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Abstract. Recent models of earth structure suggest large 
horizontal gradients, especially in shear velocities. Some 
changes in existing methods are required to construct syn­
thetics for broadband signals in many situations, especially 
when energy can reach the receiver by up-going as well 
as down-going paths. This can be accomplished by allowing 
locally dipping structure and making some modifications 
to generalized ray theory. Local ray parameters are ex­
pressed in terms of a global reference which allows a de 
Hoop contour to be constructed for each generalized ray 
with the usual application of the Cagniard-de Hoop tech­
nique. Several useful approximations of ray expansions and 
WKBJ theory are presented. Comparisons of the synthetics 
produced by these two basic techniques alone, or in combi­
nation with known solutions, demonstrates their reliability 
and limitations. 

Key·words: Synthetic seismograms - Generalized ray theory 
- WKBJ seismograms - Lateral heterogeneity 

Introduction 

Considerable progress has been made recently in speeding­
up the synthesizing of seismograms with the introduction 
of WKBJ and Gaussian beam methods, see Chapman 
(1978) and Cerveny et al. (1982). These methods have prov­
en highly useful in generalizations to laterally varying struc­
ture, especially at high frequency, see for example Frazer 
and Phinney (1980). However, in the construction of longer 
periods (long-period WWSSN seismograms) we are often 
interested in more complete solutions, since the beginning 
portion of surface waves become important, see Grand and 
Helmberger (1984a). A complete set of ray parameter con­
tributions is required to construct seismograms in this situa­
tion. In particular, one needs to consider ray paths leaving 
the source horizontally, a case where the WKBJ method 
breaks down. We can avoid this problem by applying a 
mixture of generalized ray theory, GRT, and WKBJ or 
Disk rays as defined by Wiggins (1976). 

A simple example of this procedure is given in Fig. 1 
where we show schematically how to construct the step 
response for a smooth velocity model approximated by a 
stack of homogeneous layers. We suppose that a velocity 
model can be chosen such that the step response remains 
a step at all receiver positions. The simulation of this step 

can be achieved by summing the response from three energy 
paths; namely, the direct, the reflected from just below the 
source or reference plane and the diving WKBJ contribu­
tion. All three paths contain a product of the transmission 
coefficients above the source. The WKBJ path includes the 
transmission coefficients across the reference plane, taken 
as the interface below the source. We have included a dia­
gram of the 8(t) vs. p curve in Fig. 1 for reference, as it 
clearly shows that the diving path contributes little except 
at the larger distances. At the nearest distance, position 1, 
the direct ray dominates. The reflected path contributes 
some as critical angle is approached. At still larger dis­
tances, position 3, a head wave along the bottom of the 
reference interface develops followed by the critically re­
flected pulse. The head wave contribution is included in 
the reflected response since it is associated with the reflected 
generalized ray. At large ranges, the WKBJ contribution 
becomes increasingly dominant. Note that the WKBJ re­
sponse turns off at the same time as the head wave starts, 
because the transmission coefficient drops to zero. Essen­
tially, combining the generalized rays and WKBJ response 
eliminates the truncation phase and avoids the turning 
point breakdown of the WKBJ theory. 

In testing the accuracy of the above procedure, it is 
quite useful to generate the step response for models for 
which the answer is known. Thus, we begin with a homoge­
neous fluid whole space with a point source excitation yield­
ing a step response at all positions with 1/(distance) decay. 
We next impose a spherical coordinate system with many 
thin shells of constant velocity. Applying the classical earth­
flattening approximation, we obtain a model with a smooth 
velocity increase in depth, see Helmberger (1973). The syn­
thetics generated in Fig. 2 are from such a model, with 
the exact step responses indicated by the dotted lines in 
the bottom panel. This panel also displays the response 
after summing the complete set of generalized rays; direct 
rays plus rays reflected upward from all the interfaces below 
the source. The GRT response at the largest distance shows 
the most roughness for times near the direct arrival when 
the interaction with the reflection from just below the 
source is the most severe. Similar complexity occurs with 
the hybrid method except that the diving energy is smoother 
with WKBJ. Short-period synthetics generated from these 
step responses become quite dirty and simple geometric ray 
theory yields cleaner results. However, for most studies the 
advantage of being able to include the radiation pattern 
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Fig. 2. Synthetic step responses computed at three interesting 
distances and constructed by summing the three energy paths 
displayed in Fig. 1. The exact answer is indicated by the dotted 
response in the lower panel 

appropriate for earthquake sources, or shear dislocations, 
far outweights the disadvantage of the noise generated by 
the hybrid method. For example, consider the SH radiation 
from a dip-slip event where the up-going radiation has op­
posite polarity from the down-going energy, see Helmberger 
(1973). In short, the sum as displayed in Fig. 2 becomes 
more interesting when the direct ray trace has opposite sign 
from the other two. 

We could probably improve the response at the time 
the three energy paths interfere most vigorously by includ­
ing a few more GRs and/or by lowering the reference 
boundary for the WKBJ contribution. However, we are 
particularly interested in more realistic earth models with 
a sedimentary cover over bedrock or a crust-over-mantle 
structure providing natural reference boundaries. Thus, we 
propose using GRs to compute the start of the Love waves, 
and WKBJ to generate the responses returning from deeper 
structure. This approach proved effective in studying the 
structure and evolution of the lithosphere for an old oceanic 
plate, Grand and Helmberger (1984b). It would be advanta­
geous to treat the obvious lateral variation encountered 
in such studies. Although the real world is truly three-di­
mensional, some useful progress can be made by examining 
profiles of data along paths of symmetry where two-dimen­
sional idealizations are appropriate. We will address such 
models in this paper. 

Our strategy is similar to Wiggins (1976) and Given 

WKBJ 

(1984) in that we will use a combination ofGRT and WKBJ 
to generate synthetics and justify the latter by demonstrated 
accuracy. 

Review of ray interactions with nonplanar structure 

Boundary-value problems involving complicated geometry 
have a long, rather unrewarding history; thus, we will jump 
directly to approximate solutions and test their validity 
against finite-difference calculations and other more well­
known results. Before addressing the dipping layer problem, 
it is instructive to examine the flat-layered case and empha­
size the geometric interpretation of generalized ray theory. 
This proves particularly useful for constructing generaliza­
tions to more complicated situations since the most pro­
gress in understanding these problems is at high frequency. 
Both line and point sources will be discussed since the 
former is easier to understand theoretically and for testing 
against numerical results, while the latter is necessary for 
studying the Earth. 

Line source and planar model 

The solution of the scalar wave equation, assuming line 
source excitation for generalized rays, as given by Gilbert 
and Knopoff (1961), is 

<PL(r, z, t)=H(t-t0)/(t2-t6)112 (1) 

where t0 =R/a, R2 =z2 +r2 , and rx=velocity. 
<PL is defined as the displacement potential with the 

index L used to remind ourselves of the line excitation. 
A high-frequency approximation of Eq. (1) is 

(2) 

and the motion decays with distance as /R. The solution 
to the interface problem setup displayed in Fig. 3a is 

(3) 

where 
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(a) Line Source 

( b) Point Source 

Fig. 3. Diagram displaying the geometric spreading of ray tubes 
in two and three dimensions as they encounter a boundary 

(4) 

( 
1 )1/2 

Y/;= rxf-p2 • 

T(p),,; transmission coefficient. 
The symbol Im indicates the imaginary part of the com­

plex product of the functions of ray parameter, see Helm­
berger (1983) for example. The ray parameter appropriate 
for the direct arrival path, p 0 , can be obtained by 

dt (p )=0 
dp 0 ' 

and d, - h1Po=d2- h1Po. 

But with 

sin01 sin02 
Po=--=--

rx, !Xz 

and, therefore, 

cos02 
Y/2=--, 

!Xz 

Y/1 Y/2 
(5) 

(6) 

we see that the ray goes from the source to the receiver. 
And 

(7) 

For times greater than t0 , we must solve t for complex 
p such that the imaginary parts of pd1 and Y/ 1h1 etc. cancel. 

The behavior near p, can be approximated by noting 
that 

and solving for 

( d2 t)· 
dp2 

Thus, 

dp_( )-1/2 -- t-t0 
dt 

(
2 d2t)l/2 

dp2 
(8) 

Note that from Eq. (4) 

(9) 

It is convenient to condense the various factors containing 
p0 , into 

(10) 

which we call the spreading factor. Thus, 

(11) 

We note that by differentiating Snell's law we obtain 

cos01 dOi = cos02 dOz. 
!Y.1 !X2 

Substituting this expression into SL we obtain 

(12) 

If R 2 = 0, we obtain the whole-space spreading again where 
(R 1 d0 1 ) is just the width of the ray tube described in 
Fig. 3 a. A correction for the change in direction is required 
as the tube crosses the interface, namely 

(cosOifcos02 ). 

Thus, the denominator of Eq. (12) is again the width of 
the ray tube at the receiver, L 0 in Fig. 3 a. Substituting into 
Eq. (3) we obtain 

<PL rx SL H(t- t0 ) Re[T(p0 )]/(t-t0 ) 112 (13) 

where Re indicates the real part operator. 

Point source and planar model 

The point-source solution for the same problem setup, 
Fig. 3 b, is 
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1 [ 1 ( i1P dv)] <P (r, z, t)= - -*Im T(p)- -
P TC 0 1'/i dt 

(14) 

and applying the same first-motion approximation, we ob­
tain a slightly more complicated spreading factor; namely 

Sp=1/f_]_1~1-112 v ~ Y/1 dp2 

and note that by letting R 2 = 0 we obtain 

Sp= 1/R. 

In terms of area, we note that 

(15) 

(16) 

(17) 

85 

(o) Line Source 

( b) Point Source 

(18) Fig. 4. Diagram displaying the geometric spreading of rays 
encountering nonhorizontal interfaces 

which can be interpreted as the incremental element of area 
at the source divided by the projected area at the receiver, 
or simply 

Sp- - . -(A0 )
1
1

2 

A 
(19) 

Thus, the first-motion behavior becomes 

(20) 

More complicated solutions to multi-layered models m 
terms of ray summations will be discussed later. 

Locally dipping structure 

Although GRT for parallel interfaces has been well devel­
oped, the modifications for nonplanar structure or 
smoothly varying interfaces has not. Some of the difficulties 
encountered for the simple wedge problem have been dis­
cussed by Hudson (1963). Hong and Helmberger (1977) 
constructed a solution in terms of generalized rays for this 
problem and defined a method of ray-path construction 
compatible with the usual Cagniard-de Hoop formalism. 
We will consider the direct arrival interacting with two dip­
ping interfaces as an example application. The problem se­
tup is displayed in Fig. 4a with the response given by 

(21) 

where p 1 and p 2 are defined by the local ray parameter, 
namely 

sin02 
Pz=-­

OCz 

and are no longer equal. However, 

sin01 sin()~ 

where 

with ()5 defining the change of the slope of interface (1) 
relative to the previous reference at 01 . Performing the de­
rivatives discussed in the previous section, we obtain 

which is similar to Eq. (12) and has the same interpretation. 
The travel time is defined by 

3 

t = I (vi di+ Y/i hJ (22) 
i= I 

with the definitions of di and hi given in Fig. 4a as the 
projection of the geometric path onto the local Cartesian 
coordinates. The arrival time can be determined as before, 
with 
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defining 

P1 =Po,, P2 =Po 2 , 

etc .. Thus, 

d -h Pm=O 
m m 1Jm 

(23) 

with 

sin Om cos Om 
Pm=-- and 1Jm=--

ix,,, IX,,, 

and the _!!!_=0 condition leads to a ray going from the 
dpm 

source to the receiver. The first-motion approximation be­
comes 

H(t- t0 ) 
<PL a Re[T12 (po )T23 (po )] 112 SL. 

' z (t- lo) 
(24) 

Spreading for the point-source solution becomes slightly 
more complicated than in the flat case, but allowing 

1 {r = ( f ~)1/2 
VP i~1 Pi 

(25) 

results in SP, defined by 

s =, l_E __!__ ld2 t.1-1/2 
p v -;: '71 dp 2 ' 

(26) 

r~ducing to 

=(Ao/A)112, 

at the direct arrival time. The details of this result have 
been given previously by Hong and Helmberger (1978). 
Thus, the point-source solution for the geometry given in 
Fig. 4 b becomes 

<Pp=.!.{_1 *im[II(p) _!_ dp [I(<!J_)J- 1
1
2
]}, 

n yt 171 dt p; 
(27) 

where 

Numerical evaluation of Eq. (27) yields the geometric result 
but, also, retains longer-period information since (dp/dt) 
can be evaluated along the de Hoop contour in the usual 
manner. The accuracy of constructing broadband synthetics 
applying this procedure is well known: for example see Ap­
se! and Luco (1983) or Burdick and Orcutt (1978). 

Many layers, WKBJ and radiation patterns 

Following the results of the previous section, and inserting 
the radiation pattern for the simple SH motions from a 
dislocation source (see Helmberger and Malone, 1975, the 
displacements can be written 

M ( L1 )1;2 d [ 2 
v(r,z,8,t)=-4 ° --:--::;- -d D(t)*LA/8,Jc,b)J-j(t)l, 

n p 0 sm LJ t i ~ 1 J 
(28) 

where 

V.(t) =1 ~ ~ [-1 * P,(t)] 
1 'V -;: n ~ " 

(29) 

and 

(30) 

and the summation of n rays is required. The various sym­
bols are defined below: 

v (r, z, e, t) =displacement on free surface 

M 0 =moment 
p0 =density 
D(t)=dislocation history 
D(t)=far-field time function 
A1 (8, Jc, b) = cos28 cos Jc sinb-1/2 sin28 sin Jc sin 2b, 

A 2 (8, Jc, b)= -sine cosJc cosi5-cos8 sinJc cos2b, 

e =strike from the end of the fault plane 
Jc= rake angle 

i5 =dip angle 
r =distance between source and receiver 

p =ray parameter 

11=(;2 -p2 y/2 
L1 = epicentral distance in radians 

-.- =correction for earth flattening ( 
L1 )1/2 

smLJ 

P =shear velocity 

and where the vertical radiation patterns are given by 

+1 z>h 
e= 

-1 z<h 

( 1 2)112 
11= p2-P · 

The correction for point-source spreading is defined by 

=~r ( ~)-1;2 cs L: . 
P Pi 

(31) 

This solution is similar to the flat case and we can, ob­
viously, construct the diving ray response for a smoothly 
varying structure by summing the primary rays as discussed 
in Fig. 2. We can then use this result to check the disk 
ray solution which can be obtained by replacing Eq. (30) 
by 



|00000093||

receiver 

h 

source 

z 

Fig. 5. Ray geometry where the source and receiver are separated 
by rand the source depth is h. The ray starts with the p=sinB,//J 
and reaches the surface at r(p') where the ray parameter along 
the path has been adjusted according to the local dipping structure 

(32) 

where the sum is taken over the p(t) curve as described 
by Wiggins (1976). 

For a simple turning ray problem, 

lbpl 1 
Ti = lr-r(p)I 

(33) 

where r(p) is distance reached by a ray defined by p, see 
Fig. 5. Substituting Eq. (33) into Eq. (32) and evaluating 
Eq. (29) yields a simple step response, as discussed by Chap­
man (1976). Essentially, Eq. (33) has a simple square-root 
singularity at r=r(p), and rays that hit the surface near 
the receiver dominate the behavior. Since p varies along 
the path, we must define which p to use in the evaluation 
of Eq. (32). The proper choice is the starting pat the source 
as outlined in the previous section. Note that for the case 
of an up-going direct ray the two methods can be inter­
preted in a similar manner. Only one ray is involved in 
both, and applying the first-motion approximation of 
Eq. (30) yields Eq. (32) where the extra factor 2 is produced 
by the double-valued nature of expression (33). Thus, the 
application of WKBJ theory to the locally dipping problem 
appears to be essentially the same as for the uniform-layered 
problem. We trace the ray through a stack of layers down 
to the turning region, turn it around analytically, and follow 
it to the surface obeying Snell's law. The special treatment 
at the turning point removes the nonlinear ray parameter 
effects of the homogeneous-layered parameterization as is 
well known. Essentially, when the ray reaches critical angle 
at a given interface, we back up to the previous reference 
interface and compute the local linear velocity gradient. 
The travel time and location at which the ray recrosses 
the reference interface is easily calculated by analytical 
means. Such a procedure is compatible with the Langer 
approximation which is the basis for the WKBJ method, 
see Aki and Richards (1980). Earth stretching becomes 
slightly more complicated than in the uniform-layered case. 
In this situation we let 

where rj is the radius of the Earth at the }-th layer, etc., 
and raj becomes the radius at the midpoint of the layer. 
The cross-section is then constructed in terms of vertical 

87 

profiles of velocity and thickness vs. raj and the points 
connected by linear lines as displayed in Fig. 5. Next, the 
layer thicknesses, Thj, are increased by 

where r0 is the radius of the Earth. This approximation 
is adequate for shallow depths. A better transformation 
for deeper depths is given by Miiller (1971). Note that at 
this stage the horizontal velocity in each layer remains con­
stant. The velocity-depth cross-sections will be presented 
in this format. The velocity and density approximations 
are determined as the ray encounters the various interfaces 
with 

and raj is determined by the local layer thickness and posi­
tion. Thus, the velocity is no longer constant in any given 
layer but depends on local depth correction. The c. factor 
can be assumed to be one for most applications of gentle 
dipping structure, as discussed in the next section and was 
omitted from Eq. (32). 

The approach followed here is similar to that followed 
by Wiggins (1976) in that the main justification for expres­
sion Eq. (33) is that it yields results comparable to GRT. 
A theoretical justification of applying WKBJ to laterally 
varying structure is given by Chapman and Drummond 
(1982). See Wesson (1970). 

Applications 

In this section we will briefly outline possible applications 
of these approximate solutions to seismological problems. 
First, the direct or up-going energy problem is discussed 
when motions in the sloping layers of a sedimentary basin 
are excited by a line source. In this form, finite-difference 
calculations can be used to check the accuracy of the GRT 
results. Next, the point-source excitation of Love waves 
is considered in the presence of sloping structure followed 
by models of growing lithosphere. Finally, we construct 
synthetics for laterally varying upper-mantle models and 
confirm the usefulness of WKBJ at long periods. 

Local seismograms 

One of many complexities associated with strong-motion 
seismology is the noticeably long duration of high-fre­
quency P waves observed in sedimentary basins. These 
waves are generally polarized onto the vertical component 
due to the strong velocity gradients near the surface. The 
latter portion of these observed motions are generally de­
pleted at lower frequency. Thus, one might conclude that 
there are propagational waveguides that preferentially pro­
long high-frequency motions. Non-planar surface layering 
appears to have this property. This calculation will be done 
with SH waves since this type of motion is studied through­
out the remainder of this paper, but we would expect that 
P waves would behave in a similar manner. 

A single low-velocity layer which grows with distance 
between the source and receiver is assumed with a line 
source of SH motion situated at a depth of 5.5 km. The 
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Fig. 6. Line-source response as a function of generalized ray 
summation. The seismic parameters are {31 =1.5km/s,p,=1.5 gm/ 
c3 , and {32 = 3.3, Pi= 2.5 for the upper and lower layer, respectively. 
The top plot displays the ray paths at ray parameters appropriate 
for Snell's law at true scale. Ray plots on the left have a vertical 
exaggeration of 3 to 1 
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Fig. 7. Step responses appropriate for a strike-slip double couple 
source and the model discussed in Fig. 6 with and without the 
C, correction. The numbers above each trace indicate the peak 
amplitude 

response build-up as a function of the number of multiples 
is displayed in Fig. 6. The square-root singularity indicated 
in expression (13) is apparent for the direct arrival. Note 
that after one bounce the reflection from the lower interface 
becomes complex because of the local ray parameter effect 
and a head wave and post-critical angle reflection develops. 
After two bounces, the time separation between the head­
wave onset and reflection times becomes less and the re­
flected spike increases in strength. After many bounces the 
ray can no longer reach critical angle and still fit into the 
waveguide. Thus, (R)" becomes small since the reflection 
coefficient (R) becomes less than one. The drop-off in am­
plitude of the multiples occurs abruptly at this time on 
the record. 

The corresponding point-source response displayed in 
Fig. 7 can be obtained from expression (29). Neglecting the 
C, factor produces a similar response with a slight reduction 

Broadband 

Filtered 

{.2, .2, .2) \ ',/ 

Finite 

Difference 

5 s 

Fig. 8. Comparison of GRT results with a finite-difference 
calculation. The broadband trace has been filtered to remove the 
high-frequency spikes 

in later arrivals, roughly 13% for the last arrival. Thus, 
point-source amplitudes can be approximated quite well 
by scaling line-source results by the square-root of the dis­
tance factor similar to the flat case. Note that the Cagniard­
de Hoop technique proves particularly useful in tracing 
these rays and evaluating their individual contributions. 
However, as mentioned earlier, this series of rays does not 
necessarily converge to the exact solution and some demon­
stration of accuracy is required. This was attempted earlier 
by Hong and Helmberger (1977), but not very convincingly. 
A much more rigorous comparison with a numerical code 
is presently being conducted by Vidale et al. (1984) with 
preliminary results of the comparison of the two techniques 
for this simple model displayed in Fig. 8. The top trace 
is the broadband result displayed in Fig. 6, with a filtered 
response in the middle for comparison with finite-difference 
results on the bottom. The highest frequencies have been 
removed in this comparison due to computational expense 
but the existence of strong high-frequency multiples is strik­
ing. Since the finite-difference calculation can be performed 
on any arbitrary two-dimensional structure, we have ex­
tended the thin layer directly above the source to the left 
as a flat thin layer avoiding the wedge effect which is ob­
viously omitted in the ray solution. Comparison with and 
without the wedge and many other complexities involving 
double-couple solutions constructed by line-to-point source 
operators are discussed in Vidale et al. (1984). We will sup­
pose throughout the remainder of this paper that the gener­
alized ray modifications discussed in the previous section 
are sufficiently accurate to test the WKBJ synthetics. 

Love waves at regional distances 

Another interesting application of the above technique is 
in the development of Love waves and the effects of travel­
ing across oceanic-to-continental transitions. This problem 
was encountered in a recent paper by Grand and Helm­
berger (1984 b) when the so-called G phase, the name ap­
plied to the impulsive Love waves associated with oceanic 
paths, interferes with mantle arrivals. Apparently, this situ­
ation occurs for well-developed lithosphere associated with 
older plates over-lying slower upper-mantle velocity mod­
els. The beginning portions of the G phase, as recorded 
slightly inland, develop longer periods than observed at 
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Fig. 9. Flat and dipping models and corresponding step responses 
with peak amplitudes indicated on each trace. Note that the first 
45 s of each record are nearly identical in amplitude and shape 
when corrected by the scaling factors. The shaded area indicates 
the water layer 

island stations. Their period and arrival times are compati­
ble with the model presented in Fig. 9a. A dipping model 
with arrival times compatible with the flat model is pre­
sented in Fig. 9b along with the comparison of step re­
sponses given on the right. Note that the first 45 s of motion 
are nearly identical. The higher-frequency portions of the 
Love wave become less pronounced in the dipping case 
but the general appearance is similar to the pure-oceanic 
case, see Grand and Helmberger (1984b). 

It appears that as the lithosphere ages it gets thicker; 
for example, see Forsyth (1975). A preliminary model of 
predicted Love waves for this situation is given in Fig. 10; 
also included are synthetics for a fast and slow mantle. 
The long-period nature of the synthetics from the dipping 
model is similar to the slow model as we might expect. 
However, there is considerable roughness at the start of 
the Love waves caused by the mixed paths involving both 
the crust and lid. 

Observationally, we see upper-mantle arrivals starting 
near these ranges. Thus, the diving energy must be added 
to these synthetics following the strategy discussed earlier. 
This can be accomplished by summing GRs or by applying 
WKBJ. 

Upper-mantle models 

In this section we investigate effects of lateral vanat10n 
in upper-mantle models, as displayed in Fig. t 1. We have 
chosen a particularly simple case with no low-velocity zone 
to simplify the comparison of GRT with WKBJ synthetics. 
A further simplification is made by allowing the two models 
to be connected in a linear fashion as displayed in the mid­
dle column. 

Following the WKBJ approach, we first illuminate the 
model by tracking a set of rays from the source towards 
prospective receivers. These rays reach the surface at r(p) 
in time T(p). The travel time at a particular receiver, r, 
can be written t(p) = pr + T(p)-pr(p). Note that p changes 
in each layer but they are all functions of the beginning 
p. Thus, we can construct the t vs. p curves as displayed 
in Fig. 12 for reversed profiles. The largest ray parameter, 
Pmax, is 0.26 which corresponds to the crustal velocity of 
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Fig. 10. Comparison of step responses for two simple models with 
a model containing a growing high-velocity lid. The dotted Jines 
indicate the first a rrival times of the two simple models 
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Fig. l l. Cross-section displaying isovelocity lines and 
accompanying starting and ending model 

3.9. Next, we perform the numerical deriva tive (op/ot) of 
these curves. Note that there will be a large truncation phase 
at the near stations at Pmax. This can be avoided by includ­
ing the product of the transmission coefficients, TCs, across 
the Moho, the reference interface discussed earlier, since 
TC(Pmax) is small. Thus, the product o f the TCs with (o p/o t ) 
has a relatively smooth behavior. The head wave along 
the Moho is added in by including the reflected generalized 
ray. By performing the convolution indicated in expression 
Eq. (29), we derive step responses from t vs. p curves dis­
played in Fig. 12. These results are shown in Fig. 13. Short­
period synthetics are included to emphasize the rapid decay 
of amplitude at the triplication tips. Eliminating the trunca­
tion phase discussed here can also be achieved by a modifi­
cation of the Gaussian beam technique as developed by 
Madariaga and Papadimitriou (1985). 
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Fig. 13. Seismic sections plotted on the same reduced time scale. 
r-tJ/(5.4 km/s). The synthetics are appropriate for a short-period 
WWSSN instrument response 

The synthetics at the smallest ranges are completely con­
trolled by the shallow structure and the local model. Thus, 
the first arrival from the fast-to-slow synthetics has a short­
er travel time which causes the triplication from the 400-km 
discontinuity to arrive later than in the reverse profile. 

A more detailed plot of the slow-to-fast profile is dis­
played in Fig. 14 along with the GRT responses for com­
parison. The synthetics are appropriate for the WWSSN 

Step Responses Synthetics 

Fig. 14. Step responses and synthetics generated by the WKBJ and 
ORT methods for the slow-to-fast model displayed in F ig. 11. The 
numbers associated with each trace indicate the maximum 
amplitude 

long-period system. A typical strike-slip source was as­
sumed with a triangular time history of (1, 1, 1 s) and a 
t * = 3 s, see Grand and Helm berger (1984a). 

Note that there is a distinct change in the latter portion 
of the WKBJ step responses between 17° and 18°. This 
is caused by omitting the head waves from along the top 
of the model for distances beyond 17°. However, no appar­
ent change in the synthetics occurs at this range, suggesting 
that the long-period drift is outside the pass-band of the 
operators used in generating these synthetics. The high­
frequency spikes so apparent in the GRT step responses 
are likewise removed by the convolution operators. 

The 400-km discontinuity is t reated slightly differently 
in the two methods, which leads to some shifts in the tripli­
cation position. In GRT, the 400-km discontinuity is gener­
ally treated as a sharp jump in velocity since this leads 
to the best results when compared against reflectivity, see 
Burdick and Orcutt (1978). On the other hand, WKBJ re­
quires a smooth transition, 3-km transition in this particular 
case, such that the p vs. t curve is smooth. Thus, the sharp 
spikes occurring in the GRT step responses near 14° are 
precritical-angle reflections from the 400-km discontinuity. 
Similarly, the triplication seems to extend to greater dis­
tances in the GRT results. Note that the most severe mis­
match occurs near this range. At larger ranges the two 
methods agree quite well, especially the synthetic wave­
forms. In fact, the synthetic waveforms agree at all distances 
with the maximum deviation in amplitude of about 25%. 
Since these synthetic waveforms are used to interpret obser­
vations which can seldom be modeled as well as the agree­
ment between these two methods, we can consider the 
WKBJ modifications successful. For more precision involv­
ing sharp boundaries, we suggest breaking the p integration 
into a combination of WKBJ for the smooth portion of 
the model and a generalized ray for the reflecting interface, 
for example see Given (1984). 
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Conclusions 

In this paper we presented a hybrid procedure of generating 
complete seismograms in laterally varying structure by ap­
plying a mixture of GRT and WKBJ methods. First, we 
reviewed the modifications of GRT required for dipping 
structure in terms of local coordinates and ray parameter 
concepts for line- and point-source theory. Solutions calcu­
lated by this approach not only agree with geometric results, 
but also agree with longer-period motions such as computed 
with finite-difference methods. Using the correspondence 
between GRT and WKBJ theory, we can express the latter 
in relatively simple form, essentially applying a square-root 
of distance correction to line-source spreading. Compari­
sons between GRT and WKBJ synthetics of diving energy 
paths agree reasonably well. Thus, we can construct nearly 
complete seismograms with a combination of GRT and 
WKBJ , with the former used to handle the shallow struc­
ture. Some useful demonstrations of the methods are given 
for crustal and upper-mantle models 
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