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Abstract. This paper deals with the computation of 
wavefields in 3-D inhomogeneous media containing 
structural elements such as pinch-outs, vertical and ob­
lique contacts, faults, etc. The approach is based on the 
theory of edge waves. The total wavefield is considered 
as the superposition of two parts. The first part is 
described by the ray method. It has discontinuities be­
cause of its shadow boundaries. The second part is a 
superposition of two types of diffracted waves, caused 
by the edges and vertices of interfaces. This part smooths 
the above-mentioned discontinuities so that the to­
tal wavefield is continuous. Of special importance is the 
mathematical form of the amplitudes of diffracted 
waves, described with unified functions of eikonals. In 
fact, it allows all additional computations to be consid­
ered by finding the eikonals of diffracted waves. A 
modification of the ray method including diffraction by 
edges and vertices is described. A generalization of the 
concept of edge waves for caustic situations is given -
the method of superposition of edge/tip waves. The 
result of such a generalization no longer supplements 
the geometrical seismic description, but completely re­
places it by a new description valid for a broader class 
of wave phenomena (reflection/refraction, diffraction on 
edges and vertices, formation of caustics, etc.). 

Key words: Diffraction on edges and vertices - Ampli­
tudes of diffracted waves - Superposition of edge/tip 
waves 

Introduction 

The present article is an extended version of our report 
at the Workshop on Seismic Wave Propagation in La­
terally Varying Media at Liblice, Czechoslovakia, 1983. 
Its main points were given in Klem-Musatov and Aizen­
berg (1984). Here we want to illustrate the main ideas 
of the theory of edge waves with the simplest examples 
and show how it is possible to use methods of this 
theory for seismic modelling. 

Of special importance for seismology is the ray 
method which allows wavefields to be computed ef­
ficiently in 3-D inhomogeneous media far from the 
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source (Babich and Alekseyev, 1958; Karal and Keller, 
1959; Cerveny et al., 1977). However, the method gives 
only the components of the wavefields connected with 
the energy flux along the ray tubes but not diffusion 
through their side walls. If the main part of the wa­
vefield is formed by diffusion, it cannot be described by 
the ray method. The desire to adapt this method to 
such situations has resulted in various modifications 
(Babich and Buldyrev, 1972; Popov, 1981; Cerveny, 
1983; Kennett, 1984). 

In the present paper a modification of the ray meth­
od for 3-D inhomogeneous block media is considered. 
The structural elements of interfaces in this type of 
media have sharp edges, the so-called diffracting edges 
(for example, the lines of pinch-outs, vertical and ob­
lique contacts of interfaces, faults and so on). The ray 
method does not give a continuous description of the 
wavefields in this type of media because of shadow 
boundaries. The main idea of the present modification 
is to smooth the discontinuities by diffracted waves, 
scattered by the edges of interfaces, in such a way that 
the total wavefield is continuous. From a physical view­
point, it is the same as adding the diffusion that is not 
considered by the ray method (Fock, 1965). This prin­
ciple is well-known in the classical theory of diffraction 
(Born and Wolf, 1968) and in its modern modifications 
(Claerbout, 1976; Trorey, 1977; Hilterman, 1982; Fertig 
and Muller, 1979). However, there were no general 
formulae to use the above-mentioned idea for improv­
ing the ray method. 

The very core of the present approach is connected 
with the so-called boundary layer approximation. It 
allows us to correct the results of the ray method only 
within the neighbourhood of the shadow boundaries. It 
is just this kind of approximation that makes the final 
formulae general and simple. The simplest way of get­
ting these formulae is shown in this paper. It is based 
on assumptions concerning the analytical properties of 
the wavefields, but not the dynamic equations in any 
case. If a wave velocity is constant, the same formulae 
can be derived by the parabolic equation method or by 
an asymptotic analysis of the Kirchhoff integral. The 
formulae for the edge waves can be derived from a 
solution of the more general diffraction problem for 
wedge-shaped structures as well. For details on this 
subject, see Klem-Musatov (1980, 1981 a, b) and Aizen­
berg (1982). 
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Note that in the following monochromatic wa­
vefields of angular frequency w will be considered. The 
time factor exp(-iwt) with i2 = -1, where tis time, is 
omitted for convenience. Theoretical seismograms can 
also be computed in the time domain by the appli­
cation of the Fourier transform. 

Analytic results will be illustrated with theoretical 
seismograms. Two types of media are chosen for seis­
mic modelling: a two-layered model and a three-laye­
red one with a pinch-out. The top medium always has 
the following elastic parameters for both types of mod­
els: p1 =2 g/cm 3, vp 1 =2 km/s, Vs 1 =1.25 km/s. The pa­
rameters of the bottom are always p2 =2.4 g/cm 3, vP2 

=2.5 km/s, Vs 2 =1.5 km/s. Parameters of the pinched 
layer are p 3 =1.8 c/cm3 , vP3=1.75 km/s, Vs 3 =1.05 km/s. 
The observation system is located in the top medium. 
It contains either a profile of observation points (they 
are marked by circles in the figures) and a single source 
of oscillations (it is marked by an asterisk), or a profile 
of matched sources with observation points (they are 
marked by crosses). The source of oscillations excites a 
P wave with a spherical directivity pattern. The shape 
of the radiated pulse is f(t)=texp(-/3t)sin(2nt/T), 
where t is time, 0 ~ t ~ 4 T, f3 = 50 Hz, T = 0.03 s. On 
changing to the nonstationary case the Hilbert transfor­
mation for narrow-band signals was used. All com­
ponents of a displacement vector of seismic waves can 
be computed. In numerical examples (except Fig. 23) 
we show only the Z-component of PP waves. The X­
component is oriented along a profile, the Z-com­
ponent is oriented upwards. All metrical values are 
given in kilometres, as time is given in seconds. 

Ray method 

First of all, let us recollect the basic principles of the 
ray method. The model of the medium is considered as 
a combination of domains and interfaces. The func­
tions, describing physical properties within the do­
mains, are continuous and slowly changing. A surface 
formed by points of discontinuity of any of these func­
tions is called an interface. A point of the interface is 
considered as regular if the surface is continuous to­
gether with its first and second tangential derivatives. A 
part of the interface is considered as regular if its points 
are all regular. The ray method allows us to describe 
only those components of the wavefield that are con­
nected with reflections/transmissions at the regular 
parts of interfaces. The description has the form of 
superposition of the single waves 

(1) 
m 

Let us give the mam definitions related to a single 
wavefm· 

Kinematics 

A ray is a space curve, the tangential unit vector em of 
which complies with the differential equation: 

(2) 
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Fig. 1. Interpretation of Snell's law. Explanation in text 

where ds is the differential of the arc length and vm is 
the wave velocity. This equation determines the ray 
uniquely if its initial direction is given, and if a con­
nection between the directions of incident and reflec­
ted/transmitted rays at the points of the interfaces is 
also given. The latter is expressed by Snell's law. In this 
law the geometry of the interface is usually character­
ized by the position of the normal to the interface. 
However, in this paper it is more convenient to 
achieve this by means of a tangential plane to the 
interface. 

Let K 1 and K 2 be tangents to two arbitrary in­
tersecting curves of the interface at the point of in­
cidence (Fig. 1). As a results we get the position of the 
tangential plane P at any regular point of interface. Let 
oc 1 and oc 2 be acute angles between the incident ray A 
and the lines K 1 and K 2 , respectively. Let /3 1 and /3 2 be 
acute angles between the reflected/transmitted ray Am 
and the same lines K 1 and K 2 • Let Q1 and Q2 be the 
planes that are normal to the lines K 1 and K 2 at the 
point of incidence. Then Snell's law can be expressed in 
the following way (Klem-Musatov, 1980): 

1) The incident and the secondary ray lie on dif­
ferent sides of the planes Q1 and Q2 , 

2) The directions of the above rays comply with the 
conditions: 

(3) 

where v and vm are the velocities of the incident and 
reflected/transmitted wave, respectively. 

Dynamics 

If a set of rays em is a two-parameter set of space 
curves, it is called a congruence (Born and Wolf, 1968). 
A single wave 

(4) 

is connected with a congruence of the rays em. Its 
eikonal rm complies with the differential equation: 

(5) 
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Equation (4) itself may represent a scalar wave (optics, 
acoustics) or a vector wave (elastodynamics, electrody­
namics). In the first case, the ray amplitude </>,,, is a 
scalar one. In the second case, 

<!>,,,= p,,,<p,,, (6) 

...... 
2.0 .x 

where p,,, is a unit vector of polarization, and <p,,, is a o.4 
scalar. In an isotropic medium the vector p,,, coincides 
with the vector e,,, (a longitudinal wave) or is perpen­
dicular to em (a transverse wave). 

The scalar amplitude </>,,, (or <p,,,) complies with the 
so-called transport equation 

2grad r,,, ·grad <l>,,,+B,,,</>m =0 (7) 

where the coefficient B,,, depends on the kind of orig­
inal accurate equations of optics, accoustics (or elasto­
dynamics, electrodynamics). The solution of Eq. (7) is 
well known: 

</>,,, = K,,, L~, 11
2

, L,,, =exp (I v; B,,,d r,,, ) (8) 

where integration must be performed along the ray. 
The choice of the constant K,,, must comply with the 
bounda ry conditions. In fact, K,,, is the product of re­
flection/ transmission coefficients of plane waves. Only 
the first term of the ray series is shown. As will be seen 
later, the subsequent approach does not deal with the 
explicit formulae for the ray amplitude </>m. 

Edge waves 

We extend the theoretical basis using the ideas of the 
theory of diffraction. Let a certain line be formed by 
points of discontinuity of an interface or any of its first 
or second tangential derivatives. It is a common linear 
element of the regular parts of a single interface or of 
several interfaces. This type of line is called an edge. A 
point of the edge is considered regular, if the corre­
sponding line is continuous together with its first 
tangential derivative. The edge is considered smooth if 
its points are all regular. 

Every single wavefield f,,, exists within a connected 
domain of continuity. This domain is called the primary 
illuminated zone. If the interfaces have edges, there may 
be a domain in which the wave fm does not exist (we 
define it as !.n = 0). This type of domain is called the 
primary shadow zone of the wave. The singlyconnected 
surface dividing these zones is called the primary sha­
dow boundary. Let mn be the double number of each 
primary shadow boundary of the wave f~,. Let Q,;," be a 
symbol of the primary shadow zone, formed by the mn­
th shadow boundary. Let Q;;;,, be the symbol of the 
primary illuminated zone. The non-caustic shadow 
boundaries formed by the edges are considered. 

Figure 2 shows the simplest example of the above 
definitions for a wave reflected from a half-plane. Let 
us mark this wave by m = I, and its shadow boundary 
by m=I, n = I. Figure 3a shows the reflected wave. The 
primary illuminated zone Q;-1 is x ~ 1.15 km, the pri­
mary shadow zone Q{1 is x > 1.15 km. 

We can see that shortcomings of Eq. (I) appear as dis-

z 

Fig. 2. Model of " half-plane". Renecting interface coincides 
with shaded region 
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Fig. 3a-c. Theoretical se ismograms for model of " half-plane": 
a renected wave, b edge wave (twice enlarged), c total field 

continuities of the wavefields f ,,, at the primary shadow 
boundaries. Let us see how this can be corrected. 

Kinematics 

We use a formal method to find the directions of the 
rays, generated at the points of an edge. Let the ray 
impinge on any regular point of the edge. The direction 
of a secondary ray must comply with Snell's law, 
Eq. (3). It is necessary to fix the positions of the pair of 
lines K 1 and K 2 , i.e. to set the position of the plane P. 
One of the two lines (for example, K 1) must be the 
tangent to the edge because it is a common linear 
element of the interfaces (Fig. 4). However, there are no 
limitations in choosing the direction of the second line 
K 2 . That is why any plane, containing the tangent to 
the edge, may be considered as plane P. Let incident A 
and secondary A,,, ,, rays make the acute angles a and {3, 
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A 

Fig. 4. A cone of diffracted rays. Explanation in text 

respectively, with the tangent to the edge. Then Snell's 
law appears in the following form: 

cos /3/vm =cos a/v. (9) 

Note, the one-parameter set of secondary rays complies 
with this condition. 

The above-mentioned fact is known as the law of 
edge diffraction (Keller, 1962). It reads as follows. Let 
an incident ray make an acute angle a with the tangent 
to an edge. The set of secondary rays forms a cone with 
its vertex at the point of incidence. Its apex angle is 2/3, 
where f3 and a are connected under Eq. (9). The in­
cident ray and the above-mentioned cone lie on op­
posite sides of the plane normal to the edge at the 
point of incidence. Obviously, this law holds true with­
in a small neighbourhood of the point of incidence, in 
which it is possible to neglect the curvature of the rays. 

Take emn to be the unit vector of the tangent to the 
ray. Let this ray comply with Eq. (9) for that edge, 
which gives the mn-th primary shadow boundary. Then 
the differential equation: 

(10) 

determines the congruence of the edge diffracted rays. 

An edge diffraction coefficient 

Let the wave 

(11) 

be connected with the mn-th primary shadow bound­
ary. The latter may be given implicitly by the equation 
r =r . For example, in Fig. 2 such a boundary is mn m . 
given by the relation x = 1.15 km. The wave, Eq. ( 11 ), 1s 
called an edge-diffracted wave. Now we have come to 
the description of diffracted waves. 

Let rmn• 17, ( be the ray coordinates of the wave fmn· 
Here '1 and ( give a congruence of the diffracted rays, 
i.e. every pair of fixed values '1 =constant and (=cons­
tant gives a single ray. This pair of coordinates may be 
chosen in many different ways. Let the coordinate sur­
face '1=0 coincide with the mn-th primary shadow 
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boundary rmn=rm, so that the primary shadow zone of 
the wave fm coincides with the domain '1>0. The coor­
dinate surfaces (=constant may be taken arbitrarily. 

In the first place, let us take the case when the 
amplitude '1>m of the wave, Eq. (4), is a scalar one. 
Generalization of the present approach for polarized 
waves will be given in a following section. However, it 
is more convenient to use numerical examples for po­
larized waves before the mentioned generalization. 

Let the wave, Eq. (4), be a function of the above­
mentioned ray coordinates 

(12) 

Then this wavefield in the neighbourhood of its shadow 
boundary may be represented by the discontinuous 
function: 

fm = fm( rmn• 17, () when '1<0, 

fm =0 when '1 >0 (13) 

which displays explicitly the shortcomings of the ray 
method. 

Suppose, Eq. (13) represents an analytic function of 
the variable '1 and allows us to make an analytic con­
tinuation into the complex plane of '1 for any permis­
sible values rm• and (. Let us find fmn among the 
piecewise-analytical functions descreasing at infinity 
Umn-+O, when 1111-+oo). Then we may construct the fol­
lowing integral of Cauchy's type 

1 da 
fmn=-2 . Jfm(rmn•'1+C1.,()-

nl L Cl. 
(14) 

where L is some smooth infinite contour of integration. 
The specific type of this contour will be given in the 
following. 

The integral in Eq. (14) has the following properties. 
It is zero when 1'71-+oo. It has a discontinuity when '1 
=0. However, the superposition of Eqs. (13) and (14) is 
a continuous and analytic function of '1 within the 
neighbourhood of the surface '1 =0. If the function (13) 
is a solution of some linear differential equation (for 
example, the wave equation) within the domain '1 <0, 
then the superposition of Eqs. (13) and (14) complies 
with the same equation for '1<0 as well as for '1>0. 

When w-+oo, the asymptotic value of integral (14) 
can be found by the method of canonical integrals (Fel­
sen and Marcuvitz, 1973). Since this value is formed by 
contributions within a small neighbourhood of the 
saddle point a= -17, let us take the standard approxi­
mations at this point 

(15) 

and use the following relations: 

((;2r ) 2 -f ::::::--z (rm-rmn). 
017 ~=0 '1 

(16) 

Let the contour L within a neighbourhood of the 
saddle point coincide with the steepest descent path 
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Im[ion111 (r 11,,,.11+iX, OJ =Im[iwrm('rm•'O,OJ, 

Re[iwrm(rm•' 17+ iX, OJ <0. 

Using rm from Eq. (15) gives the following equations for 
this part of the contour 

Reoc+17= -Imoc for rm.>rm, 

Reoc+17=Imoc for rmn<rm. 

The integral exists, if the contour approaches the points 
Imoc= ±oo within domains Re[iwrm(rm.,IJ+oc,OJ<O. 
Using rm from Eq. (15) allows us to obtain this con­
dition for Im iX---+ oo in the following form 

-n<Reoc+17<0 when rm.>rm, 

O<Reoc+17<n when rmn<rm, 

and for Im oc---+ - oo in the form 

O<Reoc+17<n when rm.>rm, 

-n<ReiX+17<0 when rmn<rm. 

The contours are shown in Fig. 5 a for rm•> rm and in 
Fig. 5b for rm.<rm (in these figures q= 1). 

Then integral (14) may be written as 

fmn =sm.<Pm W(wm.) exp(iwrm.), 

Wmn =V2w(rmn -rm)/n, 

smn = + 1 within D;:;., sm• = -1 within D;;;., 
00 

(17) 

W(w)=exp(-inw2/2)/(2Vn) J t- 112 exp(-t)dt (18) 
-inw2/2 

where W may be regarded as an edge diffraction 
coefficient. If rm.<rm, we have wm.=ix, X= 

V2w(rm-rm.)/n, W(ix)= W(x), where W denotes the 
complex conjugate of W In these formulae we may use 
the analytic continuation of the amplitude <Pm and the 
eikonal rm into the primary shadow zone by means of 
any type of parametrization of space. 

Figure 3 b shows the edge wave computed by 
Eq. (17). 

Note, that the function W(w) can be represented by 
known special functions 

W(w)=(2Vn)- 1 lf'(l/2,1/2;z)=(2Vn)- 1 exp(z)I'(l/2,z), 

z= -inw2/2 (19) 

where l/'(1/2, 1/2; z) is a confluent hypergeometric func­
tion, and r(l/2, z) is an incomplete gamma function. 
If 0 ~ w < oo, we have the following approximate for­
mulae: 

W(w) = W(O) + w/i/2 · exp(i 3 n/4) + O(w2 ), 

W(O)= 1/2 when w---+0, (20) 

W(w)=exp(in/4)/(i/2nw)+O(w- 2) when w---+oo 

where 0 is the symbol of asymptotic estimation. Fig­
ure 6 shows the graph of the function W(w), Eq. (18). 

Now we shall briefly discuss the type of approxima-

a b 

Ima. 

Rea. 

Fig. 5a and b. The contours of integration. Explanation in 
text 
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Fig. 6. Function W(w) of the real variable w. Numbers above 
the curve give the values of w 

tion given by Eq. (17). Obviously, the above approach 
is approximate even in a high-frequency sense, because 
of the disturbance of the boundary conditions at in­
terfaces by the integral (14). To be more accurate, it 
would be necessary to add a certain term bfmn to the 
integral (14) to satisfy the boundary conditions. In prin­
ciple, this term can be found by using the geometrical 
theory of diffraction (for example, see Klem-Musatov 
(1980) for the case vm=constant). It is essential that 
such an addition bfmn would have no discontinuity at 
the primary shadow boundary 17 = 0. Using the 
geometrical theory of diffraction (Klem-Musatov, 1980) 
allows us to estimate the value to the order of 
bfmn ~ O(w- 112 ) except for grazing and critical regions. 

Let us see how it would be connected with Eq. (17). 
According to Eq. (20), the amplitude of the edge wave 
changes its value from an asymptotic estimation 0(1) at 
wm.=0 to O(w- 112 ) at wm.---+oo. The gradient of this 
function depends on wmn· Let us write wmn in the form 

where N presents the phase difference in the half-period 
Fresnel zones. If N =0, 1, 2, 3, 4, 5, ... we have, respec­
tively, IWl=0.50; 0.17; 0.11; 0.09; 0.08; 0.07; .... We 
can see that this function changes rapidly when 
N <2(wm.<2) and slowly when N>2. By the way, the 
second part (wm•---+oo) of Eq. (20) is true for wm.>2. 
The domain of this rapid change forms a neigh­
bourhood of the primary shadow boundary. It is called 
a boundary layer, with a position determined by the 
inequality wm.;:52. Within the boundary layer an in­
accuracy bfm.~ O(w- 112 ) of Eq. (17) may be considered 
of no importance in comparison with 0(1). In Fig. 3 
the boundary layer occupies a domain 
0.85 km ;:Sx ;:51.45 km. Outside the boundary layer the 
amplitude of the edge wave has the same asymptotic 
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estimation O(w- 112) as bfmn· It is clear that Eq. (17) fails 
here. More accurate analysis of the integral (14) would 
not improve the properties of this formula. Thus, 
Eq. (17) gives a satisfactory result only within the 
boundary layer. All this is quite enough for correcting 
the ray method. 

Figure 3 c shows the total wavefield f = f 1 + f 11 

formed by the superposition of reflected f 1 and edge f 11 

waves. 
Equation (17) has one other local property, which 

allows us to interpret the forthcoming results. Accord­
ing to Eq. (15), a value of <Pm would be taken at the 
primary shadow boundary <I>m=<I>m(rmn•O,(). However, 
it is possible to consider <I> m as a function of the free 
point <Pm= <I>m(rm•' fl,() as well because the difference 
<I>m('rmn•fl,0-<I>m(rmn•O,() is so small in comparison 
with <Pm within the boundary layer. The real accuracy 
of the description of the edge wave is independent of 
the choice of the above versions. By the way, this is the 
reason why <Pm may be continued analytically into the 
shadow zones. 

Interrelation with known physical ideas 

We consider briefly, how the above theory matches the 
concept of Fresnel-Kirchhoffs secondary sources and 
Fock's concept of transverse diffusion. 

Using Eq. (19) we can represent the superposition of 
reflected waves, Eq. (13), and edge waves, Eq. (17), with­
in a boundary layer in the form 

(21) 
z 

F(z)=n-112 exp(-in/4) J exp(ix2)dx 
- 00 

where F(z) is the Fresnel integral. If the wave velocity 
is constant, the same formula can be derived by an 
asymptotic analysis of the Kirchhoff integral (Klem­
Musatov, 1980; Aizenberg, 1982). Thus Eq. (17) 
matches the classical ideas of Fresnel-Kirchhoffs theory 
of diffraction. 

Let us show with the simplest example that Eq. (17) 
also complies with the so-called Fock's parabolic equa­
tion of transverse one-dimensional diffusion which de­
scribes diffusion of the wave energy out of the primary 
illuminated zone into the primary shadow zone. Let the 
wave velocity be constant and the wave fm be plane (<I> m 
=constant) with its wave vector perpendicular to an 
edge. Let (r, 8, z) be the cylindrical ray coordinates, 
where r is the distance along a diffracted ray from the 
edge, (} is the angle between the diffracted ray and the 
shadow boundary (} = 0, z is the distance along the 
edge. By substitution of Eq. (17) into Helmholtz's equa­
tion (A+ k;,) fmn = 0, where km= w/vm, and neglecting all 
values within an order less than km, we can obtain the 
well-known equation of transverse diffusion 

2ikm a 1 o2 

Vr or (Vr <I> mn)+ r2 ae2 <I> mn = 0. (22) 

Using the following relations within a boundary layer, 
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we can represent Eq. (22) in the form 

d2 d 
z-d 2 <I>m.+(1/2-z)-d <I>mn-1/2<I>m.=0, z z . 

(23) 

The solution of this equation is function W(w) in 
Eq. (19). Thus Eq. (17) describes the phenomenon of 
transverse diffusion in the form of the edge wave. An 
analysis shows the following mechanism of this phe­
nomenon. The wave energy flows from the primary 
illuminated zone through the shadow boundary into 
the shadow zone along a cone of diffracted rays. There 
is no energy exchange between neighbouring cones 
(Klem-Musatov, 1980). 

Note, if the wave velocity is constant, Eq. (17) is a 
first approximation of the more precise description of 
the edge wave by the successive approximation method 
in the form of an infinite series (Klem-Musatov, 1980). 

Polarization 

Now let us take the case when the amplitude of wave 
(4) is the vector (6). Let jp b h be the unit vectors of a 
certain fixed coordinate system (for example, the Car­
tesian one). Let us decompose the vector (6) on the 
above basis and represent the wave (4) in the form 

(24) 

where the f~q) are scalars. We represent the edge wave, 
Eq. (11), on the same basis: 

3 

f, - " . f,(q) mn- L... Jq mn' (25) 
q=l 

where the f~~ are scalars. We use the same approach, 
Eqs. (12)--(17), for every scalar function f~ql(rm•' fl,() 
which was used for function (12). It allows us to de­
termine three scalar functions: 

f~~=smn'P~lW(wm.)exp(iwrm.) with q=l,2,3. (26) 

Inserting Eq. (26) into Eq. (25) gives, once again, 
Eq. (17), where <Pm is the vector (6). 

This result has to be interpreted. Let Pmn be a unit 
vector of polarization of the edge wave fmn· In accor­
dance with the general theory this vector must coincide 
with emn (a longitudinal wave) or be perpendicular to 
em• (a transverse wave). But in Eq. (17) the vector Pmn 
coincides with Pm( rm•• 0, () which is out of the line of 
general theory. In other words, the above approach 
gives an inaccuracy bp=pm.('rmn•fl,()-pm(rmn•O,(). In 
fact, the real accuracy of the description of polarization 
is independent of the choice of any of the versions: 
Pm(rm.,O,(), Pm(rmn•fl,() or Pmn(rm.,fl,0 because the cor­
responding bp is of no importance in comparison with 
Pmn within the boundary layer. That is why the vector 
<Pm may be considered a function of the free point 
<I>m('m•' fl,() and then continued analytically into the 
shadow zones. 
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Fig. 7. Model of "pinch-out" and wavefronts in cross-section 
with projection of the observation system. The profile of 
observation is perpendicular to the edge. The angle of the 
pinch-out is 5° 

Ray method with consideration of edge diffraction 

The present modification of the ray method results in 
the addition of edge waves, Eq. (17), to the reflected/ 
transmitted wavefield, Eq. (4) 

m n 

This approach can be used outside caustic zones in any 
inhomogeneous medium with smooth edges of inter­
faces. 

Here we shall show an example of using this ap­
proach for the model of a pinch-out (Fig. 7). Inside the 
pinched layer there are multiple reflections. As a result, 
there are many reflected waves with sharp shadow 
boundaries at the profile of observation. Only three of 
them are shown in Fig. 7. Let us mark them by m 
= 1, 2, 3. We mark their shadow boundaries by m 1. 
They are shown with dashed lines (I'1, r; relating to 
interfaces 1 and 2, and I'3 to interfaces 3 with PP­
transmission through interface 2). The total wavefield is 

3 

f=zJfm+ fm 1). Figure 8 shows the wavefields. Note 
m 

that all edge waves from the common edge have the 
same eikonal and form a total diffracted wave. One can 
see that the addition of edge waves essentially changes 
the wavefield compared with the ray method wavefield. 

The method of superposition of edge waves 

Equations (4) and (17) allow us to compute wavefields 
in 3-D inhomogeneous media with smooth edges of 
interfaces outside caustic zones. There is an approach, 
based on the above formulae, which can also be used 
within the caustic zones if they are formed by the 
curvature of interfaces (Aizenberg and Klem-Musatov, 
1980). Let us describe the idea in brief. The wavefield 
scattered by a rectifiable interface can be replaced ap­
proximately by the field scattered by a piecewise-plane 
boundary, which is approximated by a sufficiently large 
number of plane elements. 

This approximation guarantees finite values of the 
terms <Pm in Eqs. (4) and (17) because they now do not 
depend on the curvature of the initial interface. The 
wavefield scattered by the piecewise-plane boundary is 

x-xp 

1.0 ·1.00 ·0.80 ·0.60 ·0.40 ·D.20 k• 
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Fig. 8a--c. Theoretical seismograms for model of "pinch-out": 
a reflected waves, b edge waves, c total field 

the superposition of fields scattered by the plane ele­
ments composing it. 

The simplest version of this approach occurs when 
the original interface is a cylindrical surface and only 
single scattering is taken into consideration. Then each 
element of the piecewise-plane boundary is an infinite 
band with two rectilinear edges. For a sufficiently small 
step of approximation, the contributions from the ele­
ments, containing reflection/transmission points, are 
small enough and may be neglected. Then the field 
scattered by an individual plane element will be the 
superposition of two edge waves diverging from its 
edges. The total field can be represented by super­
position of just edge waves alone 

M 

f = L Nm, (27) 
m=l 

where m coincides with the index of an element, n 
coincides with the index of an edge, m0 are the indices 
of elements containing reflection/transmission points. 

To justify the above approach, we will take Eq. (27) 
to the limit of the initial interface, simultaneously let­
ting the step of approximation tend to zero and in­
creasing the number of elements. In this case 

M 

lim L L1lm = S dl, (28) 
max{Ll!m)-+O m=l L 

M-+ro 

f = S F(l) exp[iwr(l)] dl, 
L 

F(l)=<Po(l)[ -iw/(4n)]1121~~1 (r-ro)-112 



where <1>0 (1) and r 0 are the amplitude and the eikonal of 
the analytic reflection/ transmission for point I, and r is 
the eikonal of the scattered wave. Here the analytic 
reflection/ transmission stands for the usual reflection/ 
transmission from/through the plane boundary which is 
a tangent to the initial interface at point I. 

Equation (28) can be regarded as a new asymptotic 
formulation of the concept of secondary sources. Ac­
cording to this formulation the value of the field at any 
point of the medium will be the superposition of sec­
ondary waves with amplitude F(I) di diverging from 
each point of the initial interface. Analysis shows that, 
unlike the classical Fresnel and Kirchhoff descriptions, 
the amplitudes of the secondary waves in Eq. (28) are 
strictly bounded on the contour of integration. 

Within the concept of secondary sources obtained 
we can explain the phenomena of regular reflection/ 
transmission of waves, formation of caustics, edge effects 
and the phenomena of scattering of waves by interfaces 
of complex form. It is known that the asymptotic be­
haviour of integrals of the type in Eq. (28), for large 
values of w, is determined by stationary points of the 
function r(I}, singular points for the function F(I} and 
the end points of the contour of integration (Felsen and 
Marcuvitz, 1973). The asymptotic analysis in the neigh­
bourhood of an isolated stationary point of the first 
order gives the wavefield, Eq. (28), in the form of a 
regular wave 

(29) 

If the wave velocity is constant, this formula coincides 
with the formula of the ray method. 

The asymptotic analysis of integral (28) in the 
neighbourhood of an isolated stationary point of sec­
ond order gives the approximation for a simple caustic 

f = <1>(1 2) Ai(q) exp[iwr(/2}], 

<P(l 2) = <P 0(12)( - i n/w )112 J qJ [ r(l 2) -r 0(12)]- 1' 2, (30) 

=. 2/321/3 or(/2) [ 03r(l2)]-l /3 
q w 01 013 

where Ai(q) is the Airy function. The same analysis in 
the neighbourhood of the irregular points 

or(/3 +O) OT(/3 -0) 
at ~ 01 

gives the Eqs. (29) and (17). Thus, the above justifies the 
present approach. 

We shall show the potential of this approach for the 
model "flexure" (Fig. 9). Let the geometrical form of an 
interface be described by the formula z = 1 
+ b/ n arctan[tx(x -0.4)] where b is the difference be­
tween the depths of the wings of the flexure. The wa­
vefields are shown in Fig. 10 for b = Ap/4, where Ap 
= 0.06 km. The top seismogram is for the sloping fle­
xure tx = 5, the middle one for tx = 50, and the bottom 
one for the very steep flexure tx = 500. It is clearly seen 
that, for the small curvature of the interface, the wa­
vefield may be obtained by the ray method. If the 
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Fig. 9. Model of "flexure" (top) and its cross-section with the 
reflecting interfaces (bottom). Numbers corresponds to l : a 
= 5, 2 : a= 50, 3: a= 500. Edge rays, scattering from elements 
of the interface, are shown 
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Fig. lOa-c. Theoretical seismograms for model of "flexure": a 
a= 5, b a= 50, c a= 500 

curvature of the interface is around a= 50, some kind 
of caustic phenomenon occurs in the form of a local 
loss of intensity caused by interference (0.35-0.45 km). 
If the curvature of the interface is extremely large, tx 
= 500, the wavefield coincides with the field for a fault 
with small throw. In this case there are two reflections 
from the wings of the fault and two edge waves. The 
interference of the edge waves forms the field, the char­
acter of which depends on the value of the parameter b. 

Tip waves 

The point of break (or the end) of a smooth edge is 
called a tip. The common tip of several edges is a 
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Fig. 11 a and b. Model of "sector". Reflecting interface coin­
cides with shaded region . Further explanation in text 

vertex . The sizes of edge wave domains are limited 
because of the tips. A single edge wave fm,, exists within 
the connected domain coinciding with the correspond­
ing congruence of diffracted rays. This wavefield f~,, is 
continuous everywhere within its domain, with the ex­
ception of the primary shadow boundary, r,,,,,= rm. This 
type of domain is called the secondary illuminated zone 
of the wave fmn · A domain of absence of the wave 
Um 11 =0) is called the secondary shadow zone. A simply 
connected surface dividing the above zones is called the 
secondary shadow boundary. It looks like the surface of 
a curvilinear cone whose apex angle complies with the 
law of edge diffraction. Let mnp be the triple number of 
each secondary shadow boundary of the edge wave f

11111
• 

The non-caustic shadow boundaries formed by tips are 
considered in the following. 

Let us illustrate these definitions by an example of 
the reflection from an interface "sector". Its location is 
shown in Fig. 11. According to all the above, we have 
to describe the wavefield as a superposition of the 
reflected wave f 1 and two edge waves f 1 1 and f 1 2 . In 
Fig. 11 the primary shadow boundaries are marked by 
the indices 11 and 12 and the secondary shadow 
boundaries by the indices 111 and 121. The do main of 
existence of the reflected wave is marked by the index I 
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Fig. 12a- d. Theoretical seismograms for model of "secto r" 
(profile I): a reflected wave, b edge waves (1.5 t imes enlarged), 
c tip waves (7.5 times enlarged), d total field 

and the domains of the secondary illuminated zones are 
located on the left of the dashed lines. Figures 12a and 
13 a show the reflected wave for two profiles marked by 
I and II. Figures 12 b and 13 b show the edge wavefields 
scattered from both edges. 

One can see that a shortcoming of Eq. {17) appears 
as discontinuities of the wavefield fmn at the secondary 
shadow boundaries. Let us see how this can be cor­
rected. 

Kinematics 

Let us use a formal method to find the directions of 
rays arising from a tip. It concerns Snell's law in the 
form of Eq. (9). However, there are no limitations in 
choosing the directions of arising rays because the tip is 
not a linear element of interfaces. Any direction com­
plies with the above-mentioned law formally. This fact 
is formulated as the law of tip diffraction (Keller, 1962). 
It reads as fo llows: the incident ray generates rays 
leaving the tip in all directions. 

Let e be a unit vector of the tangent to a ray. 
Let this ;~y comply with the law of tip diffraction at 
that tip, which gives the mnp-th secondary shadow 
boundary. Then the differentia l equation 

(31) 

determines the congruence of tip diffracted rays. 
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Fig. 13a-d. Theoretical seismograms for model of "sector" 
(profile II): a reflected wave (twice diminished), b edge waves 
(1.66 times diminished), c tip waves (4 times enlarged), d total 
field 

A tip diffraction coefficient 

Let a wave 

be connected with the mnp-th secondary shadow 
boundary. The latter may be given implicitly by the 
equation Tm

11
p=Tm,,· The wave, Eq. (32), is called a tip 

diffracted wave. Let us divide the tip wave domain into 
separate parts. Suppose, the eikonal rn111 may be con­
tinued analytically into the secondary shadow zone. 
The analytical continuation of the primary shadow 
boundaries r 11 = r 1 and r 12 = r 1 is shown in Fig. 11 by 
the dash-dotted lines. 

Then the primary shadow boundary T mn =Tm and 
the secondary shadow boundary Tm,,p = Tmn divide the 
domain of the wave fmnp into four parts. These parts 
are shown in Fig. 14. Let us give them the numbers 1, 
2, 3 and 4, going around the line Tmnp = Tm 11 =Tm clock­
wise or counter-clockwise, so that the shortest way 
from the fourth part to the first would coincide with 
the shortest way from the primary illuminated zone of 
the wave J~, to the primary shadow zone through the 
mn-th primary shadow boundary. The first and third 
parts have common points only at the line r11111 P = r 11111 

= r
111

• The second and fourth parts have common points 
at the same line only. Let Q;;;,,r be the symbol of the 
domain formed by the first and third parts. Let Q:,11 ,, be 
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Fig. 14. The domains of continuity of a tip wave. Explanation 
in tex t 

the symbol of the domain formed by the second and 
fourth parts. These domains in Fig. 11 for the second­
ary shadow boundary 111 are denoted by the symbols 
Q~11 and Qi1 1 • Let us denote the boundary between 
the first and second parts by r+ , and between the third 
and fourth parts by r-. r+ and r- together form the 
secondary shadow boundary 'mnr=T1111,. 

Let us represent the tip wave, Eq. (32), in the form: 

(33) 

Let the sum J;
11
,,+ j+ be continuous at the boundary 

r + and the sum f,1111 + 1- be continuous at the bound­
ary r-. Under the above conditions, we can find I+ 
and 1- in the same way which is used for finding fmn· 

Let '"'"P' If; ±, a be ray coordinates of the wave f ±. 
Here If;± and a give a congruence of the tip diffracted 
rays, i.e. every pair of fixed values If;± =constant and a 
=constant gives a single ray. Let If; ± vary in the in­
terval -n ~If;±~ n. We choose If;± in such a way that 
the surface If; ±= 0 would coincide with the surface r ±, 
and the surfaces If;± = n and If; ± = - n would coincide 
with r + (Fig. 14). Then 

t/1 ± = ±s11111rlt/l±I when lt/l±l<n/2, 

t/l±=±S11111 ,,(lt/l±l-n) when lt/l ±l>n/2, 

smnr= + I within Q:,"P' 

within Q;;;
11

,,. 

Let us consider O"=O at the line Tm 11 ,,=Tm 11 =Tm. 

(34) 

(35) 

In the first place, let us take the case when the 
amplitude <1>

11111 
of the wave (11) is a scalar. Let the edge 

wavefield, Eq. (11), be a function of the above ray coor­
dinates 

Then, in the neighbourhood of the secondary shadow 
boundary, this wavefield may be represented by the 
discontinuous function 

j . - / " (r ,/,± a) when -n<''' ± < 0, mn - . mn mr1p' '+' ' '+' 

J;,,,,=0 when O<t{! ±<n (37) 

which displays explicitly the shortcoming of Eq. (17). 
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Figures 12a and 13a illustrate the discontinuity of 
the reflected wave. Figure 13 b shows the change of sign 
of two edge waves at the primary shadow boundary 12 
(y = 1.06 km) and at the primary shadow boundary 11 
(y = 1.25 km). In Fig. 12b the discontinuity of the edge 
wave amplitudes is seen at the secondary shadow 
boundary x = 1.15 km. 

Suppose Eq. (37) represents an analytical function of 
the variable lf;± and allows us to make an analytical 
continuation into the complex plane of lf; ± for any 
permissible values '"mn and a. Let us find J± among 
the piecewise-analytical functions decreasing at infinity 
(f±_,,o when ll/1±1_,,oo). Then we may construct the 
following integral of Cauchy's type 

(38) 

The specific type of the contour L will be given in the 
following. The properties of the similar integral, 
Eq. (14), have been discussed above. Equation (38) has 
a discontinuity at lf; ± = 0. However, the superposition 
of Eqs. (37) and (38) is continuous at this point. The 
problem is that integral (38) has two extra discon­
tinuities at lf; ± = - n and lf; ± = n because of the limited 
interval -n~lf;± ~n. To eliminate these discontinuities 
we take the periodic function of lf; ±, i.e. 

co 

f± = L J±('tmnp•lf;± +2nk, a). (39) 
k= - co 

Inserting Eq. (38) into Eq. (39) and using the well­
known formula 

co 

-r*='tmn('tmnp•lf;±,<T) with ll/t±l=n/2, 

ll/J± I =arcsiny(-rmnp -'tmn)/(-rmnp --rm). (44) 

Let us note that Eq. (43) may be derived by using a 
similar method as in the case vm =constant (Klem-Mu­
satov, 1981 a). 

Let the contour L within a neighbourhood of the 
saddle point coincide with the steepest descent path 

Im[iw-rmn(-rmnp• lf;± + ll(, a)]= Im[iw-rmn(-rmnp• 0, a)], 

Re[iw-rmn(-rmnp• lf;± + ll(, a)] <0. 

Using Eq. (43) gives the following equations for this 
part of the contour 

Rell(+lf;± = -lmll( for 'tmnp>-rm, 

Rell(+lf;± =lmll( for 'tmnp<-rm. 

The integral exists if the contour approaches to the 
points Im il( = ± oo within domains 

Re[iw-rmn(-rmnp• lf;± +il(, a)] <0. 

Using Eq. (43) allows us to obtain this condition for 
Im il(-'> oo in the following form 

-n/2<Rell(+lf;± <0 when 'tmnp>-rm, 

and for Im il(-'> - oo in the form 

0< Rell(+lf;± <n/2 

-n/2<Reil(+lf;± <0 when -rmnp<-rm. 

L (z-2nk)- 1 =1/2·cot(z/2) 
k= - co 

we get: 

( 40) The contours are shown in Fig. 5 a for '"mn >-rm and in 
Fig. Sb for -rmnp<-rm (in these figures, q=f and term 17 
must be replaced by lf;±). 
Then integral (41) may be written as 

(41) J± =<Pmn(-rmnp•O,a)lf'± exp(iw-rmnp), 

Integral (41) has the following properties. It is zero 
when I l/t ±I_,, oo. It has a discontinuity at lf; ± = 0. How­
ever, the superposition of Eqs. (37) and (41) is a con­
tinuous and analytical function of lf; ± in the neigh­
bourhood of the surface lf; ± = 0. If function (3 7) is a 
solution of some linear differential equation (for exam­
ple, the wave equation) within the domain -n<lf;± <0, 
the superposition of Eqs. (37) and (41) complies with 
the same equation within the whole domain 
-n~lf;± ~n. 

When W-'>OO, the asymptotic value of integral (41) is 
formed by contributions within a small neighbourhood 
of the saddle point il( = -lf; ±. Let us take the standard 
approximation at this point 

and for lul ~ 1 use the following relations 

'"mn(-rmnp• l/t ±,a)~ '"mnp -A sin 2 lf; ±, 

A ='tmnp-'t*~'tmnp-'tm, 

(42) 

(43) 

To discuss the accuracy of this expression, we 
would repeat all that was said concerning Eq. (17). 
Equation (45) gives a satisfactory description within the 
so-called boundary layer where the amplitude of a tip 
wave changes rapidly. Within this domain the ampli­
tude <Pm may be considered as a function of the free 
point <Pm( '"mnp• lf; ±,a). The real accuracy of description 
is independent of the choice of the versions: 

<Pm(-rmnp•O,a) or <Pm(-rmnp•lf;±,a). 

Consideration of Eqs. (17), (34), (44), (45) and using 
identical mathematical transformations (for details, see 
Klem-Musatov, 198la, b) allow us to write Eq. (33) in 
the form: 

H(p,()= W(p)lf'(p,(), 

(46) 

(47) 
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'l'(p, 0 = sin(2()/n · J [x2 -2x cos(2() + 1]-1 

0 

·exp[inp2(x+x- 1 -2)/8]dx, 

Pmnp =y2w(rmnp -rm)/n, 

Cmnv = arcsiny(rmnv -rmn)/(rmnv -rm), (48) 

where H may be regarded as a tip diffraction coefficient. 
If rmnv<rm, we have Pmnv=ix, x=y2w(rm-rmnv)fn, 
H(ix, () = H(x, (), where H denotes the complex con­
jugate of H. In these formulae we may use the analyti­
cal continuation of the amplitude <Pm and the eikonals 
rm, rmn into the primary and secondary shadow zones 
by means of any type of parameterization of space. 

Let us return to the example "sector" (Fig. 11). 
Now we can write the total wavefield in the form 

2 

J=J1 + L U1n+ f1n1) 
n=l 

where f 1n1 is a tip wave. Figures 12c and 13c show the 
tip waves computed by Eq. (46). It is possible to see in 
Fig. 13c the change of sign of their amplitudes at the 
secondary shadow boundaries 111 (y=0.95 km) and 
121 (y= 1.66 km). Figures 12d and 13d show the total 
wavefield formed by the interference of the reflected 
wave, two edge waves and two tip waves. The total 
field is regular everywhere. 

If 0 ~ p < oo, 0 ~ ( ~ n/2, we have the following ap­
proximate formulae 

'l'(p,()='l'(O,()-ip2 sin(/8·ln(np2/8) when p--+O, 
(49) 

'l'(p, () =(Vlnp)- 1((- 1 -cot() exp(i 5n/4) 

+ W(p()+O(p- 2 ) when p--+oo, (50) 

'1'(0,0= 1/2-(/n, 'l'(p,0)= 1/2, 'l'(p, n/2)=0 (51) 

where 0 is the symbol of asymptotic estimation. The 
point p = 0 is the essential special point because the 
value of the function depends on the direction along 
which this point is approached. However, the total 
wavefield at this point is determined uniquely. Let us 
give the corresponding result. 

Every single wavefield fm has only two primary sha­
dow boundaries within the small neighbourhood of the 
line rmnv=rmn=rm, i.e. at p=O (Fig. 15). Let us call 
their indices n =a and n = b. Let 'Ym be the dihedral 
angle between the tangent planes to the ma-th and mb­
th primary shadow boundaries at a point of the line 
rmnp=rmn=rm with n=a and n=b. This angle must be 
taken within (and not outside) the primary illuminated 
zone. Then at this point the following equality exists: 

(52) 

Figure 16 shows the graphs of modulus and argument 
of the function ( 48). 

Interrelation with known physical ideas 

It was shown (Aizenberg, 1982) that Eq. (46) matches 
the classical theory of diffraction. If vm =constant, the 
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Fig. 15. The neighbourhood of a singular point of the pri­
mary illuminated zone (shaded region). Explanation in text 

Om=c.._L_~.l.._~L..!L..__J'----' 
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Fig. 16. Modulus and argument of function 'l'(p, (). Numbers 
at the curves give the values of (, expressed in degrees 

tip wave can be found by asymptotic analysis of 
Kirchhoffs integral in the form of Eq. (46), where 

00 

H(p,()=pcos(/(2n) J (x2 +p2 cos2 0- 1 

psinC 

· exp[in(x 2 -p 2 sin2 ()/2] dx. (53) 

It has been shown, both numerically and analytically, 
that this function is identical with the product in 
Eq. (47). It allows us to represent the superposition of 
Eqs. ( 17) and ( 46) in the form: 

fmn + fmnv = fm G(smn Vn/2 p cos(, smnv Vnf2 p sin(), 

00 

G(a, b) =a/(2n) · J (x2 +a2)- 1 exp[i(x2 +a2 )] dx, 
b 

(54) 

(55) 

where G(a, b) is the so-called generalized Fresnel in­
tegral (Clemmow and Senior, 1953) p = Pmnp• ( = Cmnp' 
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Let us show with the simplest example that Eq. (46) 
complies with Fock's parabolic equation of transverse 
two-dimensional diffusion which describes diffusion of 
wave energy out of the secondary illuminated zone into 
the secondary shadow zone. Let the wave velocity be 
constant and wave fm be plane (<Pm= constant) with its 
wave vector perpendicular to an edge containing a 
point of break. Let (R, (), cp) be spherical coordinates, 
where R is the distance from the tip, () is the angle 
between the tip ray and the ray ()=0 which coincides 
with the intersection of the primary and secondary 
shadow boundaries, cp is the angle between the mnp-th 
secondary shadow boundary cp =0 and the plane which 
contains the given tip ray and the ray () = 0. 

By substitution of Eq. (46) into Helmholtz's equa­
tion (A+ k!)fmnp =0, where km= w/vm, neglecting all 
values of order less than km and using a linear approxi­
mation for trigonometric functions of small argument, 
we can obtain the equation of transverse diffusion 

2ikm a 1 a 
R oR (R<Pmnp)+ R2() i)() <Pmnp 

1 a2 1 a2 

+ R1 ae2 <Pmnp+ R1()2 ocp2 <Pmnp=O. (56) 

Using the following relations in the neighbourhood of 
the ray ()=0 

Pmnp =y2w(rmnp -rm)/rc 

=y2kmR(l -cos())/rc '::::! eykmR/rc, 

'mnp= arcsiny(rmnp -rmn)/(rmnp -rm) =arcsin 

y[l -(cos2 (J+sin 2 (Jcos 2 cp)112]/(1-cos(J) '::::!<p, (57) 

we can represent Eq. (56) in the form 

. 2 . 3 a 2 a2 
2rcip <Pmnp+(rcip +p) op <Pmnp+p op2 <Pmnp 

a2 
+ o(2 <Pmnp=O. (58) 

The solution of this equation is <Pmnp = H(Pmnp• (mnp) 
where H is the integral (53). Thus, Eq. (46) describes a 
phenomenon of transverse diffusion in the form of the 
tip wave. Analysis shows the following mechanism of 
this phenomenon. The wave energy flows from the sec­
ondary illuminated zone through the secondary shadow 
boundary into the secondary shadow zone around the 
ray () = 0. Hence, unlike the diffusion mechanism de­
scribed earlier, the tip wave is formed by a type of 
three-dimensional eddy diffusion around the ray () = 0. 

Polarization 

Now let us take the case where the amplitude of the 
wave (11) is the vector (25). Let us represent the tip 
wave (32) in the form: 

3 

f, - " . f,(q) mnp - Li ]q mnp' f, <q> - <q> e p(· ) mnp-<pmnp X IW!mnp (59) 
q=l 

Fig. 17. Model of "pyramid". Reflecting interface is given by 
depth lines on the plane of observation 

where f~~ are scalars. Let us use the same approach, 
Eqs. (33H46), for every function cp~~.J'(rmnp• l/I ±,a) which 
has been used for the scalar case. lt allows us to de­
termine three scalar functions 

f~~p=Smnpcp~> H(Pmnp• 'mnp) exp(iwrmnp) 

with q=l,2,3. (60) 

Inserting Eq. (60) into Eq. (59) gives Eq. (46) again, 
where <Pm is the vector (6). 

This result may be interpreted in the same way as 
for the edge wave above. Let Pmnp be a unit vector of 
polarization of the tip wave fmnp· In accordance with 
the general theory, this vector must coincide with emnp 
(for a longitudinal wave) or be perpendicular to emnp 
(for a transverse wave). However, in Eq. (46) the vector 
Pmnp coincides with Pm· In fact, the real accuracy of 
description is independent of this discrepancy because 
the latter is of no importance within the boundary 
layer. The vector <Pm may be considered as a function 
of a free point in space and continued analytically into 
the shadow zones. 

The ray method including diffraction on edges and ver­
tices 

The present modification of the ray method results in 
the addition of edge, Eq. (17), and tip, Eq. (46), waves 
to the reflected/transmitted wavefield, Eq. (4), 

m p 

This approach can be used in any inhomogeneous me­
dia with piecewise-smooth edges of interfaces outside 
caustic zones. Here we shall show two simple examples 
of using this approach. 

Let the interface by pyramid-shaped (Fig. 17). The 
total wavefield is given in the form 

where m is the index of a face of the interface and fmn 1 

is a tip wave. Figure 18 shows the wavefield scattered 
by this interface. Note, that all six tip waves have the 
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Fig. 18a-d. Theoretical seismograms for model of "pyramid": 
a .r~flected w~ve (twice diminished), b edge waves (twice di­
mm1shed), c tip waves (1.5 times enlarged), d total field 

same eikonal and form a common diffracted wave scat­
tering from the vertex of the interface. 

Let us next consider the model "faults". It is known 
that, in seismic prospecting and deep seismic sounding, 
the observed waves often have a complex group (mul­
tiphase) character inspite of a rather simple source sig­
nal shape. The simplest example of the formation of 
multiphase groups is obtained from an examination of 
reflections from a boundary disturbed by a system of 
faults with small throw. 

Let the interface be disturbed by two intersecting 
systems of faults, where each system contains four par­
allel faults of infinite extension (Fig. 19). Unlike the 
previous examples, the elements of the interface differ 
in their number of edges and the edges differ in their 
number of tips. Let us mark the elements with four 
edges by m = 1, 2, ... , 9, those with three edges by 
m=l0,11, .. .,21, and those with two edges by m= 
22, 23, ... , 25. Then the total wavefield may be written 
in the form 

!=fl+ f2+ f3, 

f 1 = mtJfm + ntl (!mn + Jl fmnp) l 
J2= m~O [fm+ ntl (fmn+ fmn1)+ fm3+ fm31 + fm32l 

25 [ 2 

f 3= m~Z fm+ n~l Umn+ fmnl)l 
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Fig. 19. Model of "faults". Projection of faults is given on the 
plane of observation. Further explanations in text 

DISTANCE IN KM 

Fig. 20. Theoretical seismogram for model of "faults" (h 
=5.l.p) 

Let the minimal distance of the interface from the 
plane of observation be h = N Ap where Ap is the P 
wavelength. The depth of each block of interface is 
gi.ven by t~e formula z = h + kAp/4 where k is given in 
Fig. 19. Figures 20 and 21 show seismograms of the 
wavefield scattered by the disturbed interface for 
h = 5 Ap and h = 50 Ap, respectively. 

These examples show that for relatively small depth 
(h = 5 Ap) the lineups mainly represent the block struc­
ture of the interface with characteristic horizontal di­
mensions of the blocks of 2-3 Ap (and, obviously, larg­
er). Under these conditions, the character of the wave 
patterns is determined by that part of the field which is 
controlled by the laws of geometrical seismics (ray 
tra.nsport of energy). The diffraction components (mech­
anism of transverse diffusion) have a subordinate char­
acter, smoothing the characteristics of the field and 
complicating it by interference effects. With increasing 
depth of the interface, the role of diffraction com­
ponents increases since the absolute dimensions of the 
zones of influence of diffusion mechanisms - the vi­
cinity of the reflection point - increase. For relatively 
great depth (h = 50 Ap), the diffusion mechanism plays 
the dominant role in the formation of fields from dis­
turbed interfaces. Interference of diffraction components 
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Fig. 21. Theoretical seismogram for model of "faults" (h 
=50A.p) 

generates multiphase trains, the character of which de­
pends on the degree of disturbance of the interface. 

The method of superposition of tip waves 

Equations (4), (17) and (46) allow us to compute wa­
vefields in 3-D inhomogeneous media with piecewise­
smooth edges of interfaces outside caustic zones. There 
is an approach, based on the above formulae, which 
can be used within caustic zones as formed by the 
curvature of interfaces. Its idea is a generalization of 
the approach described in an earlier section. 

According to the present approach, the wavefield 
scattered by a rectifiable interface can be replaced ap­
proximately by the field scattered by a piecewise-plane 
boundary, approximating it with a sufficiently large 
number of plane elements. But, unlike the method de­
scribed earlier, it can be done by means of triangu­
lation. In the first place, the interface must be divided 
into regular parts so that some regular surface curvi­
linear coordinates (e, 17) can be introduced in each of 
them. Each regular part can be divided into a set of 
curvilinear tetragons by cutting out along both coor­
dinate lines. Each tetragon can be divided into two 
triangular elements. Thus the element of the appro­
ximating boundary is the plane triangle. This approxi­
mation guarantees finite values of the term <Pm in 
Eqs. (4) and (46) because these terms do not now de­
pend on the curvature of the initial interface. The wa­
vefield scattered by the piecewise-plane boundary is a 
superposition of fields scattered by the plane elements 
composing it. 

For a sufficiently small step of approximation the 
contributions from the elements, containing reflection/ 
transmission points and points of edge diffraction, are· 
small enough and may be neglected. Then the field 
scattered by the individual plane element will be a 
superposition of six tip waves diverging from its tips. 
The total field can be represented by superposition of 
just tip waves alone: 

3 2 

lifm= L L fmnp' m=lomo, n=lono (61) 
n= 1 p= 1 

where m is the index of an element, n - the index of an 
edge of the m-th element, p - the index of a tip of the 
mn-th edge, m0 and n0 are the indices of the elements 
containing the corresponding reflection/transmission 
points and the points of edge diffraction. Every term !ifm 
of this sum is strictly bounded. That is why the sum in 
Eq. (61) is limited within caustic zones caused by the 
curvature of the initial interface. 

To justify the above approach we take Eq. (61) to 
the limit of the initial interface, simultaneously letting 
the step of approximation tend to zero and increasing 
the number of elements. In this case 

M 

lim L 11Sm= fJ dS, 
max(LIS..,)-0 m=l S 

M-oo 

f = H F(e, 17) exp[iwr(e, 17)] de d17, (62) 
s 

where <1> 0 (e, 11) and r 0 are the amplitude and the eikonal 
of the analytical reflection/transmission for point (e,11), 
r~ and '~ are the eikonals of the analytical edge diffrac­
tion. Here the analytical edge diffraction stands for the 
diffraction by the rectilinear edge which is tangent to 
the coordinate line e =constant or 11 =constant for point 
(e,11). 

Equation (62) can be regarded as a new asymptotic 
formulation of the concept of secondary sources. Ac­
cording to this formulation the value of the field at any 
point of the medium will be the superposition of sec­
ondary waves with amplitude F(e, 17)ded11 diverging 
from each point of the initial interface. Unlike the 
Fresnel and Kirchhoff descriptions, the amplitudes of 
the secondary waves in Eq. (62) are strictly bounded on 
the surface of integration. 

The asymptotic analysis in the neighbourhood of 
the isolated stationary point of the first order ( e 1 • '11) 
gives the wavefield (62) in the form of a regular wave 

f = <1>(e1, '11) exp[iwr(e1, 111)], 

<P(e 1 • '1.1) = F( e 1•111)/(i wh112), 

h 02 r(e1, 111). 02 r(e1, 111) 
ae2 011 2 

(63) 

If the wave velocity is constant this formula coincides 
with the formula of the ray method. This justifies the 
present approach. 

We illustrate this approach for the model "syncline" 
(Fig. 22). Its geometrical shape is given by the equation 

z = 1 +0.1 exp[ -32(x -1.15)2 -128(y-1.15)2]. 

Figure 23 shows the wavefield scattered by this inter­
face. It is seen that the typical "loop" structure of the 
wavefield occurs. 
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Fig. 22. Model of "syncline". Tip rays, scattering from an 
element of the interface, are shown. Further explanations in 
text 

i :}!®rn j I I I j 11 j l I mmt l · 
1.0 a.a 1.0 2.0 a 

DlSTANCE lN KM 

i:;1 .. J' 
1.0 

a.a DJSTAN~~ 1N KM 2• 0 b 

Fig. 23a and b. Theoretical seismograms for model of "syn­
cline": a X-component (twice enlarged), b Z-component 

Remarks 

In conclusion, let us mention that there are many ex­
amples of mathematical modelling of wavefields in typi­
cal structures by the above method. There are theoreti­
cal seismograms for several types of pinch-out and low­
amplitude faults (Klem-Musatov, 1980), interfaces of 
complex forms (Aizenberg and Klem-Musatov, 1980) and 
3-D systems of intersecting faults (Klem-Musatov et al., 
1982). Themain principles of the generalization of the above 
approach for multiple diffraction are described in Klem­
Musatov and Aizenberg (1984). 
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Note added in proof. The secondary boundaries position in 
Fig. 11 is shown rough. Planes 111 and 121 must intersect pro­
file II at the points y=0.95km and y=l.66km, respectively. 
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