, 
for models with many layers per wavelength the Alek­
seev-Mikhailenko method will require less computing 
time than the reflectivity method because the essential 
step, a finite-difference calculation in the depth-time 
domain, is independent of the model complications; 
whereas the corresponding step in the reflectivity meth­
od requires more computing time for more complicated 
models (Korn and Mi.iller, 1983). Moreover, the Alek­
seev-Mikhailenko method can be formulated in the fre­
quency domain, such that absorption is easily incorpo­
rated (Korn, 1985). Also, it remains to be seen whether 
the reflectivity method in the form described here re­
quires less or more computing time than propagator 
methods. 
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