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Abstract. Whereas any finite set of impedance data 
does not constrain the electrical conductivity u(z) at a 
fixed level z in a lD-model, the conductance function 
S(z2) as the depth-integrated conductivity from the sur­
face to the depth z2 will be constrained. Assuming only 
the non-negativity of u(z), it is shown that for a given 
depth z2 the models generating the lower and upper 
bound of S (z 2) consist of a sequence of thin sheets. The 
determination of the positions of the thin sheets and 
their conductances leads to a system of nonlinear equa­
tions. As a limitation the present approach requires the 
existence of a model, which exactly fits the data. The 
structure of the extermal models as a function of z 2 is 
discussed in examples with a small number of frequen­
cies. Moreover, it is shown that any set of complex lD 
impedances for M frequencies can be represented by a 
partial fraction expansion involving not more than 2M 
(positive) constants. For exactly 2M constants there are 
two complementary representations related to the lower 
and upper bound of S(z2). 

For the simple one-frequency case, a more general 
extremal problem is briefly considered, where the ad­
mitted conductivities are constrained by a priori 
bounds u _ (z) and u + (z) such that u _ (z) ~ u(z) ~ u + (z). 
In this case, the extremal models for S(z2) consist of a 
sequence of sections with alternating conductivities 
u _ (z) and u + (z). The sharpening of conductance 
bounds by incorporating a priori information is illus­
trated by an example. 

Key words: Electromagnetic induction - Inverse prob­
lem - Extremal models 

1. Introduction 

The 1 D-magnetotelluric inverse problem is known to 
be ill-posed and thus allows the construction of a 
whole set of satisfactory conductivity models from a 
given real data set. The COPROD study of Jones 
(1980) provides a good illustration of this fact. At pres­
ent there are two attempts to overcome the problem: 
either the inversion is stabilized by incorporating 
known or assumed properties of the conductivity struc­
ture as a priori constraints, or one may try to extract 
geophysically useful properties pertaining to the whole 

class of conductivity models consistent with the data. 
In principle, the latter problem can be approached 
either by exploring the whole space of feasible models 
by Monte Carlo techniques or by explicitly construct­
ing the model, which extremizes the geophysically in­
teresting property. Firm foundations for the use of the 
Monte Carlo method as a tool for geophysical in­
verstion were laid by Anderssen and Seneta (1971, 
1972) and the method of parameter extremization in 
geophysical inverse problems was pioneered by Parker 
(1972, 1974, 1975). 

Any set of magnetotelluric impedances for a finite 
number of frequencies does not impose bounds on the 
conductivity u(z) at any fixed depth z. At this depth, 
either a thin insulating sheet or a sheet of unbounded 
conductivity, but of finite conductance (conductivity 
thickness product), may exist. However, conductivity 
averages over a finite depth range will, in general, be 
constrained by the data, provided the field penetrates 
down to this depth. This has been exemplified in detail 
by Oldenburg (1983), who constructed bounds on con­
ductivity averages by linearizing the nonlinear problem. 
The existence of bounds for conductivity averages or 
for the simpler conductance function 

zi 

S(z2)= J u(z)dz (1.1) 
0 

reflects the fact that the inverse problem for S(z2) is 
well-posed (V.I. Dmitriev, private communication). 

The present study is centered on the computation of 
bounds for S(z2), imposing apart from the non-nega­
tivity condition u(z) ~ 0 no further constraints on the 
conductivity. Any model consistent with the data must 
lie within these bounds. The problem under consider­
ation resembles the problem of discovering extremal 
models of linear functionals of the density from a trun­
cated set of eigenfrequencies of an elastic string, as 
treated by Barcilon (1979), Barcilon and Turchetti 
(1979), and Sabatier (1979). Briefly addressed is also the 
more general problem of computing bounds for con­
ductivity averages rather than for S(z2). 

We shall consider only for the simple one-frequency 
case the construction of bounds for S(z2) when u(z) is 
constrained by a priori bounds u _ (z) and u + (z) such 
that u _ (z) ~ u(z) ~ O" + (z). 



|00000200||

192 

Contrary to the pragmatic approach of Oldenburg 
(1983), who applies his approximate method to a large 
number of frequencies, attention is confined in this very 
preliminary study to the exact extremal models for a 
small number of impedances. We also have to assume 
that there is a model that fits the data exactly. This 
restriction, however, may be dropped in subsequent 
work, thus extending the range of applicability to real 
inconsistent data sets. Only in connection with the 
COPROD study are approximate extremal models for 
many real data considered. 

Although the present problem is one of the simplest 
extremal problems in electromagnetic induction, the 
nonlinearity introduces a great deal of complexity and 
leaves the treatment still in an experimental stage. An­
other relatively simple extremal problem in electromag­
netic induction can be solved for two-dimensional per­
fect conductors (Weidelt, 1981). 

The main part of the paper consists of three sec­
tions. The general structure of the extremal models is 
derived in Sect. 2. Then a detailed discussion and illus­
tration of unconstrained extremal models is given in 
Sect. 3, and the concluding Sect. 4 is devoted to simple 
extremal models with a priori constraints on conduc­
tivity. The paper has two appendices, where in particu­
lar Appendix B contains the proof of an impedance 
representation theorem, to which we have to appeal in 
Sect. 3. 

2. Necessary conditions for extremal models 

Assuming SJ units, a time factor eiwt, a ID-conduc­
tivity structure u(z), and neglecting displacement currents, 
Maxwell's equations reduce for a quasi-uniform incident 
magnetic field in the y-direction to 

E~(z, w)= -iwµ 0 Hy(z, w), H~(z, w)= -u(z)Ex(z, w), 
(2.1) 

implying 

f"(z, w)= iwµ 0 u(z)f(z, w), (2.2) 

where f(z):=Ex(z, w). In the sequel we use the transfer 
function c introduced by Schmucker (1970). Its theoreti­
cal value for given u(z) at a set of M frequencies wi, 
j = 1, ... , M is defined as 

[ J Ex(O. w) f (0, wi) 
ci O" 

iwiµ 0 Hy(-O, w) f'(-0, w)' 
(2.3) 

where f (z) is a solution of Eq. (2.2), with f' (z) - 0 for 
z - oo. In Eq. (2.3), provision is made for a possible 
discontinuity of HY or f' at z=O due to the presence of 
a thin conducting sheet. The M complex data ci, which 
are assumed for the present to be exact, correspond to 
the functionals ci[u]. Then the problem of interpre­
tation consists in finding at least one model u(z) such 
that c.i[u]=ci, j=l, ... ,M. When there is no risk of 
confusmg functionals and data, [ u] is omitted. 

Within the class of models fitting the finite data set 
we are interested in those two models, which minimize 
and maximize either for a given depth range 
z1 ~z~z2 the conductivity average 

(2.4a) 

or simpler for a given z2 >0 the conductance function 

Z2 

S(z2)= J u(z)dz. (2.4b) 
0 

These four cases are equivalent to the problem of mi­
nimizing the objective function 

00 

Q [u J = J w(z)u(z)dz 
0 

with the weights 

w(z)= 

or 

j 1, O~z~z2 
w(z)= -1, O~z~z2 

0, z>z2 

for Q=O'min 

for Q=Smin 
for Q= -Smax 

(2.5) 

(2.6a) 

(2.6b) 

Assuming that u(z) is only constrained by the non­
negativity condition, we are faced with the nonlinear 
programming problem of minimizing Q[u] subject to 
the constraints 

ci[u]=ci, j=l, ... ,M 

and 

u(z)~O. 

(2.7a) 

(2.7b) 

The equality constraints (2.7a) render the problem non­
linear. The Lagrange function is 

M oo 

L[u]=Q[u]+Re L A;{ci[u]-c)- J µ(z)u(z)dz, (2.8) 
i=I 0 

where the M complex Lagrangian multipliers ?i.i enforce 
the equality constraints, whereas the non-negative func­
tion µ(z) takes the inequality constraint into account 
and satisfies 

µ(z)=O, u(z)>O; µ(z)~O, u(z)=O (2.9) 

(e.g., Pearson, 1974, p. 1113). The formally introduced 
Lagrangian multipliers Ai can be interpreted as the 
sensitivity of the minimum value Q 0 of the objective 
functional Q[u] to changes in the constraining data 
ci=gi-ihi (e.g., Pearson, 1974, p. 1118): 

(2.10) 

Hence, the ?i.i allow immediately a rough estimate of 
the influence of data errors. Also µ(z) can be inter­
preted as the sensitivity of Q0 by changing the lower 
bound of u(z) in the neighborhood of z to a positive 
value: let u(O~O-_(O in z-L1z/2~(~z+L1z/2 and let 

z+ Jz/2 

L1 r = J a'_ m d (. 
z-Jz/2 
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Then we obtain in the limit L1z--+0 

(2.11) 

i.e. Q0 is not affected, if the constraint is not binding 
(a(z)>O, µ(z)=O) and Q0 will not decrease for a bind­
ing constraint (a(z) = 0, µ(z) ~ 0). These results, of 
course, were expected. 

As a necessary condition for an extremum of Q, the 
first variation of L with respect to a has to vanish. This 
yields 

M 

w(z)+ Re L ).iF/z)-µ(z)=O, 
j~l 

(2.12) 

where F/z) is the Frechet derivative of the functional 
ci[a], defined by 

00 

bci[a] = J Fi(z)ba(z)dz (2.13) 
0 

with 

F/z)= -iwµ 0 f/(z) (2.14) 

(e.g., Parker, 1977), where f;(z): = f (z, w) is the solution 
of Eq. (2.2) with fj'( -0) = 1 and Jj'(z)--+ 0 for z--+ oo. 
The lowest-order differential equations satisfied by F/z) 
are 

2FiFJ' = 4iwiµ 0 a Ff+ (Fj) 2 , 

Fj"=4iwiµ 0 V~ (V~ F)'. 

On using Eq. (2.12), a function D(z) is defined as 

M 

D(z):=w(z)+Re L ).iF/z)=µ(z). 
j~ 1 

(2.15a) 

(2.15b) 

(2.16) 

Now assume that in some interval a<z<b, completely 
inside an interval where w(z) is constant, the conduc­
tivity a(z) is positive, i.e., a(z)>O for zE(a, b). Then 
from Eq. (2.9) µ(z)=O for zE(a, b) and Eq. (2.12) reads 

D(z)=O, zE(a,b). (2.17) 

In Appendix A it is shown that for downward diffusing 
fields F.(z) this equation has no solution, except for the 
trivial ~olution ).i=O if w(z)=O for z>a. For M=l this 
can be verified easily: since Eq. (2.17) holds in a whole 
interval, it can be differentiated an arbitrary number of 
times. In particular, the first two derivatives at zE(a, b) 
read (skipping the subscript 1) 

D' = -2Re {2F/c} =0, 

D" =+Re {).F(iwµ 0 a+ 1/c2)} =0 

with c=c(z)= -f(z)/f'(z)=g-ih, g>O, h>O for a 
downward diffusing field. The above equations can be 
considered as two linear homogeneous equations for 
Re ().F) and Im ().F), admitting a nontrivial solution 
only for a vanishing system determinant Ll. However, 

ILi I =4(h+ wµ 0 ag lcl 2)/lcl 4 >0. 

The linear independence of the Frechet derivatives has 
the important consequence that the extremal models 
cannot comprise conductivity sections, where a(z) is 
positive over a finite interval. Therefore, the extremal 
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models consist of a sequence of insulating layers (a=O) 
and thin conducting sheets, where a(z) is positive only 
at an isolated point. 

The problem of model construction consists in find­
ing for a given impedance set a sequence of thin sheets 
and a set of complex Lagrangian multipliers such that 
the model fits the data and the function D(z) is non­
negative everywhere and in particular vanishes at the 
positions of the thin sheets, i.e., 

D(z)~O; D(z)=O for a(z)>O. (2.18) 

This is clearly a nonlinear problem, since both the data 
functionals and the Frechet derivatives depend non­
linearly on the positions and conductances of the thin 
sheets. Also, it is not yet clear from the outset how 
many sheets have to be considered. (Semi-empirical ru­
les derived from experience with a small number of 
frequencies are listed in Sect. 3.6.) Concerning the non­
negativity of D(z), closer examination in Sect. 3.3 shows 
that for z<z2 we have D(z)>O, for a(z)=O, and D(z) 
= 0 for a(z) > 0, whereas D(z) vanishes identically below 
the first sheet occurring in z > z 2 • 

In a more general approach, the incorporation of a 
priori bounds a_ (z) and a+ (z) such that 
a_ ( z) ~ a ( z) ~ a+ ( z) can be achieved by replacing the 
last term in the Lagrange function Eq. (2.8) by 

00 

- J [µ+(z){a+(z)-a(z)}+µ_(z){a(z)-a_(z)}]dz, 
0 

where µ±(z)~O. Then the definition of D(z) in analogy 
to Eq. (2.16) is 

D(z)= µ_ (z)- µ+ (z). (2.19) 

D(z) vanishes, if a(z) attains neither its lower nor its 
upper bound. For the one-frequency case it was shown 
above that D(z) cannot vanish in a finite interval. 
Therefore, in this case the extremal models consist of a 
stack of sections with alternating conductivities a_ (z) 
and a+ (z), satisfying 

a(z)= a+ (z)} 
a(z) =a_ (z) 

{ ~o for D(z) - . 
~o 

(2.20) 

Jumps between a_ and a+ occur, where D(z) changes 
sign. The generalization to M frequencies must still be 
done, but it can be anticipated from the approximate 
extremal models presented by Oldenburg (1983) in his 
Fig. 7 that also in this case only the conductivities a_ 
and a+ will occur. 

3. Extremal models for the unconstrained 
conductance function 

3.1 Formulas for a series of thin sheets 

The discussion is started with the unconstrained ex­
tremal models requiring only the assumption a(z) ~ 0, 
and attention is confined to the conductance function 
in Eq. (1.1) 

z1 

S(z2 ) = J a(z)dz (3.1) 
0 
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rather than considering conductivity averages. In the 
unconstrained case the extremal models reduce to a 
series of thin sheets. Models of this kind have been 
identified previously by Parker (1980) as giving the 
best fit to any real data set. 

Formulas for the treatment of a series of thin sheets 
are briefly summarized. Assume a stack of K sheets 
with conductance •k at depth (k, i.e., 

K 

er(z)= L •kb(z-(k). 
k=l 

The inter-sheet separations are dk = (k -(k_ 1, k = 
2, ... , K. Then the solution f (z) of (2.2) varies linearly 
between two sheets, is continuous at z = (k, but shows 
the discontinuous slope 

f'((k +O)-f'((k-0)= iwµ 0 •d((k), k= 1, ... , K (3.2) 

f(z) is constant in z~(K, i.e. f'((K+O)=O. The 
theoretical transfer function c [er] = - f (0)/ f' ( - 0) is ob­
tained as c[er]=c1 +(1 with ck== -f((~)/f'((k-0) re­
cursively from 

ck+1 +dk+1 
ck l d , k=K-1, ... , 1, (3.3) 

+ iwµo •k(ck+ 1 + k+ 1) 

starting with c K = 1/(i w µ 0 • K). (In this section the sub­
script k on c denotes the value of cat z=(k-0, where­
as in a different context the subscript j specifies the 
particular frequency wi of c at z= -0.) The value off 
at z = (k, normalized to f' ( -0) = 1 is 

f((1)= -c1, 
k c 

f((k)= f((1) n :a ' k> 1, 
n= 2 en n 

(3.4) 

and the values of f'((k-O)=f'((k_ 1+0) are deter­
mined from 

f'((1-0)=1, 
k-1 

f'((k-0)= n (1-iwµo•ncn), k> 1. (3.5) 

The partial derivatives of c with respect to the model 
parameters 'Ck and (k are obtained by means of Eqs. 
(2.13) and (2.14): 

oc[er] . ·2 
-:i-=F((k)= -1wµ 0 f ((k), 

U'Ck 

oc[erJ =•kF((k)= [f'((k-0)]2 
o(k 

-[f'((k+0)]2, k=l, ... ,K-1 

()~~:] =t'CKF'((K-0)= [f'((K-0)]2, 

where 

3.2 An impedance representation theorem 

(3.6a) 

(3.6b) 

(3.6c) 

(3.7) 

The theoretical transfer function of a lD conductivity 
distribution admits the spectral expansion 

00 a(A.)dA. 
c[er]=a0 + J-1-.-, a0 ~0, a(A.)~O, 

0 11.+zw 
(3.8) 

where a(A.) is a generalized function to include both the 
discrete and continuous part of the spectrum (Weidelt, 
1972; Parker, 1980; Parker and Whaler, 1981). As an 
example, the stack of thin sheets considered in the 
previous section has a finite discrete spectrum and 
leads to the representation 

K-1 a a 
c[er]=(1 + L __ k_-+~; 

k=l bk+zw zw 
ak, bk>O; ( 1 , aK~O. (3.9) 

Let the theoretical impedances c J er] for M distinct 
frequencies wi be given by 

N a 
ci[er]=ao+ L b n. 

n=l n+zwi 
(3.10) 

with an,bn>O, n=l, ... , N-1; ao, bN~o. where the bn, 
n = 1, ... , N are distinct. [This form rather than Eq. 
(3.8) is chosen for ease of presentation only, for equiva­
lent integral analogs based on (3.8) exist for all for­
mulas involving the summation over n.] Then for N~M 
c i [er] allows the two representations 

M A 
I: cj[er]= L m. , 

m=l Bm+zwi 
(3.11 a) 

- M-1 A A 
II: cJerJ=Ao+ L m. +~. 

m=l Bm+zwi IWi 
(3.11 b) 

where all constants Am, Bm, A 0 , Am, Bm, and AM are 
positive. For N < M there is no representation other 
than Eq. (3.10). [See also Parker (1980).] The proofs are 
given in Appendix B. 

Model I is a series of M + 1 thin sheets: the first 
sheet is at z = 0 and the last sheet has an infinite con­
ductance. Complementary model II consists of M thin 
sheets: the first sheet lies at z = A0 > 0 and the last sheet 
has a bounded conductance. Between models I and II is 
a duality relationship in the sense that they can be 
transformed into each other by replacing a sheet of 
finite (infinite) conductance by an insulating layer of 
finite (infinite) thickness, and vice versa. 

Assuming the ordering bn>bn+l• Bm>Bm+l• we in­
fer from (B-19, 20), (B-24), and (B-26) the inequalities 
M N 
L (Am/Bm)~ao+ L (anfbn), (3.12a) 

m=l n=l 
M N 
L Am~ Lan (a 0 =0), (3.12b) 

m=l n= 1 

Ao~ao, (3.12c) 

AM~aN (bN=O). (3.12d) 

These inequalities express the extremal properties of 
models I and II, with the following physical interpre­
tation: 

a) The depth of a perfect conductor (if present) is 
given by 

z00 = lim c(w). (3.13a) 
ro~o 
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Hence Eq. (3.12a) implies that I is the model with the 
shallowest perfect conductor consistent with the data. 
Its position marks "the limiting depth below which 
nothing can be learnt about the conductivity" (Parker, 
1982). 

b) The conductance of a surface sheet, the presence 
of which requires a0 = 0, is given by 

S( +O)= lim l 
w~oo iwµoc(w) 

(3.13b) 

Hence Eq. (3.12b) says that model I has the greatest 
surface conductance. 

c) The depth to the first conductor is 

z0 = lim c(w). (3.13 c) 

Therefore according to Eq. (3.12c), model II is the con­
ductivity structure with the deepest top. 

d) The total conductance in the absence of a perfect 
conductor (bN=O) is 

S(oo)= lim 1 
w~o iwµoc(w) 

(3.13 d) 

Hence, Eq. (3.12d) implies that model II has the least 
total conductance of all models fitting the data. 

The presentation of Eqs. (3.11 a, b) also clarifies a 
situation described by Parker (1980): the best fit to a 
set of M complex measured impedances by an expan­
sion (3.10) is obtained when using quadratic program­
ming. This yields a representation with at most N = 2M 
terms. In the case N > M (which may occur at least for 
small M), the expansion (3.10) would require more con­
stants than available independent data. The above rep­
resentation theorem overcomes this unsatisfactory situ­
ation by compressing Eqs. (3.10) to (3.11 a) or (3.11 b) 
with exactly 2M constants. It the quadratic program­
ming procedure requires N ~ M terms, the best fitting 
model is nonunique. 

For a given representation (3.10), the condensed ver­
sions (3.11 a, b) can be obtained as follows: for model I, 
one first either has to solve the M-dimensional non­
linear system (B-13) for the M constants Bm, m= 
1, ... , M, or one determines Bm alternatively as the M 
roots of the polynomial (B-9) with K = M, q~> = qk, and 
qM= 1, where the coefficients qk, k= 1, ... , M-1 are the 
solution of the linear system (B-8b). With the knowl­
edge of Bm the constants Am (or Gm) are immediately 
obtained from_(B-16) or (B-18). Similarly, for model II 
the constants Bm, m= 1, ... , M -1, are obtained, for in­
stance, as the solution of the_ first M -::.1 equations of 
the system (B-22) (note b1 ~Bm~bN); A 0 then follows 
from the M-th equation of (B-22) or from (B-24), and 
finally Am (or Gm) is given by (B-25, 26). For the so­
lution of the various systems of nonlinear equations 
considered in this paper, Brown's algorithm turned out 
to be extremely useful, as it does not require the pro­
vision of partial derivatives. A FORTRAN program is 
published in Brown (1973). After the determination of 
the constants in Eqs. (3.11 a, b ), the parameters of the 
conductivity models are found on using the stable Rut­
ishauser algorithm as described by Parker and Whaler 
(1981). 
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The above considerations refer to theoretical or syn­
thetic data, for which the existence of representations 
(3.8) or (3.10) is granted. As mentioned above, real data 
can be approximated by an expansion (3.10) by qua­
dratic programming. However, the construction of ex­
tremal models for the "cleaned" data is meaningful 
only for N ~ M, since for N < M those modified data 
can be interpreted by only one model. 

3.3 General properties of the extremal models for S(z2 ) 

In the absence of a priori constraints, the extremal 
models for S(z2) [Eq. (3.1)] consist of a sequence of 
thin sheets. The necessary extremal conditions (2.18) 
provide no information about the required number of 
sheets as a function of both z2 and the number M of 
frequencies. However, the extremal properties of 
models I and II considered in the previous section give 
the first hint. Let Smax(z 2) denote the upper bound of 
S(z2) and let z00 =minz 00 =I(Am/Bm). Then the ex­
tremal models for both Smax( +O) and Smax(z00 ) are given 
by the (M + 1)-sheet model I [extremal properties a) 
and b)]. Similarly, let Smin(zi) signify the lower bound 
of S(z2) and z0 =maxz0 =A0 . Then Smin(z2)=0 for 
z 2 ~ z0 and the M-sheet model II is the extremal for 
both smin(zo) and smin(oo) [extremal properties c) and 
d)]. Thus, Smax(z2) and Smin(z2) have models I and II, 
respectively, both at the beginning and end. Al­
though it has not been proved generally, numerical 
experiments have shown that Smax(Smin) returns to 
model! (II) also at intermediate depths z2 =(k+O (z2 

= (k - 0), where (k is the position of a thin sheet in 
model I (II). Hence these models form the backbone in 
the evolution of the extremal models for smax and smin 
as a function of z 2 • 

To study the continuous deformation of the ex­
tremal models for varying z 2 , the necessary condition 
(2.18) is discussed in more detail. In the unconstrained 
case the sections with rr(z) > 0, implying D(z) = 0, shrink 
to one point. This means that D(z) must be either 
identically zero in the neighborhood of this point or it 
must show a "double zero" at the position z = (k of a 
thin sheet not coinciding with z=z2 • Since D(z) may 
have a discontinuous slope at z= (k, the necessary con­
ditions demand 

D((k)=O, D'((k-O)+D'((k+O)=O, 

or using (2.16) and (3.7) 
M 

w((k)+Re L AiF/(k)=O, 
i= 1 

M 

Re L A/'J((k)=O 
i= 1 

(3.14a, b) 

(3.15a) 

(3.15b) 

with w(z) defined in (2.6b). Multiplying (3.15b) by Tk, 

the conditions (3.15a, b) are, on account of (3.6a-c), 
equivalent to 

M OCJ<T] _ 
Re L Ai-::i-- -w((k), 

i= 1 uTk 
(3.16a) 

~ 1. ocj[rr] =0 
Re /::'1 AJ o(k . (3.16b) 
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Assuming a model with K thin sheets, the condition 
(3.16b) also holds for an ultimate perfect conductor 'CK 

= oo at z=(K, where Fi((K)=O=Fj((K-0), but 

lim t1:KFj((K-O) = oi;u] = [fj((K-0)] 2 =!=0. 
tK-...+ oo \:,,K 

Now it is shown that the extremal model for Smax(z2) 
always has a conducting sheet at z2 -0, which is just 
included in the range of integration, whereas smin(z2) 
has a conducting sheet at z2 +O, which is just excluded. 
It is assumed that z2 lies between sheet p-1 and sheet 
p, i.e., ( _ 1 < z 2 < ( . In between, sheets D(z) can vary at 
most a~ a second degree polynomial since Jj(z) is a 
linear function in z. The discontinuity of w(z) between 
( _ 1 and ( introduces in this range in addition a 
d~scontinuity in D(z), but not in D'(z): 

{ +1 
D(z2 +0)-D(z2 -0)= _ 1 

D'(z 2 +O)-D'(z2 -0)=0. 

for smax(z2) 
for smin(z2)' 

(3.17) 

(3.18) 

First, it is shown that the conditions (3.14a, b) in con­
nection with the quadratic variation of D(z) lead to the 
conclusion that D(z)=O for z~(P. From Jj(z)=const. 
for z~(K and D((K)=O follows D(z)=O for z~(K. With 
D'((K+O)=O it is inferred from Eq. (3.14b) that 
also D'((K-0)=0. Hence for p<K we have D(z) 
=AK(z-(K)2 in (K_ 1 ~z~(K, where D(z)~O implies 
AK~O. However, AK=O, since D((K_ 1)=0 on account of 
Eq. (3.14a). Therefore, D(z)=O in (K_ 1 ~z~(K. Repeat­
ing the arguments, it is found that D(z)=O for z~(l(. 
In (P>z~z2 +Owe again have D(z)=AP(z-(P)2 , AP~u. 
With reference to Eq. (3.18), D'(z) is a continuous linear 
function in (P_ 1 ~z~(P with D'((P-0)=0, D"((p-0) 
~O, implying D'((P_ 1 +0)~0. On the other hand, 
if ( _1 +0<z2 <(P-0, then the two conditions D((P_ 1) 

=OP and D(z)~O would require D'((p-l +0)~0. This 
does not contradict the preceding result only if 
D'(( _1 +0)=0, implying AP=O and D(z)=O in 
( _ 1P ~ z ~ ( [because of the continuity of D' (z)]. The 
c~ndition (3.17), however, requires that D(z)$0 in this 
interval. The remedy is to take either z 2 =(P_ 1 +O or z2 

= ( -0. In this case a thin sheet lies at the preassigned 
depth z 2 ± 0, which is no longer a freely variable pa­
rameter and hence is not to be included in the neces­
sary conditions (3.14b)-(3.16b). In view of Eq. (3.17), 
the Case z2=(p-l +0 applies to Smax With 

D(z2 -O)=D((P_ 1)=0, D(z2 +0)=1, (3.19a) 

and the case z 2 = ( P - 0 pertains to S min: 

(3.19b) 

Since the evolution of the extremal models for varying 
z 2 is quite involved in the general case, it will be studied 
in detail only by two relatively simple examples for one 
and two frequencies. 

3.4 Extremal models for one frequency 

The data for the frequency w 1 =: w is c1 =: c with 

c=g-ih= \c\e-it/I, (3.20) 

where Jc\ is related to the apparent resistivity Pa and 
apparent conductivity ua by 

Pa=wµ 0 \c\ 2, <J'a=l/pa, (3.21) 

and t/l is the complement to the phase <p between the 
electric and magnetic field, <p + t/l = 90°. The data is 
consistent with a lD model if g ~ 0, h ~ 0, or equiva­
lently O~t/1~90°. The results of the last section have 
already shed some light on the structure of the ex­
tremal models. The associated models I and II [Eq. 
(3.lla, b)] using the notation of Sects. 3.1 and 3.2 are 

I: c[u]= B A 1 • (z (3.22a) 
1 + I W 1 + i W µO 'C 1 ( 2 ' 

- 1 1 1 
II: c[u]=A0 +-:--=(1 +. (3.22b) 

zw 1wµ 0 1: 1 

Equating with Eq. (3.20), it is found that model I con­
sists of a thin sheet with conductance 1: 1 =\c\uasintfl at 
z=O and a second sheet with 1:2=00 at z00 =Jcjsectfl, 
whereas model II consists of a single sheet 1: 1 = 
Jclua/sint/l at z0 =\c\ cost/I. Hence, 

smax( +0) =le\ (J'a sin t/l, 
Smax(z2) = 00, Z 2 ~ jcj sec t/l, 

smin( 00 )=Jc\ ua/sin t/l, 
Smin(z2)=0, Zz ~ jcj COS tfl. 

(3.23a) 

(3.23b) 

The models of the start and end are identical, with the 
difference, however, that at the end the (lower) sheet is 
included in S. Now the evolution of the models be­
tween these limits has to be studied. Starting with Smax• 
it is assumed that the extremal model for z 2 > 0 evolves 
from that of z2 = +0 by moving the surface sheet to 
( 1 =z2 -0>0. Then also the second sheet with 1: 2 = oo 
will move. The two free parameters of the model are 1: 1 

and ( 2, whereas ( 1 and 1: 2 are preassigned. From Eqs. 
(2.7a) and (3.16a, b) results the system 

c[u] =c, (3.24a) 

Re{il oc[u]}=l, (3.24b) 
81:1 

Re{il oc[u]}=o (3.24c) 
0(2 

(il1 =: I.), where the partial derivatives of c [u] are de­
termined from (3.6a-c). The system (3.24a-c) consists of 
four real equations for the four real unknowns 1: 1 , ( 2, 
Re A, and Im I.. In practice, first Eq. (3.24a) is solved for 
1: 1 and (2 to obtain Smax(z2)=1:1 , and then Eq. (3.34b, c) 
is solved for the sensitivity measure il, which is re­
quired, for instance, in the discriminant function (2.16) 

D(z)= w(z)+ Re {l.F(z)} 

with F(z)==F1 (z), as defined in Eq. (2.14). This non­
negative function has to vanish at z = ( 1 and z = ( 2, 
where D((1)=0 is equivalent to Eq. (3.24b) and D(( 2) 

=0 is satisfied because of F((2)=0. With the present 
two-sheet model the condition D(z)~O can be satisfied 
only for sufficiently small z2 • This is a consequence of 
D((1)=D(z2-0)=0 and the fact that D(z) is a second­
degree polynomial in 0 ~ z ~ z 2, which for some limiting 
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value z2 =za vanishes at z=O and thus signals the em­
ergence of a third sheet at z=O. To determine z the 
system (3.24a-c) is augmented by the condition a•D(O) 
= 0. This condition and (3.24 b, c) are linear in the two 
~nknowns Re A. and Im A. and are compatible only if 
linearly dependent. Using F((1)=Bc/Br1, the compati­
bility condition is 

Im{[F((1)-F(O)] r~~:]}=o. 
Expressing F and c[u] in terms ofr1, (1(=z2-0), and 
( 2, this condition reads 

((1 -(2)2(1 +w2 µ~ri(i)=(~, 

and writing r1 and ( 2 in terms of the data, we end up 
with a cubic equation for za = ( 1 as limiting value of'z 2: 

z,;-4gz.; +(2g2 + 3 !cl 2)za -2glcl2 =0. (3.25) 

Of interest is the root za in 0 ~ za ~ g =!cl cos l/J. 
Renumbering the sheet parameters in the three­

sheet problem, the determination of smax(z2)=r1 +r2 
for z 2 > za requires the determination of r 1' r 2, and ( 3 

from the set of equations 

(3.26a) 

(3.26b) 

(3.26c) 

(3.26d) 

In practice, first r1, r 2, and ( 3 are computed from 
(3.26a) and the compatibility condition 

Im{[ac[u] _ Bc[u]J ;ac[u]}=o, 
Br2 Br1 B(3 

and A. is obtained in turn from two of the three equa­
tions (3.26b-d). 

With the emergence of the third sheet, the perfectly 
conducting ultimate sheet, which was first moving 
downwards, is moving upwards again and merges for 
z2-.z00 =lclsecij; with the sheet at z2-0, which is get­
ting increasingly conductive. The conductance of the 
surface sheet has meantime increased to lclua sin ij;, and 
we return for z2 = z00 to the conductivity model for z2 = 
+o. 

The extremal models for Smin(z2) evolve similarly. 
As mentioned earlier, smin(z2)=0 for Z2~g=lcl cosl/J. 
For z 2 > g we try a model consisting of a surface sheet 
of conductance r 1 at z = ( 1 = 0 and a second sheet of 
conductance r 2 at z = ( 2 = z 2 + 0. The unknowns are r 1 
~nd r 2. The system of equations analogous to (3.24a-c) 
IS 

(3.27a) 

(3.27b) 

(3.27c) 
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Again, Eq. (3.27a) is sufficient to determine r1 and r 2. 
The two-sheet model with the fixed surface sheet has to 
be modified, when (1 can also be considered as a vari­
able, i.e. if, in addition to Eq. (3.27 a-c), the following 
holds 

(3.27d) 

The augmented system (3.27 a-d) allows the determi­
nation of the limiting value z 2 = z;, where the surface 
sheet starts moving. The condition of linear dependence 
of (3.27b-d) leads to 

Im{ac[u] ;ac[u] I }=o, 
iJr2 0(1 ~.~o 

or 

r 1+2r2 =w2 µ~r 1 rg~. 

The expression of r 1 and r 2 in terms of the data then 
yields again a cubic equation for ( 2 =z;: 

4g2 z;3-4g(lcl 2 -g2)z? 

+ lcl 2(!cl 2 -4g2)z; -lcl4 g =0. (3.28) 

Of interest is the solution z; ~ g with z;-. lcl 2 /(2g) for 
z;-.oo. For z 2 >z; the system (3.27a-c) is augmented by 

Re{.A. Bc[u]}=o 
a(1 

and the unknowns r 1, r 2, and ( 1 are determined from 
Eq. (3.27 a) and 

Im{ac[u] ;ac[u]}=o. 
Br2 B(1 

The surface sheet, starting moving for z 2 = z;, ap­
proaches z = g for z 2 ---. oo and attains the conductance 
r 1 = I c I <Ta/sin ijJ. In this limit the lower sheet disappears 
at infinity, and we return to the starting one-sheet 
model. 

Figure 1 shows za(l/J), z;(l/I), and z00 (l/J). It also ske­
tches the type of extremal models for the various ran­
ges of z 2. The depth z* = g = le I cos ijJ is the "center of 
gravity" of the induced currents. Unless there is only 
one sheet, conductors must be present both above and 
~elow z*. The extremal models are not unique for Smax 
m the range Z2 >zoo (Smax = 00) and for smin in the range 
O~z2 <Z0 =g (Smin=O). The position of conducting 
sheets for iJ; = 45° is depicted in the left part of Fig. 6 as 
function of z 2 • 

Figure 2 displays the curves bounding S(z2) for dif­
ferent phases ij;. S is normalized by the conductance 
lclua=l/(wµ 0 lcl) [Eq. (3.21)]. All models compatible 
with the two-data problem must fall into the shaded 
areas. These areas get narrow both for ijJ ---. 0° and 
ijJ ---. 90°, reflecting the fact that these two limiting pha­
ses can be interpreted by one model only, consisting, 
respectively, of a perfect conductor at z =lei and a thin 
sheet of conductance lei <Ta at z=O. The limiting values 
of Smax and Smin as a function of ijJ are given in Eq. 
(3.23a, b). 

As a particular feature of Fig. 2, note that the sha­
ded areas for ijJ and 90° - ijJ are mirror images obtained 
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Fig. I. The different types of extremal models in the uncon­
strained one-frequency case as function of the phase l/J. In 
smax a surface sheet emerges for z 2 = za(l/I) (lower solid curve at 
/ejt) and in Smin. the Surface sheet is detached for z2 = Z;(l/J) 
(upper curve at right) 

by reflection at the main diagonal. This is an ex­
pression of the duality transformation (Weidelt, 1972), 
which transforms Eq. (2.2) by means of 

z:= J a(O/a0 d(, O'(z):=a6/a(z), 
0 

J(z): = f' (z) 

into 

l" (z) = iwµ 0 i1(z) J (z) 

with 

c(w)= -](0)/] '(0)= l / [iwµocro c(w)] , 

(3.29a, b) 

(3.29 c) 

(3.30) 

(3.31) 

where a 0 > 0 is an arbitrary reference conductivity. 
Equations (3.29a, b) and (3.31) imply 

S(z) = u0 z, S(z)=a0 z, if;+f=90° 

and admit the follow ing interpretation. When determin­
ing for given Z2 and if; the bounds smaxCz2) and smin(z2), 
one automatically also so~ves the dual problem consist­
ing in determining_ for if;= 90° _-if; and S 2 =a 0 z 2 the 
depth bounds zmax (S 2) and zmin(S 2), to which a(z) has to 
be integrated to reach the given conductance S2 under 
the most adverse and favorable conditions. The cong­
ruence of the shaded areas results from the particular 
scaling on exploiting lcl ua=lclu0 , lcli1a= lclu0 [ Eq. 
(3.31 )]. The symmetry between conductance and depth 
breaks down, if a priori constraints are imposed on 
conductivity (cf. Fig. 7). 

0 

2 

~ 
Z2 

0 TCi 2 
3 

3 0 

0 

2 3 

2 

3 

2 

3o 2 3 

Fig. 2. The bounds for S(z2) in the unconstrained one-fre­
quency case for different phases 1/1. The mirror symmetry of 
the shaded domains for I/I a nd 90° - 1/1 is explained in the text 

3.5 Extremal models for two frequencies 

For more than one frequency various different si­
tuations may occur in the evolution of the extremal 
models, and the general discussion becomes cumber­
some (or even impossible). For this reason, attention is 
confined in this section to the exemplary study of a real 
data set for M = 2 frequencies, consisting of the es­
timates of the transfer function c for the first and fourth 
Sq harmonic for Europe as given by Schmucker (1 984): 

1 cpd: c1 =(575-i260) km 
4 cpd: c2 =(290-i275) km. 

By quadratic programming on using the program 
NNLS of Lawson and Hanson (1974) [as suggested by 
Parker (1980)], it is found that the data can be repre­
sented exactly by the series (3.10) with the maximum 
number of N = 2 M = 4 terms. The condensation of th is 
series according to Eq. (3.11 a, b) then yields the two 
canonical models 

(1=0, r 1=4.09466·103 S 
I : ( 2 =5.23675·105 m, r 2 = 3.77586·104 S 

( 3 =7.83023·105 m, r 3 = oo 

II: ( 1 =l.05947· 10: m, r 1 =6.66233· 103 S 
( 2 =6.99673 ·10 m, r 2 = 1.01835·105 S 
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Fig. 3. The position z of conducting sheets as function of z2 in 
the extremal models for the unconstrained two-frequency 
problem (first and fourth Sq harmonic) 

(giving for a possible check of the algorithm three to 
four more digits than warranted by the accuracy of the 
data). Smax(z2) has model I not only at the start and 
end, but returns to it also at the intermediate depth 
Zz ~ 524 km. Similarly, smin(z2) also returns to model II 
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at z2 ~ 700 km. The position z of conducting sheets (ab­
scissa) as a function of z 2 (ordinate) is shown in Fig. 3 
for Smax and Smin· The ticks mark perfectly conducting 
sheets. This figure provides an idea of the nonlinearities 
in the problem by showing emerging, coalescing, disap­
pearing, and reappearing sheets. 

The continuous deformation of the start model to 
an identical end model is performed, on the one hand, 
by the sheets emerging at z=O (level B, E, I, and L) 
and_getting detached at D, K, and M, and on the other 
by the lower sheets either coalescing at D and F with 
the ultimate perfect conductor (SmaJ, or moving at L 
and below N to infinity (Smin). 

Model I is realized at A, D, K, and below F, where­
as model II occurs at B, I, L, and below N for 1-+ oo. 
The models for Smax in the ranges BC and DE are 
identical with those Of Smin in the same range Of Zz; 
smax and smin differ only by the conductance of the 
sheet at z2 • In the missing range CD all necessary 
conditions imposed on smax can be satisfied on taking 
the same model as for smin• but it turns out that choos­
ing the four-sheet model for smax with the reappearing 
perfect conductor produces in this range slightly greater 
values. This underlines the fact that the conditions de­
rived in Sect. 2 are necessary but not sufficient. 

Figure 4 displays the resulting bounds for the two 
frequencies, along with the bounds obtained by each 
frequency separately. In the present example, joint con­
sideration of the two frequencies improves spectacularly 
the lower bound on S, whereas the upper bound curve 
deviates only slightly from the curve consisting of the 
smaller of the values of smax obtained by single-fre­
quency interpretation. At level z 2 = C 2 of model II, the 
values of smin for 1 cpd and 1 &4 cpd do not appear to 
be strictly equal, but differ only by O.Ql %. The marks 
at the right margin denote the depth of the shal­
lowest perfect conductor, moving from 551 km for 
4 cpd to 692 km for 1 cpd and to 783 km for 1 & 4 cpd. 

Finally, it is noted that at the distinguished levels 
z2 ~106, 524, and 700 km, where the slope of the 
bounding curves changes discontinuously, the Lag-

200 
1 cpd : c = ( 5 7 5 - i 260 ) km 
4cpd:c=(290-i275) km 

4c d 

- -· Fig. 4. Bounds for S(z2) in the 
600 unconstrained two-frequency ... ... problem. All models fitting these 

\ .... data must fall into the shaded \ 
\ area. The joint consideration of 1 \ 

800 • and 4 cpd considerably improves 
km the bound for smin and shows that 

~ 4cpd 1cpd 
all models must have a good 
conductor not deeper than 700-

z2 800km 
0 20 40 60 80 -s lOOkS 
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rangian multipliers A. 1 and A. 2 are also discontinuous, 
meaning that near these levels the relation (2.10) for an 
estimate of the influence of data errors has to be ap­
plied with caution (cf. also case Cl in Sect. 3.6). 

3.6 Extremal models for many frequencies 

As a basic limitation of this study, it is assumed that 
there is a 1 D model, which exactly fits the data set. 
This restriction may be dropped in subsequent work, 
where the equality constraints (2.7a) are replaced by 
inequality constraints that demand only a fit of the 
data within a suitable multiple of the standard de­
viation. With the present tools, however, there are two 
approximate ways to handle inconsistent data: 

a) The lD information (3.10) is extracted by qua­
dratic programming; the cleaned data allow a reason­
able construction of extremal models only if the num­
ber M of frequencies does not exceed the number N of 
terms, since for M > N only one model exists. 

b) Extremal models are constructed for different 
consistent subsets of the data, and the bounds on S(z2) 

for the whole set are estimated by taking the greatest of 
the lower bounds for each z2 and the smallest of the 
upper bounds. In the simplest case a consistent subset 
comprises the data for just one frequency, requiring 
only Rec~O, Imc~O. 

Generalizing the experience gained from a small 
number of frequencies, it appears that in the M-fre­
quency case the extremal models belong to one of the 
six categories: 

A 1 : The model consists of M + 1 thin sheets with 
r M + 1 = oo and with one sheet fixed at depth z 2 • There 
remain 2M free model parameters, which can be de­
termined from the 2M real data. If required, the M­
complex multipliers ).l are obtained by solving the lin­
ear system of order L M resulting from the necessary 
conditions (3.16a, b) for the 2M free model parameters 

---
(examples in Fig. 3: AB, DE, KL). 

A2: This case differs from A 1 only in preassigning 
----,1 =0 rather than 'M+i =oo (examples: BC, IK, LM). 

B 1 : M + 2 sheets with preassigned ( 1 = 0, r M + 2 = oo, 
and one sheet at fixed depth z2 • There remain 2M + 1 
free model parameters, for which there are 2M + 1 
equations of type (3.16a, b), linear in the 2M real quan­
tities Re).. and Im..l.i. As a compatibility condition, the 
determina~t of order 2 M + 1 formed by the matrix of 
the linear system and the right-hand side of (3.16a, b) as 
(2M + l)st column has to vanish. This equation in con­
nection with the 2M data furnishes 2M + 1 nonlinear 
equations for the 2M + 1 free-model parameters. If re­
quired, the multipliers ).i can finally be obtained by 2M 
of the linear equations (omitting an equation~ith the 
right-hand side vanishing). Examples are CD, EF. 

B2: M + 1 sheets of finite conductance with one 
sheet fixed at z=z2 • There are again 2M + 1 free-model 
parameters, which are determined in analogy to B 1 
(example: MN). 

C 1: M + 1 sheets with ( 1 = 0, r M + 1 = oo ( = canoni­
cal model I), z2 happens to coincide with the position 
of one of the sheets. The 2M-model parameters (includ-

ing z2) can be determined from the 2M data. However, 
the multipliers ).i remain undefined, since Eqs. (3.16a, b) 
yield only 2M -1 real equations (z2 fixed!) for the M 
complex A.i. In fact, the A.i are discontinuous for these 
special values of z2 , yieldmg different sets for slightly 
smaller and greater z2 (examples: A, D, F, K). 

C 2: M sheets of finite conductance (=canonical 
model II), z2 coincides with one of the sheets (cf. Cl for 
further discussion; examples: B, I, L). 

The models Al and A2, Bl and B2, Cl and C2 are 
dual in the sense of Sect. 3.2. 

The model type for varying z2 may have to be 
changed for the following reasons: 

a) The system of nonlinear equations no longer has 
a solution (e.g., because the deepest perfectly conduct­
ing sheet disappears or reappears at infinite depth or 
merges with another sheet, or the conductance of the 
deepest sheet increases from finite values to infinity). 

b) A surface sheet emerges. According to Eqs. 
(3.14a), (2.14), and (2.3), the condition is 

M 

D(O)=w(O)-Re L iwiµ 0 A.icJ=0, 
i=l 

whereas D(O) > 0 in the absence of a surface sheet. 
c) The surface sheet becomes detached and moves 

downwards. This happens when ( 1 becomes a freely 
varying parameter, implying according to (3.14b), (2.14), 
(2.3), and (3.2) that 

M 

D'(-O)+D'( +0)= Re L 2iwiµ 0 c)i2-iwiµ 0 r 1 ci)=O. 
i=l 

This section concludes with an example for approxi­
mate extremal models from an inconsistent data set. 
We choose the COPROD data of Jones (1980), which 
have been inverted by different authors using a variety 
of techniques. The shaded area in Fig. 5 was deter­
mined by the approximate method b) from 11 con­
sistent subsets comprising a single frequency. The figure 
also displays as S(z2)-curves the various results of in­
version. These models freely use the space allotted them 
and occasionally even transgress it because of the ap­
proximate nature of bounds and models. This example 
shows that the approximate method b), which for con­
sistent data tends to produce conservative bounds (cf. 
Smin in Fig. 4), can even yield too narrow bounds for 
inconsistent data, where the range of acceptable models 
is broader because in fitting the data different frequen­
cies (or frequency bands) can be emphasized. Also, in­
consistencies in the data may lead to unreasonable 
restrictions in the feasible (shaded) area. For this reason 
the four longest periods contained in the COPROD 
data have been omitted when constructing the bounds. 

4. Extremal models 
for the constrained conductance function 

Section 3 was devoted to the unconstrained extremal 
models with CT_ (z) =:0, CT+ (z) = oo. In this section we 
shall consider as a simple example for constrained ex­
tremal models the one-frequency problem of Sect. 3.4, 
where now the range of admitted conductivities is 
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bounded by <J + (z) = <J +' where <J + is a positive constant. 
In particular, the structure of the extremal models is 
studied when assigning to <J + a varying multiple a of 
the apparent conductivity (J a [cf. (3.21)], i.e., (J + = (X Q' a· 

In this particular case, the extremal models consist of a 
sequence of uniform layers with <J(z)=<J + and insu­
lators with <J(z) = 0. According to Eq. (2.20), the neces­
sary extremal conditions are D(z)~O for <J(z)=O and 
D(z) ~ 0 for <J(z) = <J +, with layer boundaries at po­
sitions where D(z) changes sign. 

Before considering more details, it might be useful 
to discuss first the structure of the extremal models as 
displayed in Fig. 6 for ifl = 45° and various values of a. 
The position of the thin sheets (abscissa) as a function 
of z 2 (ordinate) in the unconstrained case a= oo is 
shown at the left. The ticks mark again perfect con­
ductors. The main structural units of these models are 
clearly discernible in the following models of con­
strained conductivity, where the layers with <J = <J + are 
shaded. As expected from experience with the uncon­
strained case, smin generally shows a conducting layer 
starting at z=z2 , which is just excluded from the range 
of integration, whereas smax in general has a conducting 
layer, which ends at z2 and is just included. There are 
two no table exceptions (dashed diagonal). For suf­
ficiently small z2 , the extremal models demand only 
that <J = O for smin and O'=O' + for smax in O ~z ~Zz, 
which can be reached in different ways. When z2 ex­
ceeds a certain limit, however, there will only be one 
model. This first unique model is then also shown for 
smaller z2 . This situation is comprised in the extremal 
condition (2.20) since, in this range of z 2, smin and smax 
do not depend on the data, i.e., le= 0 [Eq. (2.1 O)] and 

D(z) = w(z), which is non-negative for Smin and non­
positive for Smax- The other exception occurs for Smax in 
a certain range below the point, where the two con­
ducting layers merge into a thick conductor having 
z=z2 as interior point. In this case D(z2 -0) < -I and 
D(z2 + 0) = D(z2 - 0) + 1 < 0, i.e., D(z) does not change 
sign at z=z2 • 

For smaller values of a, the conducting layers nec­
essarily become thicker, and for a= 1 the extrema l 
models for smax are j ust uniform half-space models. 
Therefore, the case of a= I. I, for which na rrow non­
conductive channels still occur, is considered. Due to 
the overshot phenomenon of the apparent resistivity 
curve, it is possible to construct extremal models even 
for a< I, meaning tha t the true conductivity is smaller 
everywhere than the apparent conductivity. It is easily 
verified that for the considered phase ifl = 45° the smal­
lest value of a is amin= tanh 2 (n/ 2)=0.8412, which corre­
sponds to a surface layer of conductivity am; 11 a 11 , thick­
ness (n lc l/i/2) coth (n/2) = 2.4221 lei, a nd an insulator 
below. For the smallest possible conductivity the mod­
els for smin and smax coincide and are independent of 
z J. 

- The resulting bounding curves of S(z 2 ) for selected 
values of a (curve parameter) are shown in Fig. 7. A 
bounded value of a mostly affects Sm•x' whereas Smin is 
only influenced for relat ively small a. The dashed lines 
refer to the smallest possible value of o:, for which only 
one model exists. For 0 ~ ijJ < 45° it consists of a slab at 
finite depth, and for 45° ~ ijJ ~ 90° it is a surface slab. 

The actual construction of the extremal models is 
similar to that in the unconstrained case. If <J _ (z) and 
a + (z) a re independent of z, the conductivity models 
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Fig. 6. Structure of the unconstrained (left) and constrained (center and right) one-frequency extremal models for l/J = 45°. For a 
given z2 (ordinate) the unconstrained models are presented only by the position of the conducting thin sheets (without specifying 
their conductance), whereas the constrained models (a + < oo) are completely characterized by specifing the position of the 
conducting layers (shaded) 

consist of a sequence of uniform layers. The pertinent 
formulae are briefly summarized. Let K uniform layers 
exist, with the top at z= ( k (( 1 = 0), and layer con­
ductivities <Jk , k=l , ... ,K. With y;==iwµ 0<Jk and 
dk==(k +1- ( k as thickness of layer k, k=l, ... ,K - 1, 
the theoretical response c[o'] = c1 is recursively deter­
mined from 

1 ykck+i +tanh(ykadk) 
ck= - , k=K - 1, ... ,1 (4.1) 

Yk 1+ykck+1 tanh (Yk dk) 

starting with cK= 1/YK· [Note again that in this context 
the subscript k on c refers to the level ( k, whereas in 
other applications the subscript specifies the frequency.] 
The Frechet derivative F(z)= -iwµ0 f 2 (z) at z= ( k is 
determined from 

f(( 1)= f (0)= - c[a], 

f( rk)=f(11)k[1- I Yn+ I/en e - Yndn k>2 
., ., n=I Yn+ 1/cn+l ' = . (4.2) 

The necessary conditions (2.20) require that at a discon­
tinuity z = ( k, different from 0 and z2 , D(z) changes 
sign, 1.e., 

D((k)=w((k) + Re{AF(( k)}=O, ( k=i=O,z 2 , (4.3) 

D' (( k)=!=O. At z= z2 , the conductivity is only discon­
tinuous if D(z 2 -0)·D(z2 + 0)<0. The condition (4.3) for 
each unknown discontinuity level, together with the data 
c[<J] = c, obviously provide the correct number of equa­
tions to compute the positions of the unknown discon­
tinuities and A. The examples in Fig. 6 show that there 

will be up to four unknown levels for the one-frequency 
case. The dimension of the resulting nonlinear system 
can again be reduced to four by eliminating }. on re­
placing the four equations (4.3), which are linear in A, 
by two compatibility conditions. These conditions de­
mand that any two of the four (3 x 3) subdeterminants 
of the augmented (4 x 3) matrix, i.e., w((k) as third col­
umn, have to vanish. 

All extremal models (except the half-space for Smaxo 
1/1=45°, a=l) terminate with an insulator after a finite 
number of layers. This pattern changes, when the a 
priori bound <J _ > 0 is imposed, because w(z) vanishes 
for z>z2 , and in this range D(z)=Re{AF(z)} will show 
a kind of damped oscillations rather than tend to a 
constant. As a consequence, there will be an infinite 
number of layers, which below a certain level, however, 
will have an insignificant influence on the actual 
bounds. 

5. Conclusion 

The explicit examples in Sects. 3 and 4 have demon­
strated the possibility of constructing rigorous bounds 
for S(z2). But the examples have also shown that the 
consideration of only a few frequencies yields pessimis­
tic bounds, which might not be very useful in the 
geophysical application. The situation will even be 
worse if bounds for spatial averages of the conductivity 
are constructed rather than for the conductance. There­
fore, the joint interpretation of a larger number of 
frequencies appears to be mandatory. The handling of 
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Fig. 7. Bounds on S(z2 ) in the one-frequency case constrained 
by a(z);§;o:aa, where o: is the curve parameter. The limiting 
case a= oo is already shown in Fig. 2. For the smallest possi­
ble value of o: there is only one model depicted by the dashed 
curve 

many consistent data will not pose serious problems, 
but an extension of the theory is still necessary to deal 
with the most interesting case of many real data that 
are generally inconsistent. 

Acknowledgements. The author is greatly indebted to one of 
the referees for pointing out a substantial error in an earlier 
version of Appendix A. Moreover, the author wishes to thank 
Prof. H.-J. Di.irbaum for providing the opportunity to carry 
out a major part of the present study at the Federal Institute 
for Geosciences and Natural Resources (BG R) at Hannover. 
Many thanks also to Dr. A.G. Jones for making available the 
results of the CO PROD study prior to publication. 

Appendix A: 
Lmear independence of the Frechet kernels 

The simple structure of the extremal models is a result of the 
assertion that there is no set of M complex constants J.j, not 
all equal zero, so that (2.17) is satisfied in any interval where 
w(z) is constant and a(z) is positive. The functions 
/)(z) ~ 1

6
.2(z) have to present a downward diffusing field with 

I' J (z)-> for Z-> Zmax> Where Zmax is either infinity or the depth 
to a perfect conductor. This qualification will eliminate the 
nontrivial solutions of (2.17), which may exist for a particular 
choice of a(z). 

At the beginning it is assumed that at least one interval 
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exists where (2.17) is satisfied and that a< z < b is the deepest. 
Then (2.17) reads 

M 

D(z)= w(z)+ Re I </>j(z)= O, ze(a, b) (A-1) 
J-1 

with <f>N): = J. .F/z). For a< z <b, the conductivity a(z) is 
positive. Let a<P>(b), p ~ 0 be the first non vanishing derivative 
of a(z) at z = b- 0. In z > b, a set of K thin sheets of finite 
conductance may exist, possibly terminated by an additional 
perfect conductor. For ease of presentation the case K =0 and 
K >0 are considered separately. 

Let the possible perfect conductor be at z = b + H. Differenti­
ate (A-1) 2M (p+2) times and evaluate the derivatives at 
z=b-0 on using </>/(b)= -(2/H) </>i(b) and the differential 
equations (2.15a, b). The result is a set of 2M homogeneous 
linear equations for Re<f>/b) and Im<f>/b) 

M 

Re I (iw)"</>i(b)=O, n=l, ... ,2 M , (A-2) 
j-1 

where the n-th equation is obtained from the n(p + 2)-th order 
derivative, observing that this derivative of </>j(z) at z = b - 0 is 
of the type 

</>j(b) L Ym(iw)m 
m= O 

with real frequency-independent coefficients Ym and Yn * 0. The 
set (A-2) disintegrates into two uncoupled systems for 
wj Im 4>. and wf Re</>., both having as system determinant the 
nonvanishing Vande!monde determinant (e.g., Smirnov 1964, 
p. 21) 

.1 = 
w2 

I TI 
I ~ r < s ~ M 

(w;-w;)*o. (A-3) 

Hence, (A-2) allows only the trivial solution </>/b) = 0, 
j = 1, ... , M. This solution is compatible only with w(b-0)=0 
and either a perfect conductor at z = b or b = oo, because the 
modulus of </>. cannot increase with depth. In the first case 

J . 
also </>j(b)=O, but </>j' (b)*O. Repeating the above arguments 
for </>j'(b) by considering the derivatives of order n(p+4), 
n=l, ... ,2M, it follows that also 4>'/(b) = O, implying </>j(z)=O 
in a< z < b. In the case b = oo differentiate (A-1) three times, 
use (2.15b), divide by 4µ 0 ii~, and integrate to obtain 

M 

Re I iwjila(z)<f>/z)= y, z>a, (A-4) 

where y is a constant. By comparing with power laws a(z) 
= Azm leading to Bessel function solutions (or appealing to a 
bounded energy dissipation), it is always found that 

lim ii a(z) </>j(z) = 0, 
z- «> 

which implies that y =0. Dividing (A-4) by ii~ and applying 
the same operations another (2M - 1) times, we end up again 
with the system (A-2), <f>j(b) being replaced by </>j(z). Hence, 
<f>/z)=O in z~a. This shows that for K=O, no solution 
<f>/z)$0 of (A-1) can be found. 

K > O 

Below z = b let there exist K thin sheets of finite conductance 
rk at z= ( k, k = 1, ... , K and define d 1 := ( 1 -b ~O, dk:=(k 
-(k - i > 0, k=2, ... , K. In addition, there may be a perfect 
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conductor at z=,K+H. Separately considered are the cases 
w(z)=O in z~b and w(z)$0 in z~b. 

11.) w(z)=O in z~b 

In this case the necessary conditions (3.15a, b) have to be 
satisfied at all K sheets and lead to the 2K equations 

M 

Re L e2K_.(w)</>i(,K)=O, n=O, ... ,2K-1. (A-5) 
j~l 

Working from z='K upwards and starting with e2K=l, the 
functions e2 K_.(w) are, on account of Sect. 3.1 [in particular 
Eqs. (3.2), (3.4), and (3.5)], recursively defined as 

e2k-1 = e2k(iwµo -ck-2/ck), 

e2k-2 =e2k(l +dk/ck)2 
(A-6) 

with k = K, ... , 1 and the ck are obtained by the recurrence 
relation (3.3), starting with cK=H/(1 +iwµ 0 -r:KH). Examining 
the structure of e2 K_.(w), it is easily found that 

n 

e2K-n(w)= L Ym(iw)m, n=O, ... , 2K-1 (A-7) 
m=O 

where Ym is again real and frequency independent with r.=1=0. 
Hence by linear combination (A-5) is equivalent to 

M 

Re L (iw)"</>l'K)=O, n=O, ... , 2K-1. (A-8) 
i~ 1 

For K~M (A-8) implies already <f>.(,K)=O; for K<M the 
missing linearly independent equatio~s are obtained from the 
higher derivatives of D(z) at z=b-0. First, let d1 ='1 -b>O. 
Then the three quantities 

</>i(b)/</>i(,K), </>j(b)/</>l'K), and 

</>j2(b)/{ </>j(b)</>j(,K)} 
(A-9) 

are polynomials in iwi of exact degree 2K. After evaluating 
the derivatives of </>i(z) of order n(p+2), n= 1, ... , 2M-2K-1 
at z=b-0 on, using the preceding result in connection with 
(A-8) and (2.15a, b), the validity of (A-8) is extended up to 
powers 2M -1. As a consequence, </>l'K)=O, implying in fact 
</>i(z)=O. For d1 =0 the first two terms of (A-9) are only of 
degree 2K -2 and 2K -1, but the same result is obtained by 
considering the derivatives of order -p + n(p + 2), n = 
l, ... ,2M-2K. 

{3) w(z)$0 in z~b 

According to Sect. 3.3 the discontinuity of w(z) coincides with 
the position of a sheet. If this is the sheet k = 1, then (cf. 
Sect. 3.3) 

D(,1 -0)=1, 

D(,1 -0)=0, 

D'('1)=0 

D'(,1)<0 
for smin• 

for smai< 

(A-10) 

However, D(b)=O, D'(b)=O implies D(z)=A(z-b)2 in 
b~z~,1 , which for d 1 ~0 is incompatible with both cases of 
(A-10). If the discontinuity occurs at level k > 1, then 

which again cannot be met by any choice of A for d1 ~O. 
Summarizing the above results, in the unconstrained case 

no downward diffusing field solution satisfying (2.17) can be 
found for a(z)>O in a<z<b. The assumption a(z)>O is es­
sential, since for a(z) ~ 0 non-trivial diffusing solutions of 
(2.17) exist, e.g., D(z)=O for z>z2 in the case of Smin (cf. 
Sect. 3.3) without </>i(z) vanishing identically. 

AppendixB: 
Equivalent partial fraction expansions 

Let for M distinct frequencies wi the theoretical transfer func­
tion ci[a] of a layered ground be represented by 

N a 
ci[a]=a0 + L -b +"· , j=l, ... ,M, 

n~l n IWj 

(B-1) 

=(3.10) 

where the b. are distinct (otherwise N can be reduced). As­
sume the ordering b.>bn+i· Then a0 and bN have to be non­
negative, all other constants are strictly positive. The follow­
ing statement will be proved: 

a) For N~M exist two (condensed) representations 

(B-2) 

=(3.lla) 

(B-3) 

=(3.11 b) 

j = 1, ... , M. Excludi~g only the identity M = N with a0 = bN 
=0, implying also A 0 =BN=O, the representations (B-2) and 
(B-3) consist each of 2M positive constants corresponding to 
the 2M data. There is_no representation with less than 2M 
constants, i.e., Bm and Bm are distinct. 

b) For N <M the representation (B-1) is unique, i.e., no 
alternative partial fraction expansion exists. 

The proof is concentrated on the representation (B-2), and 
at the end only the necessary modifications for (B-3) are 
stated. At the outset it is assumed that there is an expansion 
of type (B-2) with K ~ M complex terms. Then it has to be 
shown that the nonlinear system of 2M equations 

~ AmBm _ ~ a.b. ) L... 2 2 -ao+ L... -2--2 
m~l Bm+wj nd b. +wj . 

K A N j=l, ... ,M 
" m " a. L... -2 --2 = L... -2--2 
m~l Bm+wj n~l bn +wj 

(B-4a) 

(B-4b) 

has 2K positive solutions Am, Bm, m = 1, ... , K. First, we recall 
the elementary partial fraction decomposition 

x2k I IT (x2 + wy) = I 2 rx. ik 2 , 
i~l i~l x +wi 

with 

11.ik=(-wy)k/IT (w[-wJ), 
1~1 

'*i 

k=O, ... ,M-1 (B-5) 

then multiply (B-4a, b) for k=O, ... , M-1 by 11.ik• sum over j, 
identify x on the left-hand side with Bm, on the right-hand 
side with b., and obtain by (B-5) the new set of 2M equations 

K N 

L GmB~=a0 1\2M-l + L g.b~, 1=0, ... ,2M-1, (B-6) 
m=l n=l 

where b;k is the Kronecker symbol and 

Gm:=Am /lJ
1 

(B;,+wJ), g.==a. /j~l (b;+wJ). (B-7) 

The equations for odd and even l result from (B-4a) and 
(B-4b), respectively. The quantities Gm rather than Am may now 
be considered as unknowns. In the derivation of the first term 
on the right-hand side it has been observed that by virtue of 
(B-5) 

M IM "rx.. =Jim x 2k+ 2 f1 (x2 +w~)=<i L.,, Jk J k.M-1• 
i=1 x-oo i=l 

k~M-1. 
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The 2M equations (B-6) are linear in the K unknowns Gm. In 
order for there to be a solution, any K + 1 equations of (B-6) 
have to be linearly dependent. Taking, for instance, the K + 1 
equations from l=i to l=i+K, i=0, ... ,2M-K-1, then for 
each i there has to be a set of coefficients q~>, k = 0, ... , K, not 
all equal to zero, such that 

K 

L q~>B~+k=O, m=l, ... ,K, (B-8a) 
k=O 

K N 

(i)< +" (i)" bi+k-0 aOqK ui,2M-K-1 L.., qk L.., g. n - • (B-8b) 
k=O n=l 

Since we are searching for positive Bm, (B-8a) may be divided 
by B~ to yield 

K 

I q~>B~=O, m=l, ... ,K. (B-8c) 
n=O 

q~> is independent of m. Hence, each Bm satisfies the same 
algebraic K-th order equation, i.e., by the fundamental theo­
rem of algebra the existence of the set q~> implies the exis­
tence of solutions Bm being the K roots z of 

K 

L q~>zk=O. (B-9) 
k=O 

On the other hand, the roots define the coefficients q~> un­
iquely apart fr.om a scaling factor. Therefore, the q~> are in 
fact independent of i, q~>=:qk. Normalizing by qK=l, the 
remaining K coefficients qk have to be determined from the 
2M -K linear equations (B-8b). First, let K = M. Then the 
system determinant 

LIM=det{.t1 g.b:+} i,k=O, ... ,M-1 (B-10) 

can be expressed for N ~ M as 

1 b., ... b~-I 2 

LIM= I { fr g.k} . : 
k= I 

I b.M ... b:M-1 

(B-11) 

where the summation extends over all M-tupels nk, 
k=l, ... ,M with 1~n1 < ... <nM~N (e.g., Smirnov, 1964, 
p. 28). The determinants in (B-11) are again Vandermonde 
determinants, which are generally defined as V = det {x~- 1 }, 

j, k = 1, ... , M and are given by (e.g., Smirnov, 1964, p. 21) 

V= IT (xq-xp). (B-12) 
1 ;!ip<q;!;M 

All terms in the sum (B-11) are positive by virtue of the 
assumptions N ~ M and b. distinct. Hence, LIM> 0 and the 
coefficients qk can be determined uniquely. In the case N < M, 
however, LIM= 0, as is seen by formally adding in (B-10) 
M -N terms with gN+l = ... =gM=O and using (B-11). In this 
case there is no set of coefficients qk, implying that (B-1) 
cannot be modified. 

The case of K < M ~ N must still be discussed, in which 
the linear system (B-8b) consists of 2M-K=K+2(M-K) 
equations for only K unknowns. A necessary condition for 
the existence of a solution is the linear dependence of the first 
K + 1 equations, which is equivalent to the statement that 
LIK+ 1=0. However, (B-11) with M=K+l shows that 
LIK+i >0. Hence, for K <M the first K + 1 equations are 
already linearly independent and there is no solution qk. 
Therefore, in the sequel only the case K = M, N ~ M has to be 
considered. 

Having established the existence of the set Bm as the roots 
of (B-9) with K = M, we have to show that Bm is real and 
positive. Without exploiting (B-9) any further, we return to 
(B-8 b, c). In order for there to be a solution q~> = qk, k =0, ... , M 
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for this homogeneous linear system, the determinant has to 
vanish, implying 

b • ... b: 

i = 0, ... , M - 1. The above Vandermonde determinants are 
easily evaluated by (B-12) and yield after much cancellation 
since the Bm are distinct 

N M 

a0 bi,M-l+ L g.b~ IT (b.-Bm)=O, i=O, ... ,M-1, (B-13) 
n= 1 m=l 

or equivalently 

N M 

lloYM-1 + L gnPM-l(b.) IT (b.-Bm)=O, (B-14) 
ti= 1 

where PM_ 1 (b.) is an arbitrary polynomial in b. of degree not 
higher than M -1 with y M _ 1 as coefficient of b:- 1• The M 
equations (B-13) form a nonlinear system for Bm. The exis­
tence of a solution set Bm is granted from (B-8c) and (B-9). To 
show the positivity of the particular element Bk, k = 1, ... , M, 
we take 

M 

PM-l(b.)= IT' (b.-B!), YM-1 =1, 
m=l 

where prime and asterisk denote, respectively, the omission of 
the factor m = k and the complex conjugate, and obtain from 
(B-14) 

N M 

llo + L g.(b. -Bk) f1' lb. -Bm1 2 = 0. (B-15) 
ti= 1 

This shows that Bk is real and positive. 
Next it is proved that also Ak [or Gk, cf. Eq. (B-7)] is 

positive. The solution of the first M equations of (B-6) for Gk 
yields by Cramer's rule on exploiting, again the simple prop­
erties of the resulting Vandermonde determinants 

N M b -B 
Gk= L gn f1' _n __ m. 

n=l m=l Bk-Bm 
(B-16) 

The definite sign of Gk is not yet obvious. However, expand­
ing the product by 

M M 

IT' (Bk-Bm)= IT' [(b.-Bm)-(b.-Bk)] 
m=l m=l 

M 

=(b.-Bk)pM_ 1(b.)+ f1' (b.-Bm), (B-17) 
m=l 

where PM_ 1 is, in fact, a polynomial of degree M - 2, we 
obtain from (B-16) by means of (B-14) with YM- l =0: 

N M (b -B )2 
Gk= L gn f1' Bn -Bm >0. 

n= 1 m= 1 k m 

(B-18) 

This proves the existence of the representation (B-2). 
Skipping details of derivation, we mention only two ad­

ditional identities required in Sect. 3.2: 

(B-19) 

(B-20) 
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The existence of the representation (B-3) is proved similarly. 
The equivalents of (B-6), (B-13), and (B-14) are 

M-1 

L GmB~+GMblO 
N 

=(a0 -A0)b1, 2M-l+ L g.b~, 1=0, ... ,2M-1, 
n= 1 

N M-1 

(a 0 -A0 )b;M+ L g.b~ TI (b.-Bm)=O, 
n= 1 m=l 

i=l, ... ,M, 
N M-1 

(ao-AolYM-1 + L gnPM-l(b.)b. TI (b.-Bm)=O. 
n= 1 m=l 

(B-21) 

(B-22) 

(B-23) 

The positivity of Bk, k = 1, ... , M -1, is proved by taking 

M-1 

PM-l(b.)= TI' (b.-B!), l'M-1 =0, 
m=l 

implying 

N M-1 

L g.(b.-Bk) fl' Jb.-BmJ 2 =0 
n= 1 m=l 

and b1 "i?,Bk"i?,bN. Choosing 
M-1 

PM-l(b.)= TI (b.-Bm), l'M-1 =1 
m=l 

we obtain 
N M-1 

A 0 =a0 + L g.b. TI (b.-Bm) 2 >0. 
n-1 m=l 

(B-24) 

Fina]ly, Gm is found by solving the first M equations of (B-21) 
for Gm and using analogues of the identity (B-17): 

GkBk=Tig.b.ff (~·=~m)2 >0, k=l, ... ,M-1, (B-25) 
n= 1 m= 1 k m 

GM= I g. lf (b•~Bm)2 >0. (B-26) 
n-1 m-1 Bm 
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