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Abstract. The problem of inverting or modelling one-dimen
sional magnetotelluric data can, today, be considered as 
largely resolved. Attention now focuses on the class of ac
ceptable models. Viewed in the space of model parameters 
this class occupies a singly connected volume, bound with 
a surface where the standard deviation B between measured 
and calculated response exceeds the minimum Bo of the best
fitting model by a constant factor (typically B ~ 1.10 B0). 

This volume of acceptable models is described by its inter
sections with the parameter axes, and also by the extreme 
excursions possible for any of the model parameters when 
all the other parameters are adjusted accordingly. These 
extreme excursions therefore represent "trade-off" condi
tions among the model parameters and are summarized 
in the "trade-off matrix". In a sense this is a generalization 
of the parameter correlation matrix, which gives only local 
information in the vicinity of a proposed model. The trade
off matrix, however, is independent of any initial model. 
Another important question considered deals with the 
correct choice of the number of layers with which to model 
a data set. Whereas a single minimum of B is found with 
the correct number n0 , when this number is too small the 
information contained in the data is spread among several 
isolated minima. When n > n0 the problem becomes "ill
posed ". There are too many degrees of freedom and it 
becomes possible, then, to move in model space in direc
tions at right angles to the meaningful dimensions without 
finding a clear minimum. The problem is analogous to a 
vanishing determinant in linear algebra. To find a regular 
problem again it is necessary to specify auxiliary constraints 
provided, for example, by other soundings or prior geologi
cal knowledge, to compensate for the increased number 
of variables. 

Key words: Parameter trade-off in 1 D/MT - Magnetotel
luric modelling - Degrees of freedom in geophysical inver
sion 

The Concept of Acceptable Models 

The last two or three years have seen many new schemes 
with which to invert or model one-dimensional (1 D) magne
totelluric (MT) sounding results (Shoham et al., 1978; Jones 
and Hutton, 1979; Oldenburg, 1979; Parker, 1980; Parker 
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and Whaler, 1981; Larsen, 1981; Eichler, 1980; Fischer 
et al., 1981; Fischer and Le Quang, 1981; Hobbs, 1982). 
If it is safe to assert, today, that the best-fitting 1 D 
model to a given MT data set can usually be found, the 
same cannot be said as regards the family of models com
patible with this set. By this criterion of compatibility we 
mean the ensemble of models yielding response functions 
which lie within a certain range of the standard deviation 
Bo= Bmin of the best-fitting model. In what follows the stan
dard deviation B defined by Fischer et al. (1981) will be 
used. For data points with uniform weights this definition 
reduces to 

( 1) 

where Zc(T;) and Zm(T;) refer to calculated and measured 
impedances at the N measurement periods T;. 

The data are generally given in terms of apparent resis
tivity Pa (T;) and phase </J (T;), such that 

(2) 

If the data points Pa(T;) and </J(T;) are given weights, which 
may appropriately be chosen as inversely proportional to 
the error ranges of the data, it becomes necessary to 
compute BP and Bq, separately, along the lines proposed by 
Fischer et al. (1981). The separation of BP and Bq, clearly 
suggests that it is also possible to model sets with different 
numbers of Pa(T;) and </J(T;) data points, in particular data 
sets consisting only of apparent resistivity measurements. 
When this happens the quality of the fit is appraised in 
terms of BP alone. 

The idea of asking for the family of models compatible 
with the measured data has at least two quite different ori
gins. Looking at the smooth response function of the best
fitting model traced through the measured data, one is led 
quite naturally to ask about the family of models yielding 
an almost equally good fit. Quantifying the notion of 
"almost equally good fit" is not too difficult, since it is 
usually quite easy to distinguish models whose response 
yields a misfit which is 20% above B0 , whereas an increase 
of only 10% is barely noticeable, or not noticeable at all. 
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Fig. l. MT data for the SITE 4 station (Schnegg et al., 1982). Only 
the apparent resistivity has been modelled. The solid line corres
ponds to the best-fitting model (Tables 1 or 2), the dashed line 
belongs to a geologically acceptable model 

This 10% limit is admittedly somewhat arbitrary, but the 
arguments that follow are independent of the choice of this 
limit, which could equally well be set at another value. 
Henceforth, however, a model will be deemed acceptable 
if its standard deviation lies within the range of a 10% 
increase over the best-fitting value t:0 • 

An entirely different approach to the notion of accept
able model arises when the best-fitting model obtained via 
the minimization of i; is compared with the geological struc
ture to which the sounding data refer. Certain parameters 
of the structure under MT investigation may be quite well 
known already from other studies. The question then arises 
whether these known parameters can be fitted into a com
promise model whose response remains within the accept
able range of 1.10 t:0 . This second point of view brings 
the trade-off notion to the fore, inasmuch as it is generally 
quite possible to find an acceptable model agreeing with 
the known geological parameters, provided the permissible 
range of the remaining model parameters is reduced. An 
example of this trade-off notion can be given in relation 
to the data set of Fig. 1 (Schnegg et al., 1982). The best
fitting model to these Pa(T) data comprises a lowest or 
fourth layer with p4 =104 Qm. In fact the modelling process 
would even yield a slightly higher resistivity, but the model 
search is restricted by the following arbitrarily set bounds: 
0.1~Pj~104 Qm, hk"i;;_ 1 m. In this particular sounding the 
fourth layer refers to a well-known limestone base, with 
large areas nearby where it reaches the surface. Its electrical 
resistivity is therefore well established by other methods 
such as laboratory measurements and geoelectrical sound
ings, and a value of 1,200 Qm is generally favoured. Fur
thermore, the third layer is a thin highly conducting marl 
formation, whose thickness does not exceed 20 m. Is it pos
sible to find an acceptable model with prescribed parameter 

MODELLING WITH VARIOUS VALUES OF p3 
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Fig. 2. Trade-off relationship between p 3 and h3 for the data from 
SITE 4 station (cf. Fig. 1) 

values of p4 =1,200 Qm and h3 = 0.020 km? As seen in 
Figs. 1 and 2 and Table 2 this is perfectly feasible, provided 
the value of p 3 is reduced to about 1 Qm. In this particular 
case all that seems to matter is the layer conductance h3 / 

p 3 ~20-25 mho, as long as p 3 remains below about 10 Qm 
and h3 below 200 m. But the trade-off process is connected 
with an obvious gain: prescribing the thickness h3 of the 
marl formation reduces the uncertainty of its resistivity p 3 • 

The Trade-Off Surface 

The modelling process is conveniently described in the space 
of model parameters with logarithmic coordinates: 

xj= log 10 (p)pj0 ). 

Yk=2 log1 0 (hk/hko). 
(3) 

Pjo and hkO referring at first to the initial model chosen. 
The minimization of i; is carried out by a search routine 
which plays on the various model parameters, seeking the 
coordinates of the point with the lowest i; = i; 0 (Fischer and 
Le Quang, 1981 ). The search strategy generally does not 
attempt to determine the most appropriate number n0 of 
layers. But this number is easily obtained by looking at 
the i;0 values achievable with various numbers of layers. 
Figure 11, pertaining to the four examples chosen, clearly 
shows that for n < n0 , a rapid increase of i;0 occurs, whereas 
t:0 usually remains almost constant when n > n0 . The impor
tance of determining the correct number n0 will be dealt 
with in a later section. 

Once n0 and the coordinates of the best-fitting model 
have been secured it is convenient to move the origin of 
the space of model parameters to this point. As the various 
examples will show, this point, now with coordinates (pj0 , 

hkO), does not necessarily correspond to the absolute 
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Fig. 3. Example of trade-off surface in two dimensions. The inter
sections with the axes correspond to the partial sensitivity matrix 
data, whereas the coordinates of the extreme excursions in the 
direction of the axes yield the trade-off matrix data 

minimum of B; the reason for this is related to the bounds 
mentioned already for the family of acceptable models. It 
often happens that the true absolute minimum of B would 
trespass these bounds, generally leading toward 0 or + oo 
for Pi and toward 0 for hk. 

Table 1. Partial sensitivity matrix for the SITE 4 data. Apparent 
resistivities are given in .Qm and thicknesses in km. All these models 
yield c,P=1.10 sP 0 =76.25·10- 3 , except the lowest right one where 
£~remains at the value£~ because of the bound on p4 

11.0 
0.0375 

67.0 
0.289 
1.88 
0.0420 

1540 

P10=11.9 
h, 0= 0.0425 
P20 = 83.4 
h20 = 0.321 
P30= 2.10 
h 30 = 0.0470 
P4o= 104 

£~ = 69.32 .10- 3 

13.0 
0.0476 

111 
0.359 
2.35 
0.0525 

104 

Except for directions connected with the above-men
tioned bounds, it is clear that, moving away from (pi0 , hkO) 
in any direction of model parameter space, B will be seen 
to increase above its minimum value B0 . Under the condi
tion that n0 has been chosen correctly, Fischer and Le 
Quang (1981) have shown that this increase is very smooth, 
even though there is generally a high degree of anisotropy. 
But the surface corresponding to a 10% increase of B, i.e. 
the B= 1.10 Bo surface, is a well-defined entity. A graphical 
example in only two dimensions is shown in Fig. 3. Inside 
this surface is the entire collection of models with standard 
deviations B ~ 1.10 B0 , and the question springs to mind 
whether this collection comprises any structures whose pa
rameters are in accord with geological facts known already. 
Unless the sounding has been strongly perturbed by un
wanted signals, it is quite probable that there will be such 
models among the acceptable collection, and these models 
will constitute a sub-class whose other parameters are gen
erally more constrained than those of the entire collection. 
In other words, there will be a trade-off between the para
meters of which the permitted range is strongly limited by 
the known geology, and all the remaining parameters. It 
is fair, therefore, to look at the B = 1.10 Bo surface as the 
trade-off surface, enclosing a volume which will be called 
the trade-off volume. More rigorously speaking, B is a 2n 
dimensional surface in parameter space and B = 1.10 Bo in 
effect represents a trade-off contour, enclosing the trade-off 
surface element. 

The trade-off surface must be expected to have a compli
cated structure. Fischer and Le Quang (1981) have shown 
that in certain directions of parameter space B increases 
very fast, whereas there are curved valleys at the bottom 
of which B remains close to Bo over very long distances. 
While it may be difficult to describe the trade-off surface 
in detail, two information sets can be given. Visualizing 
the trade-off surface as in Fig. 3 we may ask, first, about 
its intersections with the parameter axes as defined by Eq. 
(3). Approximate values of these intersections are listed in 
Tables 1, 3, and 5 for three data sets chosen as examples 
in the present study. These Tables, which we call partial 
sensitivity matrices, are obtained by calculating B for models 
in which all parameters, except one, retain the coordinates 
of the minimum B0 . The parameter singled out is progres
sively varied until B reaches the limiting value B = 1.10 B0 . 

The corresponding parameter value is recorded in the 
partial sensitivity matrix. A graphical representation of the 
matrix is shown in Fig. 7, the trade-off diagram. In both 
Fig. 7 and partial sensitivity matrices, the parameters are 
increased to the right and decreased to the left. 

Table 2. Trade-off matrix for the SITE 4 data. Apparent resistivities are given in .Qm and thicknesses in km. The values of f; are 
also given; they are close to 1.10 £0, except when a bound is reached, in which case they are usually close to c0 

EP- p4 h3 p3 h2 P2 h, p, p, h, P2 h2 p3 h3 p4 Eµ+ 
(1o-3) (1o-3) 

76.8 104 0.0362 1.59 0.352 88.7 0.001 0.357 p,=11.9 1§_1 0.0996 1830 0.258 1.76 0.0425 104 76.3 
70.3 104 0.0642 3.02 0.368 56.9 0.001 0.468 h, = 0.0425 18.0 0.104 104 0.269 0.797 0.0193 104 76.5 
76.3 104 0.0591 3.07 0.398 42.8 0.001 0.614 P2 = 83.4 14.5 0.0739 104 0.276 1.66 0.0409 104 69.4 
76.2 104 0.460 17.8 0.146 104 0.0519 12.6 h1= 0.321 2.19 0.00427 48.0 0.444 0.100 0.00189 104 76.5 
69.4 104 0.00244 0.100 0.290 1200 0.0734 14.6 p3= 2.10 9.85 0.0386 2080 0.154 12.1_ 0.494 104 76.3 
76.5 104 0.00177 0.100 0.413 47.2 0.00881 4.36 h3= 0.0470 9.22 0.0356 104 0.154 18.8 0.499 104 76.2 
76.4 1150 0.0480 2.31 0.307 90.2 0.0430 11.9 p4= 104 11.9 0.0423 83.2 0.322 2.10 0.0470 104 69.3 

£~=69.32·10- 3 
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Table 3. Partial sensitivity matrix for station AHA (data courtesy 
of fodicke 1980a). Apparent resistivities are given in Qm and thick
nesses in km. All these models yield i; = 1.10 i;0 = 27. 79 · 10- 3 

2.62 Pio= 2.69 2.77 
2.67 h10= 2.83 2.98 

19.6 p20 =34.6 218 
3.77 h10= 4.11 4.48 
1.28 P30= 1.39 1.51 
4.64 h3o= 5.18 5.77 

10.8 p40 =16.5 26.8 

s0 =25.27·10- 3 

In most instances, however, it is possible to vary a given 
parameter beyond the limits corresponding to the intersec
tions between trade-off surface and parameter axis, if appro
priate variations of the other parameters are permitted. Fig
ure 3 gives an illustration of this statement. This leads to 
the concept of trade-off matrix, of which three examples 
are given in Tables 2, 4 and 6. These tables are again ob
tained by imposing a progressive variation to a single se
lected parameter; this time, however, all the other para
meters are adjusted freely with the minimization routine 
(Fischer and Le Quang, 1981) in order to reduce B to the 
lowest possible value, under the two constraints of the single 
imposed variation and the bounds described before. The 
extremal parameter sets for which it is possible to find 
models which satisfy B ~ 1.10B0 are again listed in the 
trade-off matrices, the underlined diagonal elements of 
which are the extreme excursions possible for the selected 
parameter (minimum at left, maximum at right). These co
ordinate sets represent the projections on the parameter 
axes of the extreme extensions of the trade-off surface, ac
cording to the illustration shown in Fig. 3. Clearly the trade
off matrix tells us under what trade-off conditions a particu
lar parameter may be given a pre-determined value. The 
trade-off diagram of Fig. 7, on the other hand, only con
tains part of the trade-off matrix information. What the 
trade-off matrix does not attempt to answer is under what 
conditions more than one parameter may be pegged to pre
determined value. However, such questions present no 
problem to our search routine, which can be programmed 
to seek the best-fitting model under a great variety of pre
scribed conditions, as shown in the following paragraph. 

For the structure concerning the first example, several 
geological parameters are known already: p 2 ~ 80 Qm, h3 ;:;; 
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Table 5. Partial sensitivity matrix for station NEW (data courtesy 
of Jones and Hutton, 1979). Apparent resistivities are given in 
Qm and thicknesses in km. All these models yield 
c=1.10s0 =59.77·10- 3, except the uppermost right one where c, 

remains at the value c0 because of the bound on Pi 

870 Pio= 104 104 
11.7 h10= 13.5 15.3 
89.9 P20= 96.5 103 
43.9 hzo= 49.0 54.8 

455 p30 =626.2 928 
218 h3o=270.9 346 

2.53 p40= 35.3 146 

s0=54.34· 10- 3 

20 m, and p4 ~1,200 Qm. As seen in Fig. 1 these factors 
can easily be accommodated with the condition B;:;; 1.10 B0 . 

The best model with fixed parameter values h3 = 20 m and 
p4 = 1,200 Qm (since p 2 had been found in the correct range 
around 80 Qm, it was not fixed) that our search routine 
returned, yields B=0.0753 withp 1 =10.6Qm, h1 =34.9m, 
p 2 = 76.0 Qm, h2 = 330 m, and p 3 = 0.985 Qm. This model 
corresponds to the dashed line in Fig. 1, which seems to 
fit the data no less well than the solid line of the best possi
ble four-layer model, whose B =Bo= 0.0693. 

The term trade-off, as used in the present paper, describes 
compromise relationships among the model parameters 
which have to be obeyed when attempting to bring one 
or more of these parameters into some predetermined 
ranges. This meaning differs from the standard usage of 
the term trade-off in inversion theory, as employed also 
for induction or MT studies by Parker (1970) and Hobbs 
(1977). The standard trade-off diagrams express, at any 
given depth z, the accuracy with which the conductivity 
a(z) is resolved, in particular they show that resolving 
power and parameter stability cannot be maximized simul
taneously: the term trade-off thus applies to the relation 
between these two concepts rather than to the model 
parameters themselves. 

Our approach to the determination of the range of pos
sible models is more closely related to the method of Single 
Value Decomposition (SYD) proposed by Lanczos (1961) 
and applied in various forms by many others (Wiggins, 
1972; Jackson, 1973; Jupp and Vozoff, 1975; Vozoff and 
Jupp, 1975; Johansen, 1977; Edwards et al., 1981; and 
Rokityansky, 1982), or to the ridge regression of Inman 
(1975). In these methods a fit indicator B in model space 
is studied in detail around a predetermined initial model. 

Table 4. Trade-off matrix for station AHA (data courtesy of JOdicke 1980a). Apparent resistivities are given in Qm and thicknesses 
in km. The values of c are also given; they are close to 1.10 c0, except when a bound is reached, in which case they are usually 
close to c:0 

/;_ p4 h3 p3 hz P2 hi Pi Pi hi P2 hz p3 h3 p4 "+ (1o-3) (10-3) 

27.82 16.5 4.00 1.24 6.50 6.19 1.51 2.37 Pi= 2.69 2.91 3.40 167 4.25 1.04 3.77 17.4 27.83 
27.77 17.5 3.72 1.17 6.83 5.89 1.46 2.39 hi= 2.83 2.89 3.58 104 5.08 0.335 1.14 16.5 27.81 
27.82 16.9 3.32 1.07 7.03 5.70 1.49 2.44 p2 =34.6 2.70 2.94 104 3.81 1.42 5.38 16.4 25.22 
27.96 25.3 10.8 2.39 2.70 436 2.56 2.62 hz= 4.11 2.46 1.53 5.76 8.07 0.345 0.978 18.4 27.66 
25.65 13.3 0.318 0.100 5.34 1240 3.21 2.75 p3= 1.39 2.62 2.56 102 2.87 2.41 11.0 30.2 27.81 
25.64 13.3 0.313 0.100 5.58 34.4 3.05 2.75 h3= 5.18 2.62 2.59 446 2.84 2.38 ill 35.5 27.80 
27.85 8.14 2.46 0.825 4.36 154 2.93 2.67 p4= 16.5 2.69 2.77 66.0 3.42 2.02 9.22 53.5 27.77 
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The contour of acceptable models is something like a hyper
ellipsoid, whose orientation defines a set of new coordi
nates, each of which in general involves several or all of 
the original coordinates (the model parameters). Since the 
center of the hyperellipsoid is fixed it gives information 
on the topography of e around that predetermined point; 
in particular if the model is located in a deep curving valley, 
the orientation of the valley floor will determine one of 
the hyperellipsoid axes. 

The method presented in this paper is conceptually 
simpler than those quoted above, but it is more general. 
It has become possible to implement this simple approach 
only because we dispose of an efficient minimization 
program capable of returning the best-fitting model in only 
a few seconds of computing time. The search strategy moves 
from model to model and is not tied to a predetermined 
initial point in the space of parameters. Our trade-off and 
partial sensitivity matrices thus describe the surface bound
ing the acceptable models in much more general terms, and 
it is for convenience only that the best-fitting model, with 
e = e0 , is chosen as origin. By contrast, the hyperellipsoid 
gives local information about the shape of the trade-off 
surface, which, as shown by Fischer and Le Quang (1981) 
is in general highly anisotropic with a long curved valley 
close to the level of the lowest e values. If the initial model 
is not within the range of the deep valley, the hyperellipsoid 
will be unable to yield any information on the orientation 
of the valley. 

The trade-off surface defined in the present paper is not 
dependent on any linearization and its topology is not af
fected by the correct choice of an initial model. Choosing 
a model away from the true best fit simply increases the 
value of e at the trade-off surface to a value slightly larger 
than 1.10 e0 . But this is unlikely to change the general shape 
of the trade-off surface. The trade-off matrix may constitute 
a more "brute-force" approach to parameter trade-off, but 
it is more general than the SYD technique. 

Some Typical Trade-Off Conditions 

For electric or electromagnetic soundings to be capable of 
yielding geologically interesting information, the structure 
under study must exhibit reasonably large resistivity con
trasts. This is true in particular for MT soundings. Restrict
ing our attention to 1 D configurations, the above statement 
implies that structures with layers of alternately high and 
low resistivities are especially suitable for MT investigation. 

Consider a good conductor, as for example layer 3 of 

the first example (Fig. 1 ), sandwiched between the resistive 
layers 2 and 4. This is probably the most familiar trade-off 
situation in MT. If indeed p2/p 3 and p4/p3 ~10 and ifthe 
third layer thickness h3 is sufficiently large, the apparent 
resistivity p0 (T) will approach its extreme negative slope, 
i.e. d In p0 (T)/d log 10 T--+ -2.303 over a certain range of 
periods, as seen in Fig. 1. This is the transition zone in 
which Pa(T) is controlled mainly by the two resistivities 
p 2 and p 3 . In the Fig. 1 example this range covers the peri
ods from about 13-50 ms. No further change of slope will 
occur if p 3 is decreased by any constant factor c > 1. The 
only thing that this decrease will produce is to lengthen 
the portion of the Pa (T) curve with the extreme slope. It 
is quite well known, however, that the original curve length 
can be recovered through a simple reduction of the thick
ness h3 by the same factor c. In other words, any changes 
in p3 and h3 which maintain the original conductance h3 / p3 

and which satisfy the "high contrast" requirements (p 2 / p3 

and p4/p3 ~10), yield the same response function Pa(T). 
This is shown graphically in Fig. 2. The same remarks also 
apply to the phase response, plotted as </J in degrees vs. 
log 10 T, as there is again an extremal negative slope which 
may approach -65.96 when p3/p 2 --+ 0. 

Therefore, Pa(T) and </J(T) data with negative slopes 
close to the limiting values consitute a typical trade-off situ
ation from which the only conclusions that can be drawn 
are upper bounds for the layer thickness and resistivity, 
and a fairly reliable value for the layer conductance h3/ p3 • 

If there is no independent information as to the value of 
either p 3 or h3 , neither parameter can be determined sepa
rately. It also follows from this that the depth to the under
lying resistor cannot be deduced from the MT sounding 
alone. 

The second situation which we should like to consider 
appears at first to be just the opposite of the previous one, 
but it will lead to conclusions which are not simply "oppo
site". Here two conducting layers sandwich a highly res
istive formation, as with the top three layers in the second 
example, pertaining to Figs. 4, 5 and 11. If p2 / p 1 and 
p2/p3 ~10, and if h2 is again sufficiently thick, p0 (T) and 
</J(T) will approach their extreme positive slopes in a given 
range of periods, here T=70-200 s, 

d In Pa (T)/d log 10 T--+ 2.303, d </J(T)/d log 10 T--+ 65.96. 

In this situation it becomes impossible to determine p 2 , 

except by specifying a lower limit. The length of the steeply 
sloping curve, on the other hand, is controlled by the layer 
thickness h2 which is thereby determined with a high degree 

Table 6. Trade-off matrix for station NEW (data courtesy of Jones and Hutton, 1979). Apparent resistivities are given in .Qm and 
thicknesses in km. The values of i; are also given; they are close to 1.10 i; 0 , except when a bound is reached, in which case they 
are usually close to i;0 

1;_ p4 h3 p3 h2 P2 hi P1 P1 h1 P2 h2 p3 h3 p4 B+ 

(10- 3) (10- 3) 

59.71 36.9 262 699 30.1 70.1 27.5 294 P1 = 104 10413.5 96.5 49.0 626 271 35.3 54.34 
59.95 43.7 211 104 86.1 126 lli 104 h1= 13.5 286 37.7 16.3 5.79 682 273 44.0 59.99 
59.00 20.0 346 396 0.0323 0.100 26.3 104 P2= 96.5 104 8.86 128 85.8 6730 214 48.1 59.47 
59.45 10.9 341 375 0.0266 0.100 31.0 409 h2 = 49.0 104 9.11 124 88.7 104 233 20.1 59.19 
59.62 5.03 327 342 26.7 71.7 16.1 104 p3 =626 104 11.9 108 70.2 104 202 63.1 55.11 
59.74 219 111 104 60.0 104 12.5 104 h3 = 271 104 15.9 78.5 32.4 446 401 0.533 59.67 
56.38 0.100 326 498 44.4 92.5 13.8 104 p4= 35.3 104 13.5 98.7 54.0 1730 131 260 60.15 

e0 =54.34· 10- 3 
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Fig. 4. MT data for station AHA (data courtesy of JOdicke, 1980 a) 
and best-fitting four-layer response (cf. Tables 3 or 4) 

of certainty. When p2 /p 1 is made very large the sloping 
portion will tend toward its high limit and so h2 will have 
to be reduced somewhat to effect the required levelling of 
the Pa(T) curve. If, however, one tries to model the data 
with the smallest possible ratio p2 /p 1 the thickness h2 will 
have to be increased slightly to produce the levelling off 
at the same value of Pa(T). But unlike what was observed 
in the previous example, there is only a weak trade-off rela
tion between resistivity p 2 and thickness h2 . All we observe 
in Fig. 5 and Table 4 is that h2 is at the upper end of its 
range (about 6 km) when p 2 is close to its low bound (about 
7.5 Qm), whereas h2 drops to 3.8 km when p 2 ---> oo. Evi-
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dently this second situation leads to an entirely different 
trade-off relationship than the first one. The layer resistivity 
is given only by a lower bound, but its thickness is deter
mined with rather high accuracy. It is easy to observe with 
layers no. 2 of the first and second examples and layer no. 3 
of the third one (Tables 2, 4, and 6), that the thickness 
range of such a resistive layer usually spans a factor of 
about two, and that thick layers always correspond to the 
lowest permitted resistivities. 

Another trade-off situation seems to relate the resistivi
ties of adjacent layers. In the third example (Table 6) it 
can be observed that when p 3 is high, p 2 and p4 are generally 
high too. The same is true for the relation between p 3 and 
p4 in the second example (Table 4). This means that the 
resistivity contrasts are often as important as the absolute 
values of the resistivities. 

More obvious is the relationship between the thickness 
of a layer and the resistivity of adjacent layers. If a layer 
is made as thick as possible, it is likely that the next deeper 
layer will require a greater resistivity contrast, in order to 
counteract the decrease in curvature that the thick layer 
engenders. This can be seen clearly in Tables 2 and 4, where 
the largest h2 are coupled with the lowest p 3 . In Table 6 
the largest h3 are strongly correlated with low p4 . 

Choosing the Correct Number of Layers 

In the preceeding sections the importance of modelling with 
the correct number of layers has been stressed on several 
occasions. Once again this is a problem whose answer 
depends decisively on the availability of independent infor
mation about the structure under study. Let us begin with 
the most common situation, where the only information 
available is the MT sounding data. Under these circum
stances several reasons can be invoked which emphasize 
the importance of choosing the correct number n0 of layers 
with which to model the data. Suppose n0 has been deter
mined, as for the first three structures chosen as examples 
(Figs. 1, 4 and 6). It is well known that any number of 
thin layers can be added to the structures without spoiling 
or improving the fit significantly. This is clearly seen in 

MODELLING WITH VARIOUS VALUES OF p2 

AHAUSEN 
35~~~~~~~~~~~~~~---,9 

8 

7 

6 

--------J4 
Fig. 5. Trade-off relationship between p2 and h2 for 
station AHA (cf. Fig. 4) 
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Fig. 6. MT data for station NEW (data courtesy of Jones and 
Hutton, 1979). The solid line corresponds to the best-fitting model 
(cf. Tables 5 or 6). The dashed lines are the responses of the best
fitting models to, respectively, the Pa(T) data or the r/J(T) data 
(cf. Fischer and Le Quang, 1981) 

PARAMETER SENSITIVITY 

Fig. 11. Adding these extra layers is unjustified because it 
is equivalent to attributing more information to the data 
set than it actually contains. Good data often appear as 
highly correlated, but a high correlation implies a reduction 
of the number of degrees of freedom. In other words, good 
data can generally be accounted for well with few layers. 

But there is another danger in modelling with too many 
layers. As was shown by Fischer and Le Quang (1981), 
in the space of model parameters with the correct dimen
sions 2n0 -1, the absolute minimum c:0 occurs at a clearly 
identifiable isolated point: there are no neighbouring 
minima and no clusters of local minima. But these state
ments may well not remain true in a space expanded into 
more dimensions. The added layers represent more degrees 
of freedom and with these one moves into the sphere of 
the so-called "ill-posed problems", whose solution is unsta
ble against minute changes in the data (Tikhonov and Ar
senine, 1974). An analogous situation occurs in linear 
algebra, when the determinant of a system of equations 
becomes very small, or even vanishes. To render the prob
lem regular again it is necessary to stipulate auxiliary re
strictive conditions (add more equations to compensate for 
the excess of variables). In model space the extra layers 
correspond to additional dimensions. It then becomes possi
ble to move away from the original well-defined minimum 
into directions at right angles to all the former dimensions, 
and in these new directions the original minimum is ill
defined. 

Modelling with too few layers has its pitfalls too. Above 
all it means that the modelling process becomes, right from 
the start, unable to extract all of the information contained 
in the data. A further very undesirable consequence of mod
elling with too few layers is the following. Whereas we were 
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Fig. 8. Best-fitting three-layer response to the AHA data (cf. 
Fig. 4). The solid line attempts to fit the entire data set with a 
three-layer model at the top of the structure. The fit is poor because 
the minimization routine tries to avoid large misfits also at the 
long periods. The minimum of B is therefore shallow. If the data 
at long periods are ignored the fit improves dramatically (dashed 
curve) and B exhibits a much deeper minimum 

generally unable to find, in the space with the correct di
mensions 2n0 -1, other minima of i; besides the absolute 
minimum i;0 (Fischer and Le Quang, 1981), it is evident 
that in a space with too few dimensions such multiple 
minima exist, even though they will be shallow and sepa
rated by large distances. Consider our second example; this 
data set should be modelled with four layers (Fig. 4). When 
attempting to model with three layers it is clear that the 
minimization process may try to fit either the top three 
layers or the bottom three. As seen in Figs. 8 and 9 the 
minimization routine converges toward two well-defined 
structures, each of which corresponds to an isolated 
minimum in parameter space, with a large separation be
tween the two. 

The seeming uniqueness of the solution when n is chosen 
at its correct value n0 , is evidently lost when n * n0 . With 
n < n0 separate minima of i; at large distances from each 
other are an obvious consequence. For n>n0 a cluster of 
minima is likely near the original minimum of e, but in 
directions of the added dimensions. 

Choosing the correct value of n0 is perhaps not always 
as straightforward as the first three examples cited suggest 
(Fig. 11 ). An illustration of the difficulties one may en
counter are given by the data set RABE shown in Fig. 10. 
Modelling these data with structures comprising 2-6 layers 
yields the i;0 (n) function shown in Fig. 11. Our contention 
is that if no other information is available the RABE data 
set does not give definite evidence for the presence of more 
than three layers of different conductivity. The existence 
of more layers can only become justified if additional fac-
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Fig. 9. Best-fitting three-layer response to the AHA data (cf. 
Fig. 4). The solid line attempts to fit the entire data set with a 
three-layer model at the bottom of the structure. The fit is poor 
because the minimization routine tries to avoid large misfits also 
at the short periods. The minimum of r is therefore shallow. If 
the data at short periods are ignored the fit improves dramatically 
(dashed curve) and e exhibits a much deeper minimum 

tors support it, like MT data from a series of soundings 
along a profile of which RABE is just a single bracketed 
site. 

As was said at the beginning of this section, the avail
ability of independent information concerning the structure 
under MT study may completely change the problem of 
determining the appropriate number of layers. The addi
tional information may well require more layers, but is 
likely at the same time to introduce constraints by specify
ing the resistivity or thickness of certain layers. Postulating 
more layers increases the trade-off volume, but the addition
al constraints delimit a sub-class of models within the larger 
volume. The more stringent the constraints, the smaller the 
sub-class volume and the greater the likelihood that there 
will be a single isolated minimum of i: within the sub-class. 

Conclusions 

The 1 D/MT modelling routine developed recently by 
Fischer and Le Quang ( 1981) has made it possible to investi
gate the entire range of model parameter variations which 
are compatible with a predetermined degree of fit between 
model response and measured data. This range of possible 
or permitted models can be represented as a volume in 
parameter space, the trade-off volume. The enclosing trade
off surf ace is singly connected but usually has a complicated 
topography. It can be reasonably well characterized by the 
partial sensitivity matrix, which gives the intersections with 
the parameter axes, and the trade-off matrix, which specifies 
the coordinates of the extreme extensions in the directions 
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Fig. 10. MT data set for station RABE (data courtesy of JOdicke, 
1980 b ). The solid curve corresponds to the best-fitting three-layer 
model. The dashed curve corresponds to the best-fitting six-layer 
model. The improvement over the three-layer fit is only slight (cf. 
Fig. 11) 

of the parameter axes. The extensions in other directions 
could likewise be investigated by the same modelling 
routine. But the trade-off matrix not only states the extreme 
range a given parameter can assume, it also specifies the 
trade-off conditions to which the remaining model para
meters have to be subjected to achieve this range. 

The incidence of the choice of the number of layers 
on the modelling process has been looked at in detail. The 
importance of a correct choice to insure a unique best-fit 
have been stated, especially as regards over-fitting, i.e., at
tempting to model with too many layers. If reliable prior 
geological knowledge is available, this knowledge should 
be used as it reduces the range of permitted solutions to 
a sub-class among all the solutions comprising the trade-off 
volume. This is especially important if prior information 
requires more layers than can be inferred from the MT 
data alone: the trade-off volume increase resulting from the 
added layers must be counteracted through reduction to 
a sub-class, by pegging some layer thicknesses or resistivi
ties, since otherwise a unique best-fitting solution cannot 
be expected. 

Since the trade-off volume encompasses all the models 
acceptable within a pre-set standard deviation B, and since 
B is given as sum of the squares of the individual data 
misfits, it is clear that the trade-off volume also comprises 
those solutions which tend to give misfits systematically 
on one side or the other of the data points. This is to 
be expected. Fortunately it is easy to convince oneself that 
such systematic deviations over large ranges of the data 
are impossible for the best-fitting model. 

10 

8 ~ 
\ 
\ 
\ 
I 
I SITE 4 :z: I 

0 I 
_J \ I 
....... \ I 
(.f) \ \NEW unweighted a.. 6 \ I L..L.J ' a----- .. 

* \ = \ = ·--- .. 
NEW weighted 

4 

*-····•·* ....... * 
2 

AHAUS EN 

2 3 4 5 6 
NUMBER OF LAYERS 

Fig. 11. Standard deviation i; 0 of the best-fitting models, for the 
various MT data sets considered, as a function of the number 
of layers postulated. In most instances there is no difficulty identi
fying a unique correct choice n0 
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for such data sets, and our discussion relating to the correct number 
of layers with which to model applies without modification to such 
sets. 


