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Abstract. We present some results of the theory of high­
frequency radiation by seismic sources. The em­
phasis will be placed on the kinematics of high-fre­
quency waves, especially the stopping phases produced 
when the rupture encounters barriers of general shape. 
These results will be obtained from the representation 
theorem in which we replace the Green function by its 
asymptotic approximation at high frequencies, i.e. what 
is usually called the far-field approximation. This yields 
an expression akin to the Kirchhoff diffraction integral 
used in the modelling of reflection profiles and in seis­
mic migration. The results obtained by this method are 
valid at distances from the fault which are longer than 
the dominant wavelength of the radiation. By a detailed 
analysis of the asymptotic method we find the wave­
front discontinuities produced by rupture velocity jumps 
(barriers) or slip discontinuities (asperities) on the fault. 
Some examples of comparison between synthetics cal­
culated with the new methods and those obtained by 
complete near-field synthesis will be presented. Among 
the examples we will consider is the circular fault, a 
model proposed by Bouchon for the Coyote Lake earth­
quake. 
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Seismic radiation 

Radiation from a seismic source is a classical problem 
in elastodynamics. The most recent developments in­
clude the study of generalized distributed seismic 
sources, which we shall review briefly and in an 
overly simplified fashion. 

Let f(r, t) be a general distribution of body forces in 
the earth, where r and t are position and time, respec­
tively. Seismic radiation may be easily calculated from 
a representation theorem. The displacement u is given 
by: 

u;(r, t) = S dt J G;j(r, tir0 ,t0 ) fj (r 0 , t 0 ) d V 

where V is the volume of the earth, Gij is the elastody­
namic Green tensor for the earth, which may include 
both near- and far-field waves. The problem now is to 
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find the body force distribution equivalent to a realistic 
seismic source. Let M(r, t) be a seismic moment tensor 
distribution corresponding to a stress glut, or to inelas­
tic stress in the more traditional nomenclature. The 
body force distribution equivalent to this moment ten­
sor field is: 

f= -J7·M, 

a relation that expresses the equilibrium of forces. In­
serting this definition of f in the representation theorem 
and integrating by parts, assuming that M is different 
from zero only for t > 0 and in a finite region, we find: 

u;(r, t)= S dt S G;j,k(r, t I r 0 , t0 ) Mjk(r0, t 0 ) dV 

where the comma indicates differentiation with respect 
to source coordinates. From the symmetry of Mjk' we 
see that the radiation from a point moment tensor 
source is equivalent to a set of dipoles. A seismic fault 
may be described as a single layer distribution of mo­
ment tensors of the form: 

Mjk =µ(LI uj nk +LI uk n) b(D), 

where b(D) is a surface Dirac delta function, Liu is the 
slip at the fault and n is the unit normal to it at the 
point r0 . 

Inserting this in the representation theorem, we ob­
tain: 

(1) 

where the time integration has been replaced by the 
convolution, indicated by *· Using the true Green ten­
sors for the earth is a formidable problem so that we 
usually take only a part of it, either surface waves or 
body waves; here we will be concerned only with body 
waves. 

In most studies of earthquake source mechanism it 
is assumed that, in the vicinity of the fault, the Green 
function that should be used in Eq. (1) should be calcu­
lated exactly including the so-called near-field terms. 
This leads to very complicated methods for the calcu­
lation of accelerograms and seismograms based on 
plane-wave decomposition and integration by either re­
flectivity, f -k integration, etc .. It is clear that when 
broad-band or long-period synthetics are being calcu-
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lated, the full Green function is needed in Eq. (1). How­
ever, when high-frequency near-source records are de­
sired, it is quite possible to use the so-called far-field 
Green function in Eq. (1), which basically neglects the 
coupling between P and S waves. This approximation 
should be valid as long as the wavelengths under con­
sideration are much shorter than the distance to the 
fault. In fact, our experience with synthetics indicates 
that the use of the far-field Green function in Eq. (1) 
yields reasonable results even at distances of the order 
of the wavelength l Even for moderately complex struc­
tures, the cost of calculating Eq. (1) is reduced by at 
least an order of magnitude when the asymptotic meth­
od is used. 

This is not the only advantage of using far-field 
Green functions in Eq. (1). Since this function may be 
interpreted in terms of rays, it provides some important 
insight into the way in which high-frequency waves are 
generated by very general models of the seismic source. 
This property will be exploited in order to derive some 
general results for cracks and dislocation models of the 
source and to propose a new method for the calcu­
lation of near-source synthetics which is quite similar 
to the Kirchhoff diffraction integral. 

In a homogeneous medium the far-field radiation 
from a point dislocation source may be written in the 
form: 

1 1 
u(r, t) =--3 Rc - (j'(t -R/c) 

4npc D 
(2) 

where p is density, c is either P- or S-wave velocity 
according to the type of wave under consideration. D is 
the source-receiver distance, W is the radiation pattern 
and b,' is the derivative of Dirac's delta function. This 
expression may be generalized to waves obeying simple 

'geometrical optics replacing the term 1/D by the 
geometrical spreading calculated from ray theory. W is 
the radiation pattern which depends on the take-off 
angle of the ray at the source and its azimuth. 

In order to calculate the radiation in the high-fre­
quency approximation we insert Eq. (2) in the represen­
tation theorem for a flat seismic fault, Eq. (1). We ob­
tain 

uc(P, t) =~ J RC_!_ L1 u(t -D/c) dS, 
4n pc s D 

(3) 

which is similar to Eq. (14.4) of Aki and Richards 
(1980) except that we have omitted obvious indices. In 
Eq. (3), however, W and D vary with position on the 
fault, i.e. we do not make the Fraunhofer approxima­
tion. There is some confusion in the literature between 
far-field or high-frequency approximations like Eq. (2), 
and the Fraunhofer or far-from-the-source approxima­
tion which applies when the observer is at a distance 
far greater than the dimensions of the source. Our in­
tention is to prove that, within the limits of our theory, 
accelerograms calculated using Eq. (3) are very good 
approximations to those calculated with full wave 
theory including "near-field" terms in Eq. (1). 

Equation (3) may be easily generalized to media 
with slowly varying properties and sharp discontinuities 
by means of ray theory. However, for the purposes of 
establishing basic results we shall use the simplified 

equation, Eq. (3), for a uniform medium. Several of the 
examples shown later will be calculated for hetero­
geneous structures using ray theory. 

Source models 

Equation (3) is entirely equivalent to the Kirchhoff ap­
proximation used in diffraction theory. In the usual in­
terpretation, L1 u represents the field given on a surface. 
In our application, it represents the slip velocity on the 
fault. In order to extract further information from Eq. 
(3) we have to consider realistic models of slip velocity 
at the source. 

The most important feature of L1 u is that it has a 
finite support (the ruptured zone) and that this rupture 
expands with time. We demonstrated in Madariaga 
(1977) that for very general crack models the radiation 
of high frequencies will be controlled by the rupture 
front and that the slip inside the fault will be seen only 
in the low-frequency approximation. This result may be 
demonstrated more easily for the so-called dislocation 
models (it should be more correct to call them dislo­
cation loop models). These models emphasize the rup­
ture front discontinuities and eliminate all the details of 
the slip function. 

We will use a very simple dislocation model for the 
source: the rupture initiates at the focus 0 and expands 
radially with rupture velocity v on the fault plane. In 
the following discussion, for reasons of simplicity, v will 
be assumed to be constant; generalization of our results 
to variable rupture velocity may be obtained in a 
straightforward way. The slip L1 u will be assumed to be 
uniform, constant and parallel to the fault plane inside 
the rupture front limits. This simple model of the slip 
function is not physically acceptable but it may be con­
verted into a crack-like dislocation by convolution, as 
will be discussed later. Let the rupture grow until it 
reaches a barrier of general shape LB. The slip and the 
slip velocity are expressed as: 

Llu(r, 8, t)=D 0 H(t-r/v)H[r0 (8)-r] 

and 

Llu(r, 8, t) = D0 b(t -r/v) H[r0 (8)-r], 

(4) 

(5) 

respectively. Here t is time, r and 8 are polar coor­
dinates on the fault plane, H the Heaviside function, (j 

the Dirac function and the equation r=r0 (8) is the 
analytical representation of the barrier line LB. For in­
stance, for a straight barrier line 

r0 (8) = d0/cos 0. 

The slip velocity (5) is zero everywhere on the fault 
plane, except on the rupture front where it becomes in­
finite. This is the model with the maximum possible 
concentration of slip velocity in the vicinity of the rup­
ture front. In more realistic models the concentration 
will be spread in a way determined by the stress distri­
bution near the rupture front. For instance, in Haskell's 
(1964) dislocation model the slip velocity singularity is 
spread over the rise time 1, so that L1 u will have a box­
car shape. Solutions for these kinds of slip-velocity sin­
gularities may be obtained by convolution of our so­
lutions with appropriate source-time functions. 
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Crack models 

Realistic source models should be based on fracture 
mechanics, the physics of the processes that occur in 
the vicinity of the rupture front. Let us assume that the 
rupture .front at the instant t is given by the curve l(t). 
The mam features of the elastic fields near the crack tip 
may be obtained by assuming steady rupture growth at 
constant rupture velocity. If we write the elastodynamic 
equations in polar co-ordinates centred at the rupture 
front and apply the boundary conditions for cracks, the 
solution is found to have certain universal features due 
~o the requirement that there be a finite energy flow 
mto the rupture front (Freund, 1979). In this solution 
the stress and velocity fields present inverse-square-root 
singularities (see Fig. 1). Along the fault they may be 
written in the following form: 

er(x, t)=K[x-l(t)]- 112 

and 

for x > l(t) 

Llu(x,t)=V[l(t)-x]- 112 for x<l(t). 

(6a) 

(6b) 

Here er is a generic stress that represents er for anti­
plane, er zz for in-plane and er zz for tensiona(~racks, re­
spectively. K is the dynamic stress intensity factor. The 
definition of K in Eq. (16) differs from the usual defini-
tions in fracture mechanics by a constant (~). We 
prefer this definition to avoid annoying constants. The 
slip velocity entering in Eq. (6b) is the appropriate 
component for each mode of deformation. V is the dy­
namic velocity intensity factor. 

K and V are related by simple expressions: 

for antiplane cracks, where µ and f3 are the rigidity and 
shear-wave velocity, respectively, and v is the rupture 
velocity. For plane cracks, 

K =_!!___ 132 R(v) V 
2v v21h -v2;132 , 

where R is the Rayleigh function: 

The complete angular dependence of stress and ve­
locity around the crack tip is given by Freund (1979). 
The inverse-square-root singularities of the form (6) are 
only valid for rupture velocities lower than the shear­
wave velocity for antiplane fractures and the Rayleigh­
wave velocity for plane cracks. At these terminal veloc­
ities the coefficients of V above reduce to zero, i.e. the 
dynamic stress concentrations K disappear when the 
rupture velocity reaches its terminal value. 

The stress field is infinite at the rupture front x 
= l(t). This is the result of the idealization that was 
made here: it was assumed that the material remained 
elastic even in the immediate vicinity of the rupture 
front. The inverse-root singularity appears because this 
is the only way the elastic field can ensure a finite en­
ergy flow into the rupture front. If more realistic con­
ditions are assumed near the rupture front, like a slip-

I~ 
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rupture 
front 
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Fig. 1. Main properties of the stress and slip velocity fields in 
the vicinity of a realistic crack model of the rupture front. 
The rupture is moving to the right with a subsonic rupture 
velocity 

weakening model or a cohesive zone, the singularity 
disappears. The singularity is associated with the exter­
~al field, while in the vicinity of the tip we have an 
mternal short-range solution (Rice, 1981; Madariaga, 
1983). Both merge smoothly at the border of the co­
hesive zone. Most of the overall features of crack me­
chanics may be obtained from the elastic model in 
which the inelastic behaviour at the breakdown zone is 
replaced by the global variable K. This is valid for the 
calculation of high-frequency waves if we assume that 
the size of the breakdown zone is smaller than the 
wavelength under consideration. Thus, the result we 
will obtain using ray theory will be valid for a frequency 
range such that the wavelengths are longer than the 
breakdown zone and shorter than the distance to the 
observer. 

The high-frequency radiation for a crack model may 
be o~tained ~rom that for a dislocation using the slip 
velocity function as a source-time function, i.e. convolv­
ing with Eq. (6a). This method is not exact because it 
neglects the radiation by stopping phases on the fault 
(Bernard and Madariaga, 1984a). The results obtained 
by convolution are, however, reasonably good approxi­
mations to the exact ones. Given the uncertainties in 
the model of the rupture front, we consider the con­
volved results as largely sufficient for strong motion 
prediction. 

Kinematics of high-frequency radiation: isochrones 

Let us introduce the slip velocity (5) into Eq. (3) to ob­
tain 

µD 1 
u<(P, t)= 4---Q-d Re -D b[t-r(P, r)] H[r0 (8)-r] dS, (7) 

npc s 

where 

r(P, r) = r/v + D/c (8) 

is the retarded time and dS=rdrd8. Given a point on 
the fault (r, 8), the distance D to the observer at P is 

D(r, 8)=(r2 + R 2 -2rd cos 8) 112 , (9) 

where r, 8, R and d are defined in Fig. 2. 
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0 

rupture front 

Fig. 2. Geometry of the dislocation model. The observer is at 
P, at a height h above the plane of the fault. Point 0 is the 
focus, (r, 8) are polar coordinates: D is the distance from 
point A to the observer at P 

p 

D 

0 

isochrone 

Fig. 3. Geometrical properties of the isochrones. Any point A 
on the isochrone refracts the ray OA in the direction of the 
observer at P. n is the normal to the isochrone on the fault 
plane, and i 1 is the angle between this normal and the radius 
from the. origin. </> is the angle of radiation entering into the 
directivity term 

Using the sifting property of the delta function, the 
surface integral (7) may be reduced to a line integral 
defined by 

t = r(P, r) = r/v + D(r, 8)/c. (10) 

Given the time t, Eq. (10) defines a curve on the fault 
plane that we call the isochrone. This curve defines the 
set of points [r(t, 8), 8] on the fault plane from which 
radiation arrives at the observation point P at time t. 
The different points on the isochrone do not radiate 
simultaneously but at the time r/v when the rupture 
front passes through them. We can give a simple 
geometrical interpretation to Eq. (10): r/v is the travel 
time of a "rupture ray" that leaves the origin 0 in di­
rection e with velocity v and propagates for a distance 
r along the fault. At point A, of coordinates (r, 0), it 
leaves the source and propagates to the observer at P 
as an elastic wave with velocity c. 

The equation for the isochrone, Eq. (10), may be 
easily solved numerically for r1 =r(t, 8). Let L 0 (P, t) be 
this isochrone which is a function both of the position 
of P and the time of observation t. In a general me­
dium L 0 represents a closed curve around the origin. 
For a homogeneous medium the isochrones L 0 are 
quartic ellipses confocal with the source as shown in 
Fig. 3. 

Changing variables in Eq. (7) from r to r we get, 

µD 21t 00 1 
uc(P,t)=--0- 3 J d8 J Rc-b(t-r)r(r,8)0,rdr 

4npc 0 R/c D 

where the partial derivation o,r= or/or may be calcu­
lated from the equation for the isochrone (10): 

o,r = 1/(1/v -cos ¢/c) (11) 

since orD = -cos¢, where ¢ is the angle between the 
radius vector at r(t, 8) and the direction of the observer 
(see Fig. 2). Integrating over r we get the very simple 
expression: 

uc(P t)= µDo J Re V ~ 
' 4npc 3 L D(l-v/ccos¢)cosi1 ' 

(12) 

where L designates the segments of the isochrone L 0 

that are inside the fault zone surrounded by the barrier 
L 8 ; dl=cos i1 rd8 and (1-v/c cos ¢)- 1 is the well­
known directivity due to the propagation of the rupture 
front. i1 , defined in Fig. 3, is the angle between the 
isochrone normal and the radius vector from the origin. 
Thus, Eq. (12) represents the sum of the radiation from 
a set of point double couples distributed along the iso­
chrone L. Each point source is weighted by the local 
directivity. 

Equation (12) provides a very simple method to cal­
culate near-field velocity: at any given time, velocity is 
given by a simple integral along L. We call asymptotic 
seismograms those calculated using this method. Two 
approximations were made to obtain Eq. (12), the first 
one being that the far-field Green function, Eq. (1 ), be 
applicable, i.e. that the shortest wavelength A of interest 
be the less than minimum of D. The other approxima­
tion, which may be relaxed by convolution, is that L1 u 
be strongly concentrated at the rupture front. Let us 
remark that, since we are summing the radiation from 
a continuous distribution of sources on the fault, Eq. 
(12) is not strictly a high-frequency approximation. The 
true high-frequency approximation to Eq. (12) will be 
obtained from the analysis of its discontinuities. 

Bernard and Madariaga (1984b) obtained Eq. (12) 
assuming a homogeneous medium and circular rupture 
propagation at constant velocity. These restrictions 
were adopted in order to simplify the presentation; in 
fact Eq. (12) is valid under very general conditions of 
rupture propagation and for inhomogeneous media as 
long as ray theory is valid, i.e. for smoothly varying 
media. We can generalize Eq. (12) to more general 
models replacing r/v by the time of arrival of the rup­
ture front to a point on the fault and D/c by the travel 
time from this point to the observer at P. In this case, 
the isochrone is given by 

t=r(P, r)=tr(r)+ T(r, P) (13) 

where tr is rupture time at the point r on the fault, and 
Tis the travel time for a ray from r to P. In Eq. (12), v 
should be interpreted as the local rupture velocity at 
point r. Finally, v- 1 should be replaced by geometrical 
spreading. Interpreted in this form, Eq. (12) is a very 
general formula for the calculation of near-field asymp­
totic synthetics. As shown by Spudich and Frazer 



( 1984), who independently derived it, it is closely relat­
ed to the Kirchhoff approximation used in modelling 
vertical reflection profiles in applied geophysics. 

Although Eq. (12) has an ex tremely simple form, it 
is difficult to calculate analytically even for a circular 
dislocation in a homogeneous medium. We proceed in 
the following way: first, for every given observer we de­
termine a set of equally time-spaced isochrones numeri­
cally; this is the most time-consuming part of the com­
putation. Once the isochrones are calculated, we integ­
rate Eq. (12) numerically. 

Example: Coyote Lake earthquake 

We shall now apply the asymptotic method to the cal­
culation of synthetic accelerograms for the Gilroy 6 re­
cording of the August 6, 1979 Coyote Lake earthquake 
in California. This event was studied by Bouchon 
( 1982) who proposed a dislocation model for the source 
and calculated synthetic accelerograms by a numerical 
frequency-wavenumber integration method. His model 
is a vertical strike-slip fault as shown in Fig. 4. Rupture 
starts at 9.5 km depth and propagates self-similarly 
with a constant rupture velocity of 2.6 km/s. Slip is 
constant (dislocation model) and equal to D0 = 21 cm. 
The final fault shape is defined by a rectangular barrier 
where rupture stops abruptly. The Gilroy 6 station was 
practically on the fault trace, 10 km away from epi­
centre. The medium consists of an upper layer 1.75 km 
thick, with a shear velocity of 2.4 km/s and a density of 
2.6 g/cm 3

, overlying an elastic half-space with a shear 
velocity of 3.5 km/s and density 2.8 g/cm 3

. 

The isochrones for regular increments of the obser­
vation time are shown in Fig. 4. They were obtained by 
a numerical solution of Eq. (I 0) where D/c was replaced 
by the appropriate expression for the travel time in a 
layer over a half-space. The separation between neigh­
bouring isochrones is proportional to the directivity 
factor; the area that radiates the higher amplitudes is 
the elongated sector pointing from the source to the 
observation point. This explains why, as will be shown 
below, the dominating part of the radiation comes from 
this sector of the fault. 

We may now compute synthetic displacement re­
cords by integration along the isochrones. Since sta­
tion Gilroy 6 is practically on the fault plane, only 
SH waves with displacement perpendicular to the fault 
were considered. The synthetic displacement record ob­
tained by our method is shown in the top of Fig. 5. 
Theoretically, these asymptotic records are valid for 
frequencies greater than 1.5 Hz in order that all wave­
lengths be shorter than the distance to the fault. 

In the same figure we present the displacement re­
cord computed numerically be Bouchon ( 1982) for the 
same model. He discret ized the fault into elementary 
sources and calculated displacement integrating the full 
near-field radiation for each of these sources. In spite of 
the different theoretical limits of validity for the two 
methods, f < 3.2 Hz for Bouchon and f > 1.5 Hz for the 
asymptotic method, the two solutions are very similar. 
The principal high-frequency phases are clearly iden­
tified and the general form even al low frequencies is 
very similar. The asymptotic solutions appear to be val­
id down to frequencies of I Hz in this case. The prin-
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Gilroy 5 

2km 

Fig. 4. Source model for the Coyote Lake earthquake (after 
Bouchon, 1982) and the isochrones fo r station Gilroy 6. The 
fault plane is vert ical and the focus is at depth 9.5 km. The 
rupture front propagates with constant veloci ty 2.6 km/s and 
stops o n the rectangular barrier 8 km x 14 km, whose top is at 
2 km depth. The station (Gilroy 6) is I 0 km from the epi­
centre, on the fault plane. The slip inside the rupture front is 
21 cm (dislocation) in the horizontal direct ion (strike-slip). 
The medium has an upper laye r 1.75 km thick. The iso­
chrones are plotted for a regular increment of the observat ion 
time. They are tangent to the barrier at points 11 , 12 • I 3 and 
/4 

DISPLACEMENT 

METHOD 

12 • 

9.3 cm 

Fig. 5. Comparison between the asymptotic method and 
Bouchon's frequency-wavenumber integration method. The 
asymptotic displacements calculated by the two methods 
show a similar overall shape. Phases 0, I, 2 and 4 in the as­
ymptot ic appear clearly in the complete solution, in spite of 
the different frequency content of either synthet ic. The a rrival 
before phase 0 in Bouchon's synthetic is due to near-field low 
frequencies, which are not modelled in the asymptotic syn­
thetics 

cipal difference between these results is the rapid in­
crease just before phase 2 which does not appear in 
Bouchon's synthetic. This difference is probably due to 
the discretization of the source in his model. 

As seen in Fig. 4, the isochrones are tangent to the 
barriers at the points which we call / 1 to / 4 • Radiation 
from these four points and from the origin is respon-
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sible for the discontinuities of the radiated field. We 
clearly identify in the synthetics the starting phase (0) 
and the high-frequency phases generated at the critical 
points / 1 and 12 . The radiation from 13 and / 4 is weak­
er because of directivity effects. Just before the arrival 
time of the phase radiated by I 2 the displacement in­
creases rapidly. This is not a barrier effect, but is ex­
plained by the very short distance between the interface 
and the top of the barrier which produces a very rapid 
decrease with time of the transmission coefficient near 
I 2 . It is also interesting to note that the radiation from 
the corners is very weak. This is in contrast to the Has­
kell model where radiation comes mainly from the cor­
ners as shown by Madariaga (1978). The circular fault 
model is a much more efficient generator of high 
frequencies than Haskell's model where strong phases 
are observed only in front of the fault. 

Radiation from a barrier: critical and stopping phases 

The method proposed in the previous sections, based 
on the Kirchhoff approximation for the Green function, 
is valid for wavelengths shorter than the distance to the 
fault. It is, in fact, an intermediate-frequency diffraction 
approximation to the radiation. At much higher 
frequencies, those that are of interest in earthquake 
engineering, we can obtain much simpler approxi­
mations to the high-frequency phases or wavefront dis­
continuities in the signal. 

There are two major kinds of discontinuities in Eq. 
( 12), the first ones are the starting phases radiated from 
the origin of rupture at 0. These are weak singularities 
because the iS'Ochrone line L 0 shrinks to zero as the 
time t--+ R/c, the arrival time for the radiation from the 
origin, Initial phases for the dislocation model .( 4) be­

,ha ve like t · H(t) in displacement. Since these phases 
may be easily calculated by standard methods (see 
Chapter 14 in Aki and Richards, 1980), we will con­
centrate on the strongest phases which are produced by 
the interaction of the rupture front and the barrier. 

Let us consider the geometry of the barrier and iso­
chrones shown in Fig. 6. Initially, the isochrones 
L 0 (P, t) are continuous curves closed around the origin. 
As time increases the isochrone eventually becomes 
tangent to a barrier at a point / 1 . We call critical time 
tc the time that defines this isochrone. In the vicinity of 
11 , L 0 cuts LB at two points defined by position s1 and 
s2 along the barrier. As shown in Fig. 6, two geometri­
cal cases have to be considered, depending on the rela­
tive curvature at 11 of L 0 and LB. We will develop our 
results for the case of Fig. 6a but, as we show later, the 
same results apply to the case of Fig. 6b. For times 
t < tc, the isochrones L 0 are continuous, while for t > tc 
the isochrone splits, loosing a segment of length L1L. 

Therefore, for times t > tc, the discontinuity of the 
displacement field u in Eq. (12) may be approximated 
by: 

uc(P t)= - µDo s RC _1_ v __!!_!_____ (13) 
' 4npc 3 AL D 1-v/c cos¢ cos i 1 ' 

where the minus sign appears because the discontinuity 
is due to the disappearance of the segment L1 L from the 
integral. 

barrier isochrones 

isochrones 

Fig. 6. Generation of critical phases by diffraction at a barrier. 
The isochrone is tangent to the barrier line at 11 , or I 2 at 
times tc In the case of the critical point 11 , the isochrone 
looses a segment of length LIL for times greater than tc. At 
critical point I 2 , on the other hand, a segment of length LIL 
shrinks to zero as time approaches tc These two types of sin­
gularities generate most of the high-frequency radiation by 
the source 

For t ~ tc, the segment of integration L1L is small 
and the integral (14) may be approximated by 

µD 1 v L1L 
uc(P t)= ---0-Rc- -----

, 4npc 3 Dl-v/ccos¢cosi1 
(18) 

where Re, D, ¢, i1 , etc. are calculated at the critical 
point / 1 . 

In order to evaluate Eq. (18), we have to calculate 
L1L in the vicinity of 11 . Let us introduce the travel 
time T(s) of a ray diffracted in the direction of the ob­
server at a point of coordinate s on the barrier LB: 

T(s) = r0 (s)/v + D(P, s)/c (19) 

where D is the distance from the point s on the barrier 
to the observer at P and r 0 (s) is the equation of the 
barrier. At the point 11 of coordinate sc the isochrone 
and the barrier are tangent so that: 

tc = T(sJ 

and 
, dT(scJ dr 
T(sJ=~= dl 

(20) 

where l is distance along the isochrone. Now, since by 
definition r is constant along an isochrone, then 

dr/dl=O. 

Thus, the travel time T(s) has an extremum at the 
point / 1 where the isochrone is tangent to the barrier. 
The arrival time at the observation point P of a critical 
ray diffracted at point / 1 on the barrier is tc = T(sJ 
Also, the angle i1 appearing in Eq. (18) was defined in 
Eq. (12) as the angle between the rupture front and the 
isochrone. Since the isochrone is tangent to the barrier 
at 11 , i 1 also represents the angle of incidence of the 
rupture front on the barrier as seen in Fig. 7. 

Let us prove now that the extremum condition for 
the travel time tc leads to Snell's law for diffraction. 
By definition of the normal to a plane curve and re­
ferring to Fig. 7, we find 

dr0 (s) . . 
--=smz 1 

ds 
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Fig. 7. Geometry of diffraction by a barrier of general shape. 
A "rupture ray" propagating from the source with rupture 
velocity v is diffracted by the barrier in the direction of the 
observer at P. i1 and i2 are the incidence and diffraction an­
gles, respectively. They satisfy Snell's law for diffraction. () is 
the angle between the fault plane and the plane containing 
the tangent to the barrier, t, and the observation point 

and (21) 

dD(s) . . -;,r;-= Sill 12 , 

where i1 is the angle of incidence of the rupture front 
on the barrier and i2 is the take-off angle of the diffrac­
ted wave that passes through P. Thus, the second equa­
tion in (20) leads to 

v c 
(22) 

which is Snell's law for diffraction. 
We may now calculate AL in Eq. (18). Since T'(sc) 

=0, Taylor's expansion of the travel time T(s) around 
J1 yields 

(23) 

Noting that s 1 and s2 are located on the same isoch­
rone of time t= T(s 1)= T(s 2), we get from Eq. (23): 

(24) 

For T" > 0, we have a minimum time phase so that Eq. 
(24) is valid only for t > tc; this is the situation that pre­
vails in the vicinity of J1 . We may now insert Eq. (24) 
into Eq. (18) to obtain the singularity associated with a 
critical phase: 

uc(P t)= -~W V 1 y2(t-tJ 
' 2npc 3 1-v/ccos¢Dcosi1VT" 

·H(t-tJ. (25) 

For T" <0, t has to be less than tc. This is the case of a 
maximum time critical phase like the one radiated from 
J 2 in Fig. 6 b. In this case we get: 

uc(P t)= + µDo RC v y2(tc-t) 
' 2npc3 1-v/ccos¢Dcosi1 -{=T' 

·H(tc-t). (26) 
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The different variables appearing in Eqs. (25) and 
(26) are all evaluated at the diffraction points J1 and J 2 , 

respectively. The time dependence of Eq. (26) is the Hil­
bert transform of that of Eq. (25). The second derivative 
of the travel time is the usual geometrical spreading for 
two-dimensional waves. T" is not difficult to calculate 
for constant rupture velocity and homogeneous me­
dium, but it is much more difficult to calculate in more 
general situations. For this reason we recast Eqs. (25) 
and (26) in terms of radii of curvatures of the rupture 
front r1 , the barrier a and the diffracted wavefront p. 
Taking the second derivative of Eq. (19), calculated at 
sc using Eq. (21), we get: 

T"(s) =cos i1 di 1 _cos i2 di 2 

c v ds c ds · 
(27) 

The derivatives di/ds may be calculated from simple 
considerations about the geometry of flat curves. Fol­
lowing Achenbach et al. (1983, pp 175-180), we get: 

di1 cos i1 1 
----

ds r1 a 
di2 
ds 

cos i2 cos e 
(28) 

D a 

where e is the angle between the plane of the barrier 
and the plane containing the diffracted ray and the lo­
cal tangent to LB (see Fig. 7). Inserting in Eq. (27), we 
find: 

T s =-- 1+-"() cosi2 [ DJ 
c cD p 

(29) 

where p, the radius of curvature of the critical (stop­
ping) phase, is 

1 ccos 2 i1 1 ( ccosi1 ) 1 
-= -+ cose---- ---. 
p v cos 2 i2 r1 v cos i2 a cos i2 

(30) 

This is the standard relation between the radius of 
curvature of the diffracted wavefront and the radius of 
curvature of the incident wavefront r1 • In the case of a 
circular rupture, r 1 = r. 

Finally, reinserting Eq. (29) into Eq. (25) we get 

(31) 

where S(t) is the radiated signal: 

y(t-tJH(t-tJ for D/p+l>O 

or (32) 

Equation (31) gives the high-frequency part of the 
displacement u: the critical time t = tc corresponds to 
the arrival time of the ray reaching P, diffracted at the 
point J1 on the barrier LB. Thus the critical point J1 

seems to radiate the high-frequency signal (stopping 
phase) that reaches point P. For a given barrier LB, the 
position of the critical point depends on the observer 
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pos1t10n P and it may be calculated by two-point ray 
tracing methods. A "rupture" ray propagates with ve­
locity v along the fault until it reaches the barrier; at 
that point a cone of diffracted rays that satisfy Snell's 
law for diffraction, Eq. (22), is generated. One of these 
diffracted rays passes through P. Tracing this ray is a 
difficult numerical problem since it has to pass through 
the nucleation point 0, the diffraction point 11 and the 
observer P. Once ray tracing is done, we can calculate 
the amplitude using Eq. (31) which may be easily gener­
alized both to inhomogeneous media and to variable 
rupture velocity using standard dynamic ray tracing 
(Cerveny and Hron, 1980). The result, Eq. (31), is in the 
form of geometrical diffraction theory (e.g. Keller, 1962; 
Achenbach et al, 1983). It corresponds to a generaliza­
tion of the diffraction of a straight rupture front mak­
ing an angle i 1 with a straight barrier. Equation (31) is 
very general and contains all results published in the 
literature for stopping phases produced by dislocation 
models of arbitrary shape and rupture history, e.g. 
those of Savage (1966) for an elliptical dislocation, etc .. 
Let us finally note that for p < 0, Eq. (31) fails at the 
caustic located at D = - p which is a focal point for the 
diffracted rays (see Bernard and Madariaga, 1984a). 

The main use of Eq. (31) is to calculate high-fre­
quency approximations at any distance from the fault. 
In particular, the dominating part in most synthetic ac­
celerograms generated by dislocation models may be 
easily calculated with it. As noticed above, Eq. (31) 
may be generalized to more general models of rupture 
in heterogeneous media. 

A simple example is shown in Figs. 4 and 5, where 
the arrival uf the four principal high-frequency phases 
is indicated. The discontinuities associated with those 
arrivals may be easily calculated from Eq. (31), but they 
are not very easy to verify against Bouchon's (1982) cal­
culation because his method is too low-frequency in 
displacement. Further tests for velocity and acceleration 
were presented by Bernard and Madariaga (1984a) in 
the case of a buried circular fault. 

High-frequency radiation from a crack model 

The previous results may be generalized to deal with 
more realistic seismic source models than a dislocation. 
Here we will briefly discuss the case in which the slip 
velocity is that of a crack model, so that it has the 
characteristic inverse-square-root singularity (6) near 
the rupture front, i.e. as the rupture front propagates, 
the slip velocity may be expressed as: 

L1u(r, 8, t)=(t-r/v)- 112 H(t-r/v) 

near the front. Let us consider two particular be­
haviours of the rupture front when it reaches a barrier. 

In the first model we take 

. H(t-r/v) 
L1u(r,8,t)= ,;:-::;::. H[r0 (8)-r], 

v t-r/v 
(33) 

so that slip continues indefinitely once the rupture 
stops at the barrier line. An alternative model is 

H(t-r/v) 
L1u(r,8,t)= ,;:-::;::. H[r0 (8)-vt] 

v t-r/v 
(34) 

in which the crack heals simultaneously on the whole 
radial line of angle e when the rupture front reaches 
the barrier along that line. Between these two extreme 
models, unfortunately, it seems difficult to construct a 
realistic model for healing phases without losing the 
simplicity of the analytical expression (31). A more re­
alistic model for healing will affect the diffraction coef­
ficient cos i 2/cos i1 but not the time dependence of the 
radiation. Given the uncertainties in the models, Eq. 
(31) is probably sufficient for most applications. 

For the first extreme model, the high-frequency dis­
placement is that given in Eq. (31) convolved with Eq. 
(33). Then Eq. (31) remains valid but S(t) changes to: 

S(t)~(t-tc)H(t-tc) for (1 +D/p)>O 

and for acceleration: 

d2 S(t)/dt 2 ~c5(t-tJ 

while, for (1 +D/p)<O, we obtain the Hilbert transform­
ed pulses. For example, the acceleration pulse behaves 
like: 

d2 S(t) 1 
----;Jt2 ~ (t - tJ 

Thus, the high-frequency acceleration radiated by a 
propagating crack stopping abruptly is well described 
by a superposition of c5-like and 1/t-like impulses, gen­
erated at the critical points on the barrier (Bernard and 
Madariaga, 1984a). 

These results are compatible with observed accelera­
tion spectra, for which the high-frequency part is usual­
ly flat. If the jump of the rupture velocity is not in­
stantaneous, but takes a time L1 t, the spectral amplitude 
of acceleration should break down for frequencies 
greater than f max= 1/ L1 t. 

Conclusions 

We proposed a new approach to the synthesis of strong 
ground motion at high frequencies. Two methods were 
studied. First, an intermediate-frequency asymptotic 
method similar to the Kirchhoff integral for diffraction, 
in which the Green function entering in the representa­
tion theorem is replaced by its high-frequency approxi­
mation (the so-called far-field terms). The method is 
valid up to wavelengths of the order of the closest dis­
tance from the observer to the fault. It can be easily 
extended by means of ray theory to heterogeneous me­
dia and non-uniform rupture propagation. 

Analysing the wavefront discontinuities that appear 
in the Kirchhoff integral, we determine the dominating 
part of the radiation at high frequencies. These are the 
critical phases due to the interaction of the rupture 
front with barriers. In the particular case in which the 
barrier stops the rupture completely, these are the usual 
stopping phases. A general expression based on the 
geometrical theory of diffraction is derived, which can 
be easily extended by standard two-point ray tracing to 
inhomogeneous media. 

The interest of the method presented here is that 
once we have solved for the radiation in a uniform me­
dium, we may simply apply ray theory to propagate the 
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high-frequency signal in a more realistic heterogeneous 
attenuating medium. 
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