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Abstract. We examine the general non-linear inverse problem 
with a finite number of parameters. In order to permit the 
incorporation of any a priori information about parameters 
and any distribution of data (not only of gaussian type) we 
propose to formulate the problem not using single quantities 
(such as bounds, means, etc.) but using probability density 
functions for data and parameters. We also want our for
mulation to allow for the incorporation of theoretical errors, 
i.e. non-exact theoretical relationships between data and pa
rameters (due to discretization, or incomplete theoretical 
knowledge); to do that in a natural way we propose to define 
general theoretical relationships also as probability density 
functions. We show then that the inverse problem may be 
formulated as a problem of combination of information: the 
experimental information about data, the a priori information 
about parameters, and the theoretical information. With this 
approach, the general solution of the non-linear inverse prob
lem is unique and consistent (solving the same problem, with 
the same data, but with a different system of parameters does 
not change the solution). 

Key words: Information - Inverse problems - Pattern rec
ognition - Probability 

1. Introduction 

Inverse problem theory was essentially developed in geo
physics, to deal with largely underdetermined problems. The 
most important approaches to the solution of this kind of 
problem are well known to today's geophysicists (Backus and 
Gilbert 1967, 1968, 1970; Keilis-Borok and Yanovskaya 1967; 
Frank lin 1970; Backus 1971 , Jackson 1972; Wiggins 1972; 
Parker 1975; Rietsch 1977; Sabatier 1977). 

The minimal constraints necessary for the formulation of 
an inverse problem are: 

1. The formulation must be valid for linear as well as for 
strongly non linear problems. 

2. The formulation must be valid for overdetermined as 
well as for underdetermined problems. 

3. The formulation of the problem must be consistent 
with respect to a change of variables. (This is not the case 
with ordinary approaches: solving an inverse problem with a 
given parameter, e.g. a velocity v, leads to a solution v0 ; 

solving the same problem with the same data but with anoth
er parameter, e.g. the slowness n = 1/v, leads to a solution n0 . 

There is no natural relation between v0 and n0 in ordinary 
approaches). 

4. The formulation must be general enough to allow for 
general error distributions in the data (which may be not 
gaussian, asymmetric, multimodal, etc.). 

5. The formulation must be general enough to allow for 
the formal incorporation of any a priori assumption (posi
tivity constraints, smoothness, etc.). 

6. The formulation must be general enough to incor
porate theoretical errors in a natural way. As an example, in 
seismology, the theoretical error made by solving the forward 
travel time problem is often one order of magnitude larger 
that the experimental error of reading the arrival time on a 
seismogram. A coherent hypocenter computation must take 
into account experimental as well as theoretical errors. 
Theoretical errors may be due, for example, to the existence 
of some random parameters in the theory, or to theoretical 
simplifications, or to a wrong parameterization of the prob
lem. 

None of the approaches by previous authors satisfies this 
set of constraints. The main task of this paper is to demon
strate that all these constraints may be fulfilled when for
mulating the inverse problem using a simple extension of 
probability theory and information theory. 

To do this we will limit ourselves to the study of systems 
which can be described with a finite set of parameters. This 
limitation is twofold: first, we will only be able to handle 
quantitative characteristics of systems. All qualitative aspects 
are beyond the scope of this paper. The second limitation is 
that to describe some of the characteristics of the systems 
we should employ functions rather than discrete parameters, 
as for example for the output of a continuously recording 
seismograph, or the velocity of seismic waves as a function 
of depth. In such cases we decide to sample the corre
sponding function. 

The problem of adequate sampling is not a trivial one. 
For example, if the sampling interval of a seismogram is 
greater than the correlation length of the noise (seismic noise, 
finite pass-band filter, etc.), errors in data may be assumed 
to be independent; this will not be true when densifying the 
sampling. We explicitly assume in this paper that the discreti
zation has been made carefully enough, so that densifying the 
sampling will only negligibly alter the results. 

In the next section we will define precisely concepts such 
as parameter, probability density function, information, and 
combination of information; in Sect. 3 we discuss the concept 
of null information; in Sect. 4 we define the a priori infor-
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mation on a system; in Sect. 5 we define general theoretical 
relationships between data and parameters; finally in Sect. 6 
we give the solution of the inverse problem. In Sects. 7-10 we 
discuss this solution, we examine particular cases, and give a 
seismological illustration with actual data. 

2. Parameters and Information 

Let[!' be a physical system in a wide sense. By wide sense we 
mean that[!' consists of a physical system strictu senso, plus a 
family of measuring instruments and their outputs. We as
sume that [!'is a discrete system or that it has been discretized 
(for convenience of description or because the mathematical 
model which describes the physical system is discrete). In that 
case[!' can be described using a finite (perhaps large) set of 
parameters X= {X 1 , ... , X m}; any set of specific values of this 
set of parameters will be denoted x = { x 1 , ... , xm}. Each point 
x may be named a model of fl'. The m-dimensional space $m 
where the parameters X take their values may be named the 
model space, or the parameter space. 

When a physical system fl' can be described by a set X of 
parameters, we say that Y' is parametrizable. 

It should be noted that the parameterization of a system 
is not unique. We say that two parameterizations are equiva
lent if they are related by a bijection. Let 

X=X(X') X'=X'(X) (2-1) 

be two equivalent parameterizations of fl'. We emphasize that 
Eqs. (2-1) represent a transformation between mathematically 
equivalent parameters and that they do not represent any 
relationship between physically correlated parameters. An ex
ample of equivalent parameters is a velocity v and the corre
sponding slowness defined by n = 1/v. Let us remark that two 
equivalent parameterizations of fl' can also be seen as two 
different choices of system of coordinates in $m. 

The degree of knowledge that we have about the values of 
the parameters of our system may range from total knowl
edge to total ignorance. A first postulate of this paper is that 
any state of knowledge on the values of X can be described 
using a measure density function f(x); i.e. a real, positive, 
locally Lebesgue integrable function such that the positive 
measure defined by: 

m(A)= J f(x)dx (Ac$m) (2-2) 
A 

is absolutely continuous with respect to the Lebesgue measure 
defined over $m. The quantity m(A) is named the measure of 
A. If m($m) is finite then f(x) can be normalized in such a 
way that m($m) = 1; in that case f(x) is named a probability 
density function, m(A) is then noted p(A) and is named the 
probability of A. 

All through this paper a probability density function will 
be noted p.df A measure density function, non normalized or 
non normalizable, will simply be named a density function 
and noted df 

Of course, the form of f(x) depends on the chosen para
meterization. Let X and X' be two equivalent parameteri
zations. As we want the measure m(A) to be invariant, it is 
easy to see that there exists a d.f. f'(x'), which is related to 
f(x) by the usual formula: 

f'(x') = f(x) ·liJ!__I ax' 
(2-3) 

where the symbol I;;, I stands for the 1 acobian of the trans

formation. (It never vanishes for equivalent parameteri
zations). 

Let us define a particular d.f. Jl(x) representing the state of 
total ignorance (Jaynes 1968; Rietsch 1977). Often the state 
of total ignorance will correspond to a uniform function Jl(X) 
= const., sometimes it will not, as discussed in Sect. 3. We 
will assume: 

Jl(X)~O (2-4) 

everywhere in $m (In fact this means that we restrict the 
space of parameters to the region not excluded by the state of 
total ignorance). 

We should need a d.f., rather than a p.d.f. when we are 
not able to define the absolute probability of a subset A, but 
we can define the relative probabilities of two subsets A and 
B. The most trivial example is when f(x)=const. and the 
space is not bounded. 

Two d.f. which differ only by a multiplicative constant will 
give the same relative probabilities, and all through this paper 
they will be considered identical: 

f(x)= const. f(x) (2-5) 

If the state of total ignorance corresponds to a p.d.f. Jl(x), 
then the content of iriformation of any p.d.f. f(x) is defined by 
(Shannon 1948) 

l(f;J1)= Jj(x)Log~i:i dx. (2-6) 

This definition has the following properties, which are 
easily verified: 

a) I is invariant with respect to a change of variables: 

l(f; Jl) = I(f'; Jl'). (2-7) 

(In Shannon's original definition of information for con
tinuous variables the term Jl(x) in Eq. (6) is missing, so that 
Shannon's definition is not invariant.) 

b) Information cannot be negative: 

(2-8) 

c) the information of the state of total ignorance is null: 

(2-9) 

the reciprocal being also true: 

(2-10) 

We will say that each p.d.f. (or, by extension, each d.f.) 
J;(x) represents a state of information, which will be noted si. 

Let us now set up a problem which appears very often 
under different aspects. Its general formulation may be: Let X 
be a set a parameters describing some system[/'. Let Jl(x) be a 
d.f. representing the state of null information on the system. If 
we receive two pieces of information on our system, repre
sented by the density functions J;(x) and Jj(x), how do we 
combine J; and Jj to obtain a d.f. f(x) representing the final 
state of information? 

We must first state which kind of combination we wish. 
To do this, let us first recall the way used in classical logic to 
define the combination of logical propositions. If pi is a logical 
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proposition, one defines its value of truth v(p;) by taking the 
values 1 or 0 when P; is respectively certain or impossible 
(true or false). Let P; and pj be two logical propositions. It is 
usual to combine them in order to obtain new propositions, 
as for example by defining the conjunction of two propo
sitions, P; A pj (P; and pj) or by defining the disjunction of two 
propositions P; v pj (P; or p), and so on. The usual way for 
defining the result of these combinations is by establishing 
their values of truth. For example, the conjunction P; A pj is 
defined by: 

v(p;)=O) 
or = v(p; A p) = 0. 

v(p)=O 

(2-11) 

For our purposes, we need the definition of the conjunction of 
two states of information, s; A sj. This definition must be the 
generalization to the concept of states of information of the 
properties of the conjunction of logical propositions. 

We will see later that this definition will allow the so
lution of many seemingly different problems, in particular it 
contains the solution of the general inverse problem as it has 
been stated in the preceding section. 

Let us note: 

(2-12) 

the operation which combines !; and fj (representing two 
states of information s; and s) to obtain f (representing the 
conjunction s =s; A sJ The definition must satisfy the follow
ing conditions: 

a) !; A fj must be a d.f. In particular, the content of infor
mation of!; A fj must be invariant with respect to a change of 
parameters, i.e. Eq. (2-3) must be verified. 

b) The operation must be commutative, i.e., for any!; and 
fj: 

J>fj=fjAf;. (2-13) 

c) The operation must be associative; i.e. for any!;, fj and 

k 

/;A (fj A fk) =(f; A fj) A fk (2-14) 

d) the conjunction of any state of information !; with the 
null information J1 must give !;, i.e. must not result in any 
loss of information: 

(2-15) 

This equation means that J1 is the neutral element for the 
operation. 

e) The final condition corresponds to an extension of the 
defining property of the conjunction of logical propositions 
(Eq. (2-11)). For any measurable AcCm: 

f J;dx=O l 
~r = l (!;A fj)dx=O 

jfjdx=O 
A 

(2-16) 

which means that a necessary and sufficient condition for 
}, A;; to give a null probability to a subset A is that either!; 
or J; give a null probability for A. 

This last condition implies that the measure engendered 
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by !; A fj is absolutely continuous with respect to the mea
sures engendered by!; and fj respectively. Using Nikodym's 
theorem it can be shown (Descombes 1972) that !; A fj may 
then necessarily be written in the form: 

(2-17) 

where cP(J;,fj) is a locally Lebesgue integrable, positive func
tion. This last condition is strong, because it is valid every
where in em, in particular where !; or fj are null (otherwise 
this equation would be trivial). 

The simplest choice for cP(J;,fj) in order to satisfy con
ditions b) and c) is to take it as independent of !; or fj. 
Condition d) then imposes: 

1 
cP(J;,fj) =-. 

J1 

Condition a) is then automatically verified. 

(2-18) 

The above discussion suggests then the following defi
nition: 

Let s; and sj be two states of information represented 
respectively by the d.f.'s !; and fj, let J1 be a d.f. representing 
the state of null information. By definition, the conjunction of 
s; and sj, denoted s=s;Asj is a state of information repre
sented by the d.f. f(x) given by: 

(2-19) 

The d.f. f(x) is not necessarily normalizable, but except in 
some ad hoc examples, in most actual problems when one (or 
both) of the d.f. J;(x) or fj(x) is normalizable, the d.f. f(x) is 
also normalizable, i.e. it is, in fact, a p.d.f. 

In the following sections we will show that the Definition 
(2-19) allows for a simple solution of general inverse prob
lems. In the appendix we recall the definition of marginal 
p.d.f.'s, we show that the conditional p.d.f. can be defined as a 
particular case of conjunction of states of information, and 
demonstrate the Bayes theorem (which is not used in this 
work because it is too restrictive for our purposes). 

Let us emphasize that, given two states of information s; 
and sj on a system Y, the resulting state of information does 
not necessarily correspond to the conjunction s; A sj. The 
conjunction, as defined above, must be used to combine two 
states of information only if these states of information have 
been obtained independently, as for example, for two inde
pendent physical measurements on a given set of parameters, 
or for combining experimental and theoretical information 
(see Sect. 6). 

Let us conclude this section by the remark that in our use 
of probability calculus we do not use concepts such as ran
dom variable, realization of a random variable, true value of a 
parameter, and so on. Our d.f.'s are interpreted in terms of 
human knowledge, rather than in terms of statistical properties 
of the Earth. Of course, we accept statistics, and we use the 
language of statistics when statistical computations are possi
ble, but this is generally not the case in geophysical experi
ments. 

3. The Null Information on a System 

As the concept of null information is not straightforward, let 
us discuss it in some detail and start with some examples. 
Assume that our problem consists in the location of an 
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earthquake focus from some set of data. Assume also that we 
are using cartesian coordinates (X, Y, Z). The question is: 
which will be the d.f. fl(X, y, z) which is least informative on 
the location of the focus? The intuitive answer is that the 
least informative d.f. will be the one that assigns the same 
probability dP to all regions of equal volume dV: 

dP = const. dV. (3-1) 

Since in cartesian coordinates dV =dx · dy · dz, Eq. (2-2) gives 
the solution: 

fl(X, y, z) = const. (3-2) 

If instead of cartesian coordinates we use spherical coor
dinates (R, e, <P), the null information d.f. fl'(r, 8, cp) may be 
obtained from Eq. (3-1) writing the elementary volume dV in 
spherical coordinates, d V = r2 sin(}· dr · d(} · dcp or from Eq. (3-2) 
by means of a change of variables. We arrive at: 

fl(r, e, qJ) = const . r2 sin(} (3-3) 

which is far from a constant function. We see in this example 
that the d.f. representing the null information need not be 
constant. 

We will now try to solve a less trivial question. Let V 
= lVI be some velocity. Could the null information d. f. fi(v) 
=const.? To those who are tempted to answer yes, we ask 
another question. Let N be some slowness (N = 1/V). Could 
the null information d. f. 11'(n) = const.? Obviously, if fl(v) is 
constant, 11'(n) cannot be, and vice-versa. 

To properly define the null information density function 
fl, we will follow Jaynes (1968), who suggested that suitable 
density functions are obtained under the condition of in
variance of form of the function f1 under the transformgroups 
which leave invariant the equations of physics (see also 
Rietsch, 1977). Clearly, the form of f1 must be invariant under a 
change of space-time origin and under a change of space-time 
scale. To see its consequences let 0 .and 6 be two observers 
and let (X, Y, Z, T) and (.X, Y, i, T) be their coordinate system. 
The fact that observer 6 has chosen a different space-time 
origin and scale is easily written in cartesian coordinates: 

X=X 0 +a·X 

Y=Y0 +a Y T=T0 +b·T (3-4) 

i =Z0 +a·Z 

where a and b are constants. Thus, by the definition of 
velocity: 

, ldfl a ldrl 
v=~=--=c u 

di b. dt 
(3-5) 

where c=ajb is a new constant. Let fl(u) be the null infor
mation d.f. for 0 and (i.(v) be the one of 6. From Eq. (3-5) 
and Eq. (2-4) we must have: 

A A I del A fl(V)=fl(V)· dv =C·fl(C·V). (3-6) 

The invariance under transformations (3-4) will be realized if 
f1 and (i. are the same function, that is: 

fl(w)=(i.(w) (3-7) 

for all w. 

From Eqs. (3-6) and (3-7) it follows: 

fl(V) = C · fl(C · V) 

I.e. 

const. 
fl(U)=--. 

v 

(3-8) 

(3-9) 

This result may appear puzzling to some. Let us ask 
which is the form of the null information d.f. for the slowness 
N = 1/V. We readily find: 

l

dv I const. f1'(n)=f1(v)·- =--. 
dn n 

(3-10) 

We see that the equivalent parameters V and N have null 
information d.f. of exactly the same form. In fact, it was in 
order to warrant this type of symmetry between all the pow
ers of a parameter that Jeffreys (1939, 1957) suggested as
signing to all continuous parameters X known to be positive a 
d.f., representing the null information, of the form const./x. 

Some formalisms of inverse problems attempt a definition 
of some probabilistic properties in parameters space (com
putation of standard deviations, etc.). We claim that these 
kind of problems cannot be consistently posed without ex
plicitly stating the null information d.f. fl. 

In most ordinary cases the choice 

fi= const. (3-11) 

will give reasonable results. Nevertheless we must emphasize 
that the solution of the same problem using a different set of 
parameters will be inconsistent with the choice of Eq. (3-11) 
for representing the state of null information in the new set of 
parameters, unless the change of parameters is linear. 

4. Data and A Priori Information 

Among the set of parameters X describing a system !!', the 
parameters describing the outputs of the measuring instru
ment are named data and written D=(D 1 , •.• ,DJ The rest of 
the parameters are then named parameters strictu senso, or, 
briefly, parameters, and are written P=(P1 , ... ,PsJ. If a par
tition of X into X= (D, P) is made, then any d.f. on X may be 
equivalently written: 

f(x) = f(d, p). (4-1) 

Let us consider a particular geophysical measurement, for 
example, the act of reading the arrival time of a particular 
phase on a seismogram. In the simplest case the seismologist 
puts all the information he has obtained from his measure
ment in the form of a given value, say t, and an "un
certainty", say a,. In more difficult cases, he may hesitate 
between two or more values. What he may do, more general
ly, is to define, for each time interval L1 t on the seismogram, 
the probability L1P which he assigns to the arrival time t to 
be in the interval L1 t. Doing this, he is putting the infor
mation which he obtains from his measurement into the form 
of a probability density function p(t)=L1P/L1t. This p.d.f. can 
be asymmetric, multimodal, etc. Extracting from this p.d.f. a 
few estimators, such as mean or variance, would certainly 
lead to a loss of information, thus we have to take as an 
elementary datum the p.d.f. p(t) itself. 



Let us now consider a non-directly measurable parameter 
P,.. Some examples of a priori information are: a) We know 
only that P. is bounded by two values a;-£ P. ;-£b. We will 
obviously represent this a priori information by a d.f. which is 
null outside the interval and which coincides with the null 
information d.f. inside the interval. b) Inequality constraint 
f. ;£ Pp: we take a d.f null for P.>Pp and equal to the null 
information d.f. for P. ;£pp. c) Some parameters P.+ 1, 

P,.+ 2 , ... , Pp are spatially (or temporally) distributed, and 
we know that their variation is smooth. Accordingly, we will 
represent this a priori information by using a joint d.f. 
p(p.+ 1,p.+ 2 , ... ,pp) with the corresponding non-null assumed 
correlations (covariances). d) We have some diffuse a priori 
information about some parameters. In that case we will 
define a priori d.f. with weak limits and large variances. e) We 
have no a priori information at a ll. This a priori information 
is then represented by the null information function Jl. 

We see then that we may assume the existence of a 
dens ity function: 

p(x)=p(d,p) (4-2) 

named the a priori d.f., representing both, the results of 
measurements and all a priori information on parameters. 

5. Theoretical Relationships 

A theoretical relationship is usually viewed as a functional 
relation between the values of the parameters: 

F(x)=F(d,p)=O. (5-1) 

Often the form (5-l) of a functional relationship may be 
simplified and may be written (Fig. 1): 

d=G(p). (5-2) 

This view 1s too restnctlve. In most cases, even if the 
value p is given we are not able to exactly compute the 
corresponding value of d, because our theory is incomplete, 
or because the theory contains some random parameters, or 
because we have roughly parametrized the system under 
study. In such cases, to be rigorous, we may exhibit not the 
value d = G(p) but the probability density function for d, 
given p, i.e. the conditional p.d.f. (Fig. 2): 

tl(dlp). (5-3) 

We will see in Sect. 10 how to display such a conditional 
p.d.f. for actual problems. 

In all generality, we will assume that any theoretical re
lationship may be represented by a joint density function: 

tl(x) = tl(d, p). (5-4) 

From the definition of conditional probability (see Appen
dix): 

(5-5) 

where tlP(p) is the marginal d.f. for P. In the class of problems 
where the simplification (5-2) is used, the theory does not 
impose any constraint on P but only in D. Equation (5-5) may 
then be rewritten: 

(5-6) 

where Jlp(p) is the null information d.f. 

163 

Fig. I. An exact theory, viewed as a functional relationsh ip 

Fig. 2. Putting "error-bars" on the th eoretical relation d = G(p) 

The particular case of an exact theory (Eq. (5-2)) ob
viously corresponds to tl(dlp)=b(d-G(p)) where b is the Dirac 
distribution. So, for an exact theory: 

li(d, p) = b(d- G(p)). Jlp(p). (5-7) 

In cases where a rigorous computation of ll(d lp) cannot be 
made, but where we have an idea of the theoretical "error
bar" aT, choices of ll(d, p) of a form similar to 

{ 
I lld-G(p) 112

} 
ll(dlp)=const. exp - - 2 2 O'T 

(5-8) 

may be good enough to take into account this theoretical 
error .. 

In any case, we assume that theoretical relationships are 
in general represented by the joint density function of Eq. (5-
4) which will be named the theoretical density function. 

6. Statement and Solution of Inverse Problems 

Let[/' be a physical system, and let X be a parametrization of 
!/. In Sect. 3 we have defined the density function Jl(X) repre
senting the state of null information on the system. In Sect. 4 
we have defined the density function p(x) representing all a 
priori information on the system, in particular the results of 
the measurements and a priori constraints on parameters. In 
Sect. 5 we have defined the density function li(x) representing 
the theoretical relationships between parameters. 

The conjunction of p(x) and ll(x) gives a new state of 
information, which will be named the a posteriori state of 
information. The corresponding d.f will be denoted a(x) and is 
given, using Eq. (2-19), by 

p(x)·li(x) 

Jl(X) 
(6-1) 

To examine inverse problems we separate our set of pa
rameters X into the subsets X = (D, P) representing data and 
parameters strictu sensu respectively. Equation (6-1) may then 
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be rewritten: 

(d ) 
p(d, p) . 8(d, p) 

a ,p . 
J.L(d, p) 

(6-2) 

From this equation we may compute the a posteriori 
marginal density functions: 

a (d) = Jp(d,p) -8(d,p) d 
d J.L(d, p) p, (6-3) 

a (p) = Jp(d,p)·B(d, p)dd. 
p J.L(d,p) 

(6-4) 

Equation (6-4) performs the task of transferring to param
eters, via theoretical correlations, the information contained 
in the data set. This is, by definition, the solution to an 
inverse problem (see Fig. 3). 

Equation (6-3) solves what could be named a generalized 
forward problem. 

In most cases the a priori information on D is inde
pendent from the a priori info rmation on P: 

(6-5) 

and the theoretical density function is obtained in the form of 
a conditional density function (Eq. (5-6)): 

8(d, p) = 8(dlp). J.L,(p). (6-6) 

Equation (6-4) may then be simplified to: 

(6-7) 

.p) 

b 
Fig. 3. a The theoretical model is often non exact (simplified, rough 
parameterization, etc.). We can then introduce the theoretical 
relationship between parameters as a density function O(d, p) 
(see Sect. 5). b The solution of the problem is then defined by 

( ) p(x). O(x) If h . . d . f . . II a x = . t e a pnon enstty unctiOn contams sma 
,u(x) 

variances for data and great variances for parameters, the marginal 
density function a,(p) solves an "inverse problem". On the contrary, 
if in p(x) the data have large variances a nd the parameters have 
small variances, a . (d) solves the "forward problem" 

If, furthermore, the theoretical relationship may be consid
ered as exact (i.e. we can write d=G(p)), then using Eq. (5-7). 

8(d lp) = <5(d- G(p)). (6-8) 

Equation (6-7) may be easily integrated to: 

(6-9) 

This last equation solves the inverse problem for an exact, 
non-linear theory with arbitrary a priori constraints on pa
rameters (p,), and an arbitrary probabilistic distribution of 
data (pd)-

Returning to the general solution (6-4) let us answer the 
question of displaying the information contained in aP(p). If 
we are interested in a particular parameter, say P1, all the 
information on P1 is contained in the marginal d.f. (Eq. (2-5)): 

(6-10) 

As far as we are interested in the parameter P1 and not in the 
correlations between this and other parameters, a 1 (p1) 

exhibits all the available information about P1 . For example, 
from a 1 (p1) we can precisely answer questions such as the 
probability tha t P1 lies between two values. Alternatively, 
from a 1(p 1) it is possible to extract the mean value, the me
dian value, the maximum-likelihood value, the standard de
viation, the mean deviation, or any estimator we need. 

Let us remark that it is possible to compute from the 
general solution a,(p) the a posteriori mathematical expec
tation: 

E(P)= Jp ·a,(p) -dp 

or the a posteriori covariance matrix: 

C=E{(P-E(P)) · (P-E(P))T} 

= j(p-E(P))-(p - E(P))Ta,(p)dp 

= .f p · pT a,(p)dp - E(P) · E(P)T. 

(6-11) 

(6- 12) 

Estimators such as E(P) and C are similar to what is 
obtained in traditional approaches to inverse problems, but 
here they can be obtained without any linear approximation. 

7. Existence, Uniqueness, Consistency, Robustness, Resolution 

In inverse problem theory, it is not always possible to prove 
the existence or the uniqueness of the solution. With our 
approach, the existence of the solution is merely the existence 
of the a posteriori density function a(x) of Eq. (6-1) and 
results trivially from the assumption of the existence of p(x) 
and 8(x). Of course we can obtain a solution a(x) with some 
pa thologies (non-normalizable, infinite variance, not unique 
maximum likelihood point, etc.), but the solution is the a 
posteriori density function, with all the pathologies it may 
present. 

Consistency is warranted because Eq. (6-1) is consistent, 
i.e. the function a(x) is a density function. Let us suppose 
again that we use velocity as a parameter and obtain as 
solution the d.f. a(v), then using the same data in the same 
problem (with the same discretization) but using slowness as 
parameter we obtain as a solution the d.f. a' (n). Since Eq. (6-
1) is consistent, a'(n) will be related to a(v) by the usual 
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formula (2-3) u'(n) = u(v) ·I~: I: u'(n) and u(v) represent exactly 

the same state of information. 
In those approaches where all the information contained 

in the data is condensed into the form of central estimators 
(mean, median, etc.), the notion of robustness must be care
fully examined if we suspect that there may be blunders in 
the data set (Clearbout and Muir, 1973). In our approach, the 
suspicion of the presence of blunders in a data set may be 
introduced using long-tailed density functions in pid), de
creasing much more slowly than gaussian functions as, for 
example, exponential functions. Our experience shows that 
with such long-tailed functions, the solution uP(p) is rather 
insensitive to one blunder. 

The concept of resolution must be considered under two 
different aspects: to what extent a given parameter has been 
"resolved" by the data? and what is the "spatial resolution" 
attained with our data set? 

For the first aspect, Jet us consider a parameter P; whose 
value does not influence the values of the data. This means 
that the theoretical density function 8(d, p) does not depend 
on P. Even in this case we can obtain a certain amount of 
infor~ation on this parameter, if the other parameters are 
resolved by the data, and if the a priori density function Pp(p) 
introduces some correlation between parameters. Further
more Jet us assume that no correlation is introduced by 
p (p), between P; and the other parameters. This is the worst 
c=se of non-resolution we can imagine for a parameter. Under 
these assumptions Eq. (6-7) can be written: 

(7-1) 

where q is the vector (Pt> ... , P;_ 1 , P;+ 1 , ... , p,). After inte
gration over the set of q, we find (dropping the multiplicative 
constant): 

(7-2) 

which means that for a completely unresolved parameter, the 
a posteriori marginal density function equals the a priori one. 
The more ui(P;) differs from P;(p;), the more the parameter P; 
has been resolved by the data set. 

The concept of spatial resolution applies to a different 
problem: Assume that P;, ... , ~ form a set of parameters spa
tially (or temporally) distributed as for example when the 
parameters represent the seismic velocities of successive geo
logic layers (or values from the sampling of some continuous 
geophysical record). Assume that we are not interested in 
obtaining the a posteriori d.f. for each parameter, but only 
the a posteriori mean values, as given by Eq. (6-11). There are 
two reasons for E(P) to be a smooth vector (i.e. to have small 
variations between consecutive values E(P;) and E(P;+ 1). The 
first reason may be the type of data used; it is well known for 
instance that long period surface wave data only give a smooth
ed vision of the Earth. The second reason for obtaining a 
smoothed solution may simply be that we decide a priori to 
impose such smoothness introducing non null a priori co-
variances in pp(p) (see Sect. 4). . 

This question of spatial resolution has been clearly pomt
ed out, and extensively studied by Backus and Gilbert (1970). 
From our point of view, this problem must be solved by 
studying the a posteriori correlations between parameters. 
From Eq. (6-12): 

C;i= J P; ·pi· u(p;, P) · dp; · dpi- E(p;) · E(p). (7-3) 

• SPATIAL 
• RESOWTION". 

.... ... 

VARIANCE 
OF THE 

PARAMETER 
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Fig. 4. Rows (or columns) of the a posteriori covariance matrix 
showing both the length of spatial resolution and the a posteriori 
variance of the parameter 

If, for a given j, we plot the "curve" Cii versus i we 
simultaneously obtain information on the a posteriori vari
ance of the parameter ( C;;) and the spatial resolution (the 
length of correlation) (see Fig. 4). 

In applications of Backus and Gilbert's point of view on 
inverse problems it is usual to study the trade-off between 
variance and resolution in order to choose the desired so
lution. In our approach, such a trade-off also exists: modify
ing the a priori variances or a priori correlations of parame
ters (in p(p)) results in a change of the a posteriori variances 
and resolutions. But, in our opinion, the a priori information 
on the values of parameters, as contained in p(p), must not be 
stated in order to obtain a pleasant solution, but in order to 
closely correspond to the actual a priori information. 

8. Computational Aspects 

For linear problems, all the integrations of Sect. 6 can often 
be performed analytically, and the most general solution can 
sometimes be reached easily (see for example the next sec
tion). Linear procedures may of course be used to obtain 
adequate approximations for the solution of weakly non
linear problems. 

For non-linear problems, the solution is less straightfor
ward. Often the integrations in Eq. (6-4) or (6-7) can be 
performed analytically, no matter what the degree of non
linearity (see for example Sect. 10). The computation of the 
density of probability up(p) at a given point p then involves 
mainly the solution of a forward problem. If the number of 
parameters is small we can then explicitly compute the mar
ginal p.d.f. for each one of the parameters, using agrid in the 
parameter space ordinary methods of numerical integration. 
If the number of parameters is great, Monte-Carlo methods 
of numerical integration should be used. The possibility of 
conveniently solving non-linear inverse problems will then 
depend on the possibility of solving the forward problem a 
large enough number of times. Let us remark that if we are 
not able to compute the marginal p.d.f. for each one of the 
parameters of interest, we can limit ourselves to the com
putation of mean values and covariances (Eqs. 6-11 and 6-12~. 

In problems where the solution of the forward problem IS 

so costly that either the explicit computation of the density of 
probability in the parameter space and the computation of 
mean values and covariances cannot be performed in a rea
sonable computer time, we suggest to restrict the problem to 
the search of the maximum likelihood point in the parameter 
space (point at which the density of probability is maximu.m). 
This computation is often very easy to perform, and classical 
methods can be used for particular assumptions about the 
form of the p.d.f.'s representing experimental data and a 
priori assumptions on parameters. For example, it is easy to 
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see that with gaussian assumptions, the search of the maxi
mum likelihood point simply becomes a classical least
squares problem (Tarantola and Valette, 1982). With exponential 
assumptions, the search of the maxima likelihood point be
comes a L1-norm problem (which shows that the exponential 
assumption gives a result more robust than the gaussian one). 
With the use of step functions, the a posteriori p.d.f. in the 
parameter space is constant inside a given bounded domain. 
The point of this domain the maximizes some function of the 
parameters can be reached using the linear (or non-linear) 
programming techniques. We see thus that ordinary methods 
for solving parameterized inverse problems can be deduced as 
particular cases of our approach, and we want to emphasize 
that such methods should only be used when the explicit 
computation of the density of probability in the parameter 
space or the non-linear computation of mean values and 
covariances would be too much time consuming. 

9. Gaussian Case 

Since the gaussian linear problem is widely used, we will 
show how the usual formulae may be derived from our re
sults. 

By gaussian problem we mean that the a priori density 
function has a gaussian form for all parameters: 

(9-1) 

where x0 is the a priori expected value and C0 is the a priori 
covariance matrix. 

By the linear problem we mean that if the theory may be 
assumed to be exact, the theoretical relationship between 
parameters takes the general linear form: 

F·x=O. (9-2) 

On the other hand, if theroretical errors may not be neglect
ed, we assume that the theoretical density function also has a 
gaussian form: 

(9-3) 

where the covariance matrix CT describes theoretical errors 
(and tends to vanish for an exact theory). 

We finally assume that for the parameters chosen, the null 
information is represented by a constant function: 

f.l(X)=const. (9-4) 

The a posteriori density function (Eq. 6-1) is then gJVen 
by: 

u(x) = p(x) · 8(x) 

=exp{ -![(x-x0)T·C0 1 ·(x-x0)+xT FT·C-[ 1 F·x]} (9-5) 

and after some matrix manipulations (see appendix) we ob
tain: 

where: 

and: 

(9-6) 

(9-7) 

(9-8) 

P=I-Q 

Q=C0 ·FT·(F·C0 ·FT+CT)- 1 F. 
(9-9) 

Equation (9-6) shows that the a posteriori density function 
is gaussian, centered in x* and with the covariance matrix 

c*. 
If theoretical errors may be neglected, i.e. if Eq. (9-2) 

holds, we just drop the term CT in Eq. (9-9) to obtain the 
corresponding solution. 

To compare our results to those published in the litera
ture, let us assume that the separation of X into the sets D 
and P is made: 

(9-10) 

We also assume that Eq. (9-2) simplifies to: 

F·x=[I-G] · [:J =d-G ·p=O. (9-11) 

Substituting Eqs. (9-10, 11) in Eqs. (9-7, 8, 9) we obtain the 
solution published by Franklin (1970) for the parametrized 
problem, which was obtained using the classical least squares 
approach. Our equations (9-7, 8, 9) are more compact than 
those of Franklin because we use the parameter space ,gm, and 
more general because we allow theoretical errors CT. 

Let us emphasize that in traditional approaches x* is 
interpreted as the best estimator of the "true" solution and C* 
is interpreted as the covariance matrix of the estimator. Our 
approach demonstrates that the a posteriori density function 
is gaussian, and that x* and C* are, respectively, the center 
and the dispersion of the density function. 

The results shown here only apply to the linear least 
squares problem. For the non-linear problem, the reader 
should refer to Tarantola and Valette (1982). 

10. Example with Actual Data: Hypocenter Location 

The data for a hypocenter location are the arrival times of phases 
at stations. The basic unknowns of the problem are the spatia
temporal coordinates of the focus. Some of the parameters 
which may be relevant to the problem are: the coordinates of 
seismic stations, the parameters describing the velocity model, 
etc. We will assume that the coordinates of the stations are 
accurately enough known to treat them as constants and not 
as parameters. The parameters describing the velocity model 
would be taken into account if we were performing a simul
taneous inversion for hypocenter location and velocity de
termination, but this is not the case in this simple illustration. 

In the example treated below we will then consider the 
parameters of the velocity model as constants, and we will 
assume that the only effect of our imprecise knowledge of the 
medium is not to allow an exact theoretical computation of 
the arrival times at the stations from a known source. Let: 

t=g(X, Y,Z, T) (10-1) 

be the theoretical (and not exact) relationship between arrival 
times and the spatia-temporal coordinates of the focus, de
rived from the wave propagation theory and the velocity 
model. Let CT be a covariance matrix which is a reasonable 
estimation of the errors made when theoretically computing 
the arrival time at stations from a source at (X, Y, Z). If we 
assume that the theoretical errors are gaussian, the theoretical 
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relationship between data and parameters will be written: 

tl(tiX, Y,Z, T) 

=exp{ -Ht-g(X, Y,Z, TW·Cf" 1 ·[t-g(X, Y,Z, T)]} (10-2) 

which correspond to Eq. (5-8). 
The next simplifying hypothesis is to assume that our data 

possess a gaussian structure. Let t 0 be their vector of mean 
values and C., their covariance matrix: 

p(t) = exp { -t(t -to)T · c,- I· (t -tO)}. (10-3) 

As all our data and parameters consist in cartesian space
time coordinates, the null information function is constant 
and need not be considered (see Sect. 3). 

The a posteriori density function for parameters is directly 
given by Eq. (6-7) and after analytical integration we obtain 
(see appendix): 

o-(X, Y,Z, T)=p(X, Y,Z, T) 

·exp{ -i(t0 -g(X, Y,Z, TW·(C,+CT)- 1 ·(t0 -g(X, Y,Z, T))}. 

(10-4) 

The a posteriori density function (10-4) gives the general 
solution for the problem of spatio-temporal hypocenter lo
cation in the case of gaussian data. We emphasize that this 
solution does not contain any "linear approximation" 

We are sometimes interested in the spatial location of the 
quake focus, and not in its temporal location. The density 
function for the spatial coordinates is obtained, of course, by 

the marginal density function: 
+ro 

o-(X,Y,Z)= J o-(X,Y,Z,T)dT (10-5) 
-ro 

where we integrate over the range of the origin time T. 
Classical least squares computations of hypocenter are 

based on the maximization of o-(X, Y, Z, T). It is clear that if 
we are only interested in the spatial location we must maxim
IZe o-(X, Y,Z) given by (10-5) instead of maximizing 
o-(X, Y, Z, T). Let us show how the integration in (10-5) can be 
performed analytically. 

We will assume that while we may sometimes have a 
priori information about the spatial location of the focus 
(from tectonic arguments, or from past experience in the 
region, etc.) it is generally impossible to have a priori infor
mation (independent from the data) about the origin time T. 
We will thus assume an a priori density function uniform on 
T: 

p(X, Y,Z, T)=p(T)·p(X, Y,Z)=p(X, Y,Z). (10-6) 

The computed arrival time at a station i, g;(X, Y,Z, T) can 
be written: 

g;(X, Y,Z, T)=h;(X, Y,Z)+ T (10-7) 

where hi is the travel time between the point (X, Y, Z) and the 
station i. 

With (10-6) and (10-7), Eq. (10-5) can be integrated (see 
appendix) any yields: 

o-(X, Y,Z)=K p(X, Y,Z) 

·exp{ -t[t0 -h(X, Y,ZW·P [t0 -h(X, Y,Z)]}. (10-8) 

Here 

(10-9) 
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Table 1. Coordinates of stations (km), arrival times and errors (s) 

Station X y z a, 

49.58 9.54 -0.80 13.35 0.02 
2 48.07 7.74 -0.80 13.30 0.02 
3 49.67 4.22 -1.50 13.79 0.02 
4 52.34 14.37 -0.30 13.70 0.02 
5 43.17 5.70 -0.80 13.90 0.02 
6 46.79 17.87 -0.30 14.35 0.02 
7 48.82 1.87 -0.90 14.20 0.10 
8 33.31 8.72 -0.60 15.41 0.02 
9 23.10 9.54 -0.50 17.09 0.02 

10 13.42 15.30 -0.40 19.00 0.10 
11 - 2.19 11.41 -1.20 18.73 0.02 

is a "weight matrix", 

pi= Ll':i (10-10) 

are "weights", and 

K= LPi= L.F:j• (10-11) 
ij 

Moreover, f~ is the observed arrival time minus the weighted 
mean of observed arrival times, 

(10-12) 

and fii(X, Y, Z) is the computed travel time minus the weight
ed mean of computed travel times 

L. pjhi 
fii=hi __ i __ _ 

~>j 
(10-13) 

(Note that CT may depend on (X, Y, Z) and therefore P;i, pi, 
and K also.) 

Equation (10-8) gives the general solution for the spatial 
location of a quake focus in the gaussian case. 

Table 1 shows the observed arrival times and their stan
dard deviation. We have assumed that the theoretical errors 
are of the form: 

(10-14) 

where Dii is the distance between the station i and the station 
j, aT is some theoretical error, and Ll is the correlation length 
of errors (the wavelength or the length of lateral heteroge
neities of the medium). By comparison of the layered model of 
velocities for the Western Pyrenees (Gagnepain et a!. 1980) 
with data from refraction profiles (Gallart 1980) we have 
chosen aT= 0.2 s and Ll = 0.1 km. 

We also assumed that no a priori information is known 
about the epicenter, but that we know that the depth of the 
hypocenter is greater than -0.5 km (the mean topography): 

{
1 if z:::: -0.5km 

p(X, Y,Z)=p(Z)= 0 if Z ~ -0.5km. (10-15) 

We have then computed numerically from (10-8) the a 
posteriori marginal density functions for the epicenter and for 
the depth: 
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Fig. Sa and b. Results of the inverse problem of hypocenter com
putation. a shows the position of the stations and the probability 
density function obtained for the epicentral coordinates. b shows the 
computer output. Curves are visual interpolations 

Fig. 6. The probability density function for depth. The layered ve
locity model is also shown. Note the existence of a secondary maxi
mum likelihood point 

+ <X> 

a(X, Y)= J a(X, Y,Z)dZ, (10-16) 
-0.5km 

+oo + oo 

a(Z) = J dX J dY a(X, Y,Z). (10-17) 
-oo - co 

The results are shown in Figs. 5 and 6. 
We have also computed mean values and variances. The 

corresponding results are, in the local frame of Fig. 5: 

E(X)=51.7km 

E(Y)= 7.8km 

E(Z) = 5.6km 

ax= 1.5 km 

ay = 0.9 km 

az = 2.1 km. 

We wish to make the following remarks about these results. 
First, they have been obtained exactly without the use of 

linear approximations. We have used numerical integration 
instead of matrix algebra and the computation of partial 
derivatives. The results shown in Figs. 5 and 6 represent the 
most general knowledge which can be obtained for the hy
pocenter coordinates from the arrival times, from the given 
velocity model, and from the given theoretical model (of wave 
propagation). 

Since the velocity model is discontinuous in Z the a 
pos teriori density functions have discontinuities in slope, as it 

aCz> 

~ 
I 

z 

Fig. 7. Example of discontinuity of slope leading to oscillations in 
maximum likelihood algorithms. The effect will be an artificial accu
mulation at the interfaces between layers 

is clearly seen in Fig. 6 for a(Z). To the extent that the 
discontinuities in the velocity model are artificial, the discon
tinuities of slope are of course also artificial. From Fig. 6 it is 
easy to visualize some of the problems which may affect the 
maximum likelihood approach. If the discontinuity of slope is 
similar to the one at 5 km depth, we will have secondary 
maxima. We can also have a discontinuity of slope of the 
type drawn in Fig. 7. In that case, algorithms searching for 
the maximum likelihood point will oscillate arount the point 
of slope discontinuity, leading to the well-known artificial 
situation in which hypocenters accumulate at the interface 
between layers of constant velocity. 

11. Conclusion 

Our informational approach to probability calculus allows us 
to formulate inverse problems in such a way that all neces
sary constraints (see Sect. 1) are satisfied. Essentially, we 
propose to work with the probability density functions for 
parameters rather than with central estimators, as it is usually 
done. 

The general solution of inverse problems is expressed by 
the simple formula (6-1). We emphasize that inverse problems 
cannot be correctly stated until the three density functions 
p(x) (data and a priori information about parameters), 8(x) 
(theory and theoretical errors), a nd J.t(x) (null information) 
have been precisely defined. 

We have demonstrated that the ideas developed in this 
paper give new insights into the oldest and best know inverse 
problem in geophysics: the hypocenter location. Of course 
out theory also applies to more difficult inverse problems. 
The only practical limitation comes from problems where the 
solution of the forward problem is very time-consuming and the 
number of parameters is high. 
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Appendix 

Some Remarks on Probabilicy Calculus 

Let X be a parametrization of a physical system 9' and let X1 

= {X1 , ... ,X,} and X11 ={X,+ 1 , ... ,Xm} be a partition of X. For any 
p.d.f. f (x)=f(x1,x11) we can defi ne the marginal p.d.f. 

(A-1) 

The interpretation of this definition is as follows: if we admit that 
f(x1, x11 ) represents all the knowledge that we possess on the whole 
set of parameters and if we disregard the parameters X11, then all the 
information on X1 is contained in j,(x1). 
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The conditional p.d.f. for XI, given Xn = x~ may be defined, in our 
approach, as the conjunction of a general state of information (repre
sented by a p.d.f. j,(x)= f.(xi, Xn)} with the information Xn =x~. 

The information Xn=x~ clearly corresponds to the p.d.f. 

(A-2) 

because fj does not contain information on XI and gives null proba
bility for all values of Xn different from x~. J.II(xi) represents the null 
information on XI. Admitting that null informations are independent: 
J.l(XI,xu)=J.II(xi)·J.ln(Xu) and using Eq. (2-19) we obtain the combined 
probability: 

f.(xi, Xu)· J.II(xi) · li(xu- x~) 
f(xi,xn) 

J.II(xi)·J.lu(xu) 

Using definition (A-1) we obtain 

f,( ) f.( xi, x~) 
I xi J f.( xi, x~) dx/ 

(A-3) 

(A-4) 

which corresponds to what is ordinarily named the conditional p.d.f. 
for XI given f.(xi,xn) and Xn=x~. To follow the usual notation we 
will write this solution f.(xi I x~) rather than J;(xi): 

(A-5) 

The Bayes problem may be states as follows: Let f(xi, xu) be the 
joint p.d.f. representing all the available information on XI and Xn. If 
we learn that Xn=Xn we obtain g(xiixu) using Eq. (A-4). To the 
contrary, if we learn XI=xi we obtain g(xulxi). Which is the relation 
between g(xiixu) and g(xulxi)? 

We have 

and hence 

f(xi,xn) 

hi(xu) 

which corresponds to Bayes theorem. 

(A-6) 

(A-7) 

We have thus shown that well known theorems may be obtained 
using the concept of the conjunction of states of information. Many 
other problems may be solved using this concept. Consider for exam
ple n independent measurements of a given parameter X. In the 
particular case where the null information density is uniform (J.l(X) 
=const.), and each measurement gives a gaussian p.d.f. f.(x) centered 
at x, and with variance a2 

1 { 1 (x-xl} f.(x)=--exp ----2-, 

Vha 2 a 
(A-8) 

the iteration of Eq. (2-19) at each new measurement gives: 

1 { 1 (x-x)2 } /(x)=--exp ----Vh .[ 2 .[2 
(A-9) 

where: 

(J 

l"=-vn (A-10) 

which are well known results in statistics. 

Demonstrations for Sect. 9 

Let us first demonstrate two useful identities. If C 1 and C2 are two 
positive definite matrices respectively of order (n x n) and (m x m), and 
Man arbitrary (n x m) matrix, then: 

(MTC! 1 M + C!')- 1 MTC! 1 =C2 MT(C 1 +MC2MT)- 1, 

(MTC! 1 M+C2 1)- 1 =C2-C2MT(C 1 +MC2MT)- 1 MC2. 
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(A-ll) 

(A-12) 

The first equation follows from the following obvious identities 

MT +MTC! 1 MC2MT =MTC!'(C, +MC2MT) 

=(MTC! 1 M+C2 1)C2MT (A-13) 

since MTC! 1 M+C2 1 and C 1 +MC2MT are definite positive and 
thus regular matrices. 

Furthermore (A-ll) leads to 

C2 -C2MT(C 1 +MC2 MT)- 1 MC 2 

=C2 -(MTC! 1 M+C2')-l MTC!'MC2 

=(MTC!' M+C2')- 1{(MTC! 1 M+C2 1)C2 -MTC! 1 MC 2} (A-14) 

=(MTC! 1 M+C2')- 1 

which proves (A-12). 
Now from Eq. (9-5) we obtain: 

a(x)=exp{ -H(x-x0)T C0 1(x-x0)+xTFTCr 1 Fx]} 

=exp{ -HxT(C0 1 +FTCr 1 F) x-2xTC0 1 x0 +x~C0 1 x 0]} 

then defining: 

P=l-C0 FT(FC0 FT +CT)- 1 F, 

c.=PC0 , 

x* =Px0 . 

We obtain, using Eq. (A-12) 

C* =PC0 = C0 - C0 FT(FC0 FT + CT)- 1 FC0 

=(FTCi 1 F+C0 1)- 1 

and 

Thus Eq. (A-15) becomes: 

a(x)=exp{ -!(xT C; 1 X- 2X TC; 1 X* +x~C; 1 X*)} 

=exp{ -H(x-x*)T C; 1(x-x.)-(x* -x0 )T C0 1x0 ]}. 

From (A-18), we deduce: 

X* -x0 = -C0 FT(FC0 FT +CT)- 1 FC0 x0 

and then: 

a(x)=exp { -!x~FT(FC0 FT + CT)- 1 Fx0 } 

exp{ -!(x -x.)T C; 1 (x -x.)} 

=const. exp{ -!(x -x.)T C; 1 (X -x.)} 

which demonstrates Eq. (9-6). 

Demonstrations for Sect. 10 

Let us now evaluate the sum: 

I= J exp{ -H{d-d0f C,i 1(d-d0 ) 

+(d-g(pW Ci '(d-g(p))]} dd. 

(A-15) 

(A-16) 

(A-17) 

(A-18) 

(A-19) 

(A-20) 

(A-21) 

(A-22) 

(A-23) 

(A-24) 

The separation of the quadratic terms from the linear terms leads to: 

where: 

A=C,i 1 +Ci 1 

BT =dbC.i 1 +g(p)TCT 1 

C=d~Ci 1 d0 +g(p)TCi 1 g(p). 

Since A is positive definite there follows: 

(A-25) 

(A-26) 
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I= f exp{ -H(d-A -'B)T A(d-A _, B)+(C-BT A -'B)]} dd 

=exp{ -~(C- BT A- 1 B)} f exp{ -~(d-A _, B)T A(d -A_, B)} dd 

=(2n)"i2(det A)- 112 exp{ -~(C- BT A_, B)}. (A-27) 

By substitution of (A-26) we obtain: 

C-BT A -I B=d6(C; I -C;'(cd-l + c-r 1)C; 1)do 

+g(p)T(C-[ 1 -C-[ 1 (Cd-t +C-[ 1)C-f 1)g(p) 

-2g(p) C-f 1(C; 1 +C-f 1) C; 1 d0 • 

Thus, by using the two identities (A-11-A-12) we get: 

C-BT A -'B=d0 (Cd+CT)- 1 d0 

+ g(p)T (Cd + CT) -t g(p)- 2g(p)(Cd + CT) -t do 

=(do-g(pW(Cd +CT)-' (do-g(p)). 

Finally we obtain: 

l=(2n)"12 [det(C;' +C-f')J- 112 

·exp{ -~(d0 -g(pW (Cd+CT)- 1 (d0 -g(p))} 

which demonstrates Eq. (10-4). 
Let us define 

Using 10-4 and 10-7, the sum 10-5 becomes: 

l= J exp{-~ l:Ct?-h,-T] FL·[t~-hi-T]} dT 
'J 

= J exp{ -~(dT2 -2b T +c)} dT 

where: 

'1 

C= l:(t~ -h,) · P,/ (t~ -h). 
<j 

This yields: 

l= J exp{ -Ha (r-~)' + (c- bJ J}dT 

=ean)'/2 exp{-~(c-bJ}. 

(A-28) 

(A-29) 

(A-30) 

(A-31) 

(A-32) 

(A-33) 

(A-34) 

By substitution of a, b and c given in (A-33) in the above expression, 
we obtain: 

( 
2n )'12 J 1 [ l= ~P.1 expl- 2 ~(t~-h;)·FL·(tJ-h) 

(A-35) 

which can also be written: 

·P··[to-h _t?.N-h,)]l 
I} J J L~l 

kl 

(A-36) 

or 

(A-37) 

where I?.,- t? 
tt'=to __ kl __ 

I I Litl 
(A-38) 

kl 

which is the expression (10-8). 
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