
|00000055||

J. Geophys. 43, 41-58, 1977 Journal of 
Geophysics 

Finite-Difference Modelling for P-Pulse Propagation 
in Elastic Media with Arbitrary Polygonal Surface 

A. Ilan 

Department of Geophysics and Planetary Sciences, Tel-Aviv University, Tel Aviv, Israel 

Abstract. The applicability of the finite-difference methods has been limited 
in most cases to simple geometric shapes. The problem of introducing 
boundary conditions into the scheme has usually restricted the models to 
structures in which the boundaries are parallel to the coordinates. Recently, 
several investigators have studied the effect of prominent topographic fea­
tures on seismic signals. Most deal with SH waves. The behaviour of a P-SV 
pulse in media with prominent irregular surfaces is yet almost unknown. The 
difficulty of the last problem relative to the SH case lies in the vectorial form 
of the equation of motion and the more complicated boundary conditions. 

In the present work a technique is proposed for simulating the P-SV 
wave propagation in a two-dimensional half-space with an arbitrary poly­
gonlike topography. This technique has been applied to compute seismograms 
due to a P-pulse on surfaces of ridges and canyons. The incident pulse is 
amplified at the crest of mountains and at the upper corners of canyons. The 
magnitude of amplification is a function of the steepness of the topographic 
structure and can increase by 50 % compared to a flat surface under the same 
conditions. The maximum attenuation computed at the bottom of a canyon 
was 25 %. It can be concluded that the influence of prominent topographic 
features on the incident P-pulse is similar to that on incident SH waves, 
which was computed in previous investigations. / 

Key words: Finite-difference method - Wave propagation - Irregular 
surfaces. 

1. Introduction 

Field observations indicate that topography can have a significant effect on 
seismic signals. Boore (1972b) reported on very high accelerations of earth 
motions on top of mountains that sometimes exceed even the acceleration of 
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gravity, and can throw boulders out of their sockets. The highest ground 
acceleration that was so far recorded was 1.25 g. It occurred at Pacoima Dam 
site, California, as reported by Trifunac and Hudson (1971). Davis and West 
(1973) compared ground motions at the top and base of three different moun­
tains. The peak motion at the crests were always larger than those at the bases, 
but the relation between respective amplitudes were different in every case. 

This evidence indicates that structures which are prominent and convex 
cause amplification of the incident waves, but the ground motion at any 
particular site is influenced by numerous parameters and variables. The advan­
tage of mathematical modelling is that the parameters can be changed at will, 
and one can therefore consider the effect of any geological and geometrical 
factor separately. 

Some models were constructed for simulating wave-propagation in pro­
minent topographic features. Boore (1972 b, 1973) simulated SH wave­
propagation in models of ridges and canyons. He approximated the topographic 
profiles by flat segments and 45 degrees steps. Trifunac (1973) and Wong and 
Trifunac (1974) solved analytically the problem of scattering of plane SH-waves 
by semi-cylindrical and semi-elliptical canyons. Wong and Jennings (1975) 
generalized the model, and inciuded irregular canyons. Bouchon (1973) in­
vestigated the case of incident SH, P and SV waves on several types of 
topography, ranging from a ridge to a valley. He used the method of approxima­
tion developed by Aki and Larner (1970). Reimer et al. (1974) used a finite 
elements method to interpret the seismic response of Pacoima Dam in the San 
Fernando earthquake. 

Most of the existing solutions deal with SH waves, but the main seismic 
energy is propagated by P-SV waves. The problem of P-SV wave propagation in 
an irregular structure is more difficult, because of the vectorial equation of 
motion and complicated boundary conditions. 

The purpose of the present work was to develop a finite-difference tech­
nique for calculating the displacements caused by a P or SV pulse on elastic 
structures with an arbitrary polygonal surface. The method was applied to 
obtain theoretical seismograms on the surface of ridges and canyons. These 
seismograms were then used to detect regions of amplification or de­
amplification comparable to a flat medium. Also to estimate the magnitude of 
amplification as a function of the slope of topographic features. 

2. Model Assumptions 

Let us consider a half-space with an arbitrary polygon-like free surface. The 
material is assumed to be perfectly elastic, isotropic, and homogeneous. a is the 
compressional, and f3 is the shear velocity. It was assumed that a =i/3 {3. A line 
source within the medium emits a compressional pulse. Let the y axis be along 
the line source and parallel to all the boundaries, thus the disturbance is in the 
x, z plane only. Let U and W be the horizontal and the vertical components of 
displacements, respectively. The wave propagation is governed by the following 
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where t denotes the time. 

( 1) 

Initially, at time t = 0 the line source within the medium starts to emit a 
compressional pulse. The displacement due to the source at time t and at a 

distance r = V x 2 + z2 from the line source is given by: 

1 
S(r, t)= L1 4 [G(r, t) -4G(r, t - L1)+6G(r, t-2Ll) -4G (r, t - 3Ll) 

+G(r, t-4Ll)] (2) 

where 

(3) 

H is Heviside's unit step function and LI is the parameter which determines the 
width of the pulse, a is constant. S(r, t) satisfies the equations of motion (1). Its 
variation with time is illustrated in Figure 1. T his source is suitable for finite 
difference schemes due to its high order of smoothness. For further details about 
the origin of the source functions and its quali ties see Ilan and Loewenthal 
( 1976). 

The boundary conditions state - that all the components of stress are zero on 
the surface. The fulfillment of these bounda ry conditions on irregular surfaces is 
apparently the most difficult part of ma thematical simulation of P-SV wave 
propagation. This difficulty limited the application of finite-difference methods 
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usually to simple models, where the surfaces are parallel to the coordinates. In 
the present paper the range of topography to which finite-differences can be 
applied will be enlarged gradually. The first step will be to develop a finite­
difference scheme for obtuse wedges, because these are the basic elements of a 
polygon. 

Finite-Difference Schemes for Obtuse Wedges 

Alterman and Nathaniel (1975) solved the problem of P-pulse propagation in 
elastic wedges, using a special coordinate system parallel to the sides of the 
wedges. In this section the same problem is solved using cartesian coordinates, 
in order to enlarge the applicable geometry later to an arbitrary polygon. 

Let the x axis be parallel to one side of the wedge and z pointed vertically 
upwards. The angle between the inclined free surface and the x axis is e. A 
rectangular grid is superimposed on the wedge, and the mesh increments are 
chosen in such a manner that 

LI z 
-=tan(8). 
Llx 

(4) 

According to this choice the inclined surface passes through the diagonals of the 
mesh units, as illustrated in Figure 2. The horizontal and vertical displacements 
of the grid point U, k) at time level p will be denoted Uf, k and W;~ k respectively. 

By replacing the derivatives in Equations (1) by central finite differences the 
following formulae are obtained: 

( LI t) 2 U!'k+ 1 =-UPk- 1 +2UPk+a2 - (UP+ 1 k-2UPk+U!'_ 1 k) 
1' 1• 1• LI x 1 • 1' 1 ' 

+/32 (~;r(Uf.k+ 1 -2UJ,k+Uh_ 1 ) 
1 LI t2 ( 2 132) 

+4 LlxLlz 11 -

0 (W;P+l,k+l -W;~l,k-1 -W;l'_l,k+l + W;l'_l,k-1) 

· (Uf+ 1,k+ 1 - Uf+ 1,k-1 - UJ_ 1,k+ 1+UJ_1,k-1). (5) 
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On the horizontal free surface of the wedge the boundary conditions are: 

a U (x, z, t) +a W(x, z, t) O ) 
az ax 

z=nLl z, 
(rx. 2 _ 2/3 2) aU(x, z, t) +rx. 2 a W~x, z, t) =O 

ax oz 

x~mLlx. (6) 

The following approximations to Equations (6) were developed by Ilan et a l. 
(1975) and improved by Ilan and Loewenthal (1976) : 

UP + 1 = - UP- 1 +2 [t - {3 2 (~)
2 

- {3 2 (~)
2

(3-2 {32/rx. 2)] UP ;,k ;,k Liz Llx ;.k 

(Llt)2 2 2 (Ll t) 2 /32 2 p p + 2 Li z f3 UJ.k _ , + {3 Llx (3 - 2 /a )(Uj+ i.k + Ui - 1.k) 

L1 t2 
- {32 -- (WP - WP ) 

A A j+l,k j - 1,k 
LJXLJZ 2 2 

W.P+' = - W.P- '+2 [1 - a2 (~) -/32 (~) ] W.Pk ;,k ;,k Li z Llx ;, 

+ 2rJ.
2 (~ ; r Hj:k- I + {3

2 (~ ~ r ( HjP+ 1,k + Hj~ 1.k) 

L1 t2 2 2 
+ 0.5 - - (3 f3 - (J. )(UJP+ I k - UJP- I k) 

Ll xLlz · · 

L1 t2 2 2 
-0.5--(/3 -(J. )(UJ!'+ I k- I - UJP_ I k- ,) 

LlxLlz · · 
(7) 

here U, k) is a grid point on the horizonta l free surface. 

z= nLlz, x~m Ll x. 

m LI x denotes the corner of the wedge. 
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This scheme is consistent with the boundary conditions (6) up to the second 
order of accuracy. It is stable even for very small /3/rx, and does not need the aid 
of fictitious points. 

A special technique is needed only for the computation of the displacements 
on the inclined free surface. For that goal suitable cartesian coordinates are 
used, which are at an angle e to the main system. Let (U, W) be the components 
of displacements in the rotated cartesian coordinates (x, z). An orthogonal 
transformation connects the components in the two different coordinate sys­
tems: 

U' = U cose- Wsine 

W' = Wcose+ U sine. (8) 

On the inclined free surface the boundary conditions are zero components of 
stress in the x' and z' direction. The mathematical expression of these conditions 
are the same as Equations (6) in the (x' z') domain. A local grid is superimposed 
on the vicinity of the inclined surface. This grid includes a row of fictitious 
points, as shown in Figure 2. The dimensions of the intervals of the local grid 
are: 

Llx'=~ 
sine 

L1 z' = L1 z . cos e. (9) 

The derivatives of the boundary conditions (6) in the rotated system are replaced 
by finite differences. Thus, extrapolation formulae are obtained for calculat­
ing the values of the fictitious points: 

, , 2L1 z' ( , , ) 
u.k=Uz--- W,k_1-W'-1k 

J, L1 x' J, J • 

(10) 

All the displacements involved in Equation (10) are at the same time level. Three 
of the four grid-points involved in the computation are common to the main 
and the local grid. Only the displacements at point 2 (which is denoted in Fig. 2) 
are not known. They are approximated by the following linear interpolation: 

81 2 . e --=1- sm 
L1 x' 

(11) 
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Substituting (9) and (11) in (10) the following equations are obtained: 

u;,k =2 sin 2 e u;-1,k-1 

+(1-2 sin2 e) U},k- 2 - 2 sine cose (WJ,k- l - HJ'- 1,k) 

Wf,k=2 sin2 e WJ-1,k- l 
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+ (1- 2 sin2 e) HJ'. k-z - 2 sine cose (1- 2 /)2 /a 2)(U},k- 1 - Uj_ 1,k). (12) 

The displacements of the inner points and the horizontal free surface points 
are computed by Equations (5) and (7) as usual. Then, the values on the fictitious 
line parallel to the inclined free surface are calculated by formulae (12) in the 
(x', z') domain and transformed back to the main system, in every time step. 

Let us assume that the corner of the wedge is slightly smoothed, and the 
change of inclination occurs between the two grid points (m, n) and (m + 1, n). No 
special formula is needed for the corner, due to the combination of the 
composed approximation (7) for the horizontal surface with the extrapolation 
formulae (12) for the inclined surface. The grid point (m, n) is located on the 
horizontal surface while (m + 1, n) is the first point of the fictitious line. The 
displacements of the grid points located on the inclined surface are computed by 
an approximation to the equations of motion (1). A slight modification of 
formulae (5) had to be made, because they contain displacements of point 
U + 1, k + 1) which is not included in the grid. This grid point is involved in the 

f. . d·f~ . . h d . . <Pu a2 w f 1mte- 11erence approx1mat10n to t e cross- envatlves --, -- o axaz axaz 
Equation (1). For the grid points on the inclined free surface the following 
alternative approximation was used for the cross-derivative: 

- Uj+ 1.k-1 - Uj- 1,k+ 1J + O(LI z). (13) 

Formulae (12) are suitable for calculating the boundary values on a surface with 
inclination e where 1 ~tan(e)>-t. When 2>tan(8)~ 1 some modification of the 
technique is needed. This is discussed in the appendix. The increments are 
chosen in a manner that LI x =LI z/tan(8). For a constant LI z, when e decreases 
LI x increases, and the number of grid units per pulse width decreases. This may 
introduce some inaccuracy in the results, as explained by Boore (1972a). In 
order to avoid this difficulty, the grid for small slopes, -t ~tan ( e) > 0 is chosen 

in such a way that tan ( 8) = l~:, l is an integer, l ~ 2. In this case the inclined free 

surface passes through the diagonal of l units, as is illustrated in Figure 12. In 
this case l rows of fictitious points are needed. On the other hand for steep slopes 
LI x becomes very small. In this case the time step LI t must be made very small 
also, in order to satisfy the stability condition (16). Therefore the scheme 
becomes less efficient. That difficulty can be overcome by appropriate choice of 

grid units. In that case tan(e) = ILi z, the modification of the main technique for 
Llx 
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the cases of very small or very steep slopes are discussed in the appendix. The 
next step will be to generalize the method for media with polygonal surfaces. 

3. Grid for Polygon Model 

Any given topographic profile can be approached by a polygon. Let us construct 
a rectangular grid with fixed height LI z, and variable width LI X; ·LI X ; is de­
termined by Equation (4), and is different in every region according to the 
changing slope 0; of the surface above. An example for a grid with variable 
width is shown in F igure 3. 

The displacements of every inner point are determined by scheme (5). It 
contains finite-difference approximations for x derivatives such as: 

a2 u 
ax2 = [U(x+ LI X;, z, t)-2 U(x, z, t)+ U(x -Ll X;, z, t)] / Ll xf. (14) 

(14) is not completely defined on the boundary between 2 regions with different 
grid width, because (x + LI X ;, z) is not a grid point. In order to enable us to apply 
formulae (5) on the interface between grids with two different intervals, the 
displacements at points like (x +LI x;, z) are evaluated by interpola tion. 

The values on the fictitious lines parallel to the sides of the polygonal surface 
are computed by extrapolation formulae which represent the boundary con­
ditions. These formulae are obtained with suitable coordinates and local grids, 
which have been described in the previous section. The computed boundary 
values are t ransformed back to the main coordinate system in every time-step. 

The technique which has been developed in this paper requires the use o f a 
non-uniform grid, and a non-standard scheme. T he unavoidable complexity thus 
introduced is more than compensated by the ability to simulate the response of 
real topographic fea tures to seismic waves. 
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Accuracy and Stability 

The polygonal approximation used and the non-uniform grid are liable to cause 
some problems. The velocity of waves propagating on a grid depends on the grid 
intervals. Boore (1972a) and Browning et al. (1973) showed that waves propagat­
ing on a grid are bound to have a certain phase delay. This delay decreases 
when the number of grid units per wave length increases. Therefore, any wave 
which is poorly represented in the coarser grid will change phase speed when 
passing through an interface into a finer grid. If this wave later passes from the 
fine grid back into the coarse grid, a serious interaction can result with that part 
of the wave which has remained in the coarser net. The term "well-represented" 
wave means: sufficient grid-points per wave length. Browning et al. (1973) also 
demonstrated that if a wave is already well represented in the coarse net the 
wave should propagate through the interface between the coarse and the fine 
grid without difficulty. Taking this consideration into account the parameter of 
the pulse width was chosen such that 

6 max LI X;>Ll > 5 maxLlx;. (15) 

This choice (15) is sufficient for proper results. Using larger LI will cause the 
pulse to be broad and will result in lack of resolution required for identifying 
the different body waves. 

In order to check the influence of a non-uniform grid on the results the 
following numerical experiment was made: The displacements due to a P-pulse 
propagating in a wedge were computed twice, once by a uniform grid, and once 
by a grid with 2 different LI x such that: 

LI X1 5 
-- -
Llx 2 4 

A comparison between the results is shown in Figure 4. The good agreement 
between the 2 solutions shows that with careful treatment a non-uniform grid 
need not cause serious numerical errors. The extrapolation formulae are 
consistent with boundary conditions, to the first order of accuracy. It is difficult 
to improve this accuracy, because of the asymmetrical differences to the tangent­
ial direction, and the interpolation involved in the computation. For the special 
case of a 45° slope the differences become symmetric, interpolations are not 
needed and a second order of accuracy is achieved. If a finite difference scheme 
is consistent with the differential equations and stable, Lax's equivalence theory 
states that the numerical results converge to the exact solution as the increments 
tend to zero (see Richtmyer and Morton, 1967). Alterman and Loewenthal 
(1970) determined the necessary condition of stability of scheme (5). In order to 
fulfil this condition locally at any point of the non-uniform grid the following 
inequality is required: 

minimum (LI x;) 
Lit~~=================== 

a2+132 (minim;:(Llx;)r 
(16) 
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( 16) applies only to points which are not in the vicinity of the boundaries. T his 
stability condition does not take into consideration the effects caused by 
introducing the boundary conditions to the scheme. Experimentally it has been 

found that for the usual relation o: = y3 /3 the method of incorporating the 
boundary conditions into the scheme, which has been proposed in this paper, 
does not disturb the stability. 

In order to estima te the error involved when a smooth curve is approxi­
mated by a polygon, the problem of a pulse propagating in a n elastic cylinder 
from a line source at its centre was solved. The natural approach is to use 
cylindrical coordinates and a cylindrical grid. The results are shown by a dashed 
line in Figure 5. The solid line in Figure Sa shows the displacements on the surface 
of an octagon circumscribing the cylinder, at the point where the octagon touches 
the cylinder. There is agreement up to 95 % between the solutions until the arrival 
time of a phase that propagates with Rayleigh wave velocity from the co rners 
along the surface of the octagon. This phase decreases rapidly with depth. When 
the cylinder is circumscribed by a polygon with 16-sides the amplitude of the 
diffracted waves decreases by a factor of 2, as can be seen in Figure 5 b. 

The conclusion of this experiment is that when approximating a smooth 
curved surface by a polygon, one has to take into account a numerical error 
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which propagates from the corners. This error can be decreased by refining the 
polygon. When the real topographic profile has such a shape that it contains 
real corners, these pulses are not errors. They represent the physical phenome­
non of diffracted waves. 

The Response of Prominent Topographic Features to a Compressional Pulse 

The technique that has been developed in the previous sections enables simu­
lation of P-SV wave propagation in prominent features, i. e. features whose 
deviation from a Oat model is larger than or of the same order as the pulse­
width. Let us consider two typical topographic profiles, a canyon and a ridge. 
F igure 6 shows a vertical cross section of a polygonlike canyon. A compres­
sional impulsive source is embedded 10 grid units Liz below the surface, at a 
horizontal distance of 20 Li z from the corner of the canyon. Theoretical seismo­
grams were produced at five sites along the surface of the canyon. Figure 7 a, b 
depicts the horizontal a nd vertical displacements as functions of the dimension­
less time crx/ LI z at these observation points. The dashed line illustrates the 
displacements, at the same site of a flat surface. In this case the horizonta l 
displacement is very much amplified and the vertical displacement is slightly 
a ttenuated at the upper corner of the canyon. The amplitudes computed on the 
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Fig. Sa and b. The displacements at upper corners of canyons with different slopes, 51°,:; 0 ~ 0. T he 
source is at a horizontal distance of 20 LI z from the corner, at depth 10 LI z. The horizontal com­
ponent (a) the vertical component (b) 

flank seem to be unaffected by the topography. The seismograms on the flanks 
are more complicated. The phases PP and PS reflected from the horizontal 
surface arrive at si tes 2 and 3 after the first pulse. Sites 4 and 5 are in a shadow 
zone of reflected phases. In these seismograms; the diffracted waves can be 
clearly distinguished. At the lower corner of the canyon the amplitude is 
attenuated slightly. An attenuation of 25 % was computed at the lower corner of 
a canyon with vertical borders. This result is in agreement with Bouchon ( 1973). 
Trifunac (1973) and Wong and Trifunac ( 1974) found a considerable amplifi­
cation of plane SH waves in the upper corner of a cylindrical and a n elliptical 
canyon. For a vertical slope near the corner they found the magnitude of 
amplification to be greatly dependent on the angle of incidence of the waves. It 
varied from a few per cent for vertical incidence to nearly 100 % for almost 
grazing waves. Figure 8 shows a comparison between the displacements at upper 
corners of canyons with different slopes. The surface inclination near the corner 
varies from 27-S 1 degrees. The absolute value of the amplitudes increases with 
the angle of inclination. The magnitude of the computed amplification varies 
between 20 and 50 %. The amplitude of the horizontal displacement depicted in 
Figure 8 a increases considerably when the slope e increases. The vertical compo­
nent behaves differently, as can be seen in F igure 8 b. Its amplitude decreases 
slightly when the angle of slope e increases. 

Figure 9 shows a vertical cross section of a ridge model, with a steep slope 
e = 51°. The line source is at a depth of 20 L1 z below the crest. 

Figure lOa, b shows the vertical and the horizontal displacements as a 
function of ta/ L1 z at 5 observation points indicated in Figure 9. The dashed 
curve is the displacement on the surface of a flat model under the same 
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conditions. An obvious amplification is found on the summit. Bouchon (1973) 
found that the magnitude of amplification depends on the angle of incidence, 
and varied from 50 % for normal incidence to 100 % for oblique angles. Bouchon 
(1973) showed, also, that when the ridge model is made steeper the magnitude of 
amplification increases. These conclusions are in agreement with our results. 
When the slope of the ridge model (9) varied between 27 and 51 degrees, the 
amplitude of the signal increases by 14-52 %. 

On the flanks Boore (1972 b) found amplification of certain frequencies and 
deamplification of others. He assumed that in the time domain the amplitude of 
the incident waves would not be changed on the flanks. Bouchon (1973) found 
attenuation of the incident waves on the ridge flanks. According to our 
computation the amplitude of P-pulse on the flanks seem not to be affected by 
topography. Immediately after the first pulse two more pulses were recorded. 
These were PP and PS waves reflected from the opposite flank. The horizontal 
component of PP is in the opposite direction to the first pulse. Therefore, for 
certain sites and relatively long waves the direct and reflected phases may 
interfere destructively. This may explain why Bouchon (1973) got attenuation on 
mountain flanks. One can try to explain the high amplitudes on ridge crests as a 
superposition of the direct and the reflected phases arriving simultaneously at 
the top. For steep slopes, multireflections also increase the combined ampli­
tude. This focusing effect may even be amplified in a three dimensions model. 

Appendix 

The computation of boundary values for stress - free surfaces with slopes larger 
than 45° is slightly different from the technique described in Section (2), but 
based on the same principle. The difference lies in the fact that a steep surface is 
closer to the vertical than to the horizontal. 

In this case suitable cartesian coordinates are chosen with an angle y = n/2 
- e in the direction counter-clockwise to the main system. In the rotated 
coordinate system (x*, z*) the inclined surface is parallel to the z* axis. Let 
(U*, W*) denote the displacements in the x*, z* directions respectively. The 
following orthogonal transformation connects the displacements in the two 
systems: 

U* = U COS.')! + W sin')! = U sin 8 + W cos 8 

W* = - U sin y+ Wcosy = - U cose + WsinB. (17) 

The boundary conditions required on the inclined stress-free surface are as 
follows: 

oU* ow* 
~+~=0 oz ux 

2 ou* 2 2 ow* 
a ox* +(a -2/3) oz* =0. 

(18) 
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Let us superimpose a local grid around the inclined surface, as shown m 
F igure 11. The units of this grid a re: 

Llx*=Llzcose 

LI z* =LI z/sin 8. (19) 

The derivatives of Equation (18) are replaced by finite differences, and the 
displacements of point 2 denoted in Figure 11 are evaluated by linear in­
terpolation, such that : 

U1~k = 2 cos2 e Uf_ 1.k - 1 + (1 - 2 cos2 8) Uf_ 2 ,k 

-2cos8sin 8( 1-2/32/e< 2)(ttj*_ 1k-Wfk_ 1) 

Wh = 2 cos2 BW/_ i ,k - 1 + (I - 2 cos2 8) ttj*_ 2 ,k 

-2 sin e cosB(U/_ 1, k - Ufk - 1). (20) 

Equations (20) are extrapolation formulae to a fic titious grid point at a distance 
dx* from the inclined free surface, where 8 ~ 45°. For very small slopes where 
-! >tan e > e the grid dimensions are chosen in such a manner that the inclined 
surface passes th rough the diagonal of 2 or more grid units. As an example, in 
Figure 12 tan 8=-! , in this case a square grid is chosen in such a manner that 
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the surface passes through 2 grid units. Here two fictitious lines are needed. The 
first at a distance of LI z' = cos e LI z and the second at a distance 211 z' from the 
surface. (LI z' was defined in Eq. (9).) Extrapolation formulae to the first fictitious 
line are obtained by finite-difference approximations of Equations (6). 

u;,k = (1 - 2 Sin 2 e) u;,k- I+ Sin2 e( u;_ l,k + u; _ I ,k- 1) 

-sine cose(Wl+ i,k- 1 - w; _ l.k) 

w;,k = (1 - 2 sin 2 e) w;,k- 1 +sin2 e(w;_ 1,k + w;_ 1,k- 1 ) 

-sine cose(l -2/32/a. 2)(UJ+ 1,k- 1 - u; _ 1,k) (21) 

here (J, k) is a grid point on the first fictitious line. Extrapolation formulae for 
the second fictitious line are obtained similarly. 

u;,k = (1 - 4 sin2 e) u;,k- 2 +2 sin2 e(u;_ 1,k- 2 + u;_ l.k - l) 

- 2 sine cose(WJ,k- 1 - WJ-2,k) 

WJ.k = (1-4 sin 2 e) WJ.k _ 2 + 2 sin2 e(WJ_ 1,k _ 2 + WJ _ 1.k- 1) 

- 2 Sine COS eo - 2 /3 2 /r:J. 2
}( u;,k - l - u; _ 2,k). (22) 
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