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Abstract. The radial surface deflection of a spherical 
Earth model appropriate to time scales characteristic of 
glacial loading is compared with the associated half­
space response. For that purpose the analytical solution 
for a Maxwell sphere surrounded by a thick elastic 
shell is derived under the assumption of incompressi­
bility. The half-space approximation is deduced as a 
special case directly from the spherical solution. Com­
parison of the response spectra, for different thicknesses 
of the elastic shell, reveals only minor differences. In 
the spatial domain, the half-space approximation may, 
nevertheless, diverge significantly from the spherical so­
lution. For a disk load radius R = 800 km (Fennoscan­
dia), the half-space approximation is adequate, whereas 
it is usually inappropriate if R = 1600 km (Laurentia). 
The sensitivity of the response to the thickness of the 
elastic shell is also investigated. For R = 800 km, the 
surface deflection in the central region below the load 
is fairly diagnostic of the shell thickness. If R = 1600 km, 
the peripheral region is more sensitive to this parame­
ter. 
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Introduction 

The isostatic adjustment of the Earth due to viscous 
flow in its mantle is a problem on which work has 
continued for nearly 50 years. The main results have 
been reviewed by Cathles (1975), Peltier (1982) and 
others. The effect of the lithosphere on the response 
characteristics has, however, been fully appreciated only 
during the past few years. Earlier work was incon­
clusive in this respect. This is exemplified by two in­
terpretations of strandline data from the region of 
Pleistocene Lake Bonneville in the United States. 
Whereas Crittenden (1963) neglected the lithosphere 
and inferred a mantle viscosity of 1021 P from the data, 
Walcott (1970a) treated the mantle as inviscid and de­
rived a value of 5 x 1022 Nm for the flexural rigidity of 
the lithosphere. Later, Nakiboglu and Lambeck (1982) 
re-interpreted the data, using an improved viscoelastic 
model incorporating both a lithosphere and a dynamic 
mantle, and suggested revised values for lithospheric 
thickness and mantle viscosity. 

The modification of the response pattern of Max­
well Earth models by the presence of the lithosphere 
has been addressed by Peltier (1980) and by Wu and 
Peltier (1982). The analysis has recently been extended 
such that lithospheric thickness can be directly inferred 
from appropriate isostatic adjustment data (Peltier, 
1984). 

In the present investigation, the effect of the litho­
sphere on the response of Maxwell Earth models is 
analysed in greater detail. For this purpose straight­
edged circular loads of radii R = 800 km (Fennoscandia) 
or R = 1600 km (Laurentia) are applied at times t ~ 0, 
and the relaxation of the surface is investigated. For 
loads comparable in scale to the larger disk, the sensi­
tivity of the deflection in the peripheral region of the 
load to lithospheric thickness has already been demon­
strated by Peltier (1984) in his analysis of relative-sea­
level variations induced by the melting of the Lauren­
tide ice sheet in Canada. 

The smaller disk load may serve as a crude repre­
sentation of the Fennoscandian ice sheet. On this load 
scale the significance of the lithosphere has been less 
clear. Cathles (1975, pp. 144-155) discussed the con­
troversy and concluded that the effect of the lithosphere 
could be neglected when modelling the Fennoscandian 
uplift. His reasoning was, however, primarily based on 
the analysis of the wave-number spectrum of the load. 
Here we will study the effects of the lithosphere in the 
spatial domain. As will be shown, the shape of the 
deformed surface in the region formerly covered by the 
Fennoscandian ice load is quite sensitive to the pres­
ence of the lithosphere and may therefore be used to 
infer its thickness. 

A second aspect of our analysis concerns the ade­
quacy of flat-earth approximations when modelling the 
response due to loads of large diameter. Whereas half­
space models are conventional for small loads such as 
lakes or volcanic islands, some uncertainty exists about 
the maximum load diameter tolerable in this approxi­
mation. The deglaciation-induced uplift of Fennoscan­
dia, for example, has been modelled using both spheri­
cal and half-space theory (see Cathles, 1975, pp. 6, 173-
180, for a review). The Laurentide ice load, on the 
other hand, has usually been regarded as too large for 
the application of flat-earth approximations (see Peltier, 
1982). 

All models to be discussed in the present study 
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apply to externally gravitating, incompressible and hy­
drostatically pre-stressed continua of uniform density. 
Thus, the gravitational effects disregarded in our mod­
els reduce to perturbations of the geopotential due to 
(a) the externally applied force field, viz. the "load", 
and (b) due to internal mass redistributions induced by 
this load. 

Cathles (197S, pp. 72-83) has presented solutions for 
the surface deformation of elastic Earth models of in­
creasing complexity and discussed the contributions of 
different gravitational effects. This also includes an as­
sessment of the influence of the inviscid core on the 
observed response. From his study it can be inferred 
that the significance of the geometrical and gravi­
tational effects of spherical Earth models is mainly 
confined to angular orders n < 10. As Cathles further 
shows, contributions (a) and (b) to the perturbation of 
the geopotential largely cancel each other, such that the 
net effect of self-gravitation is small. The influence of 
the Earth's core becomes perceptible at angular orders 
n < S. The error committed when neglecting both self­
gravitation and the core in the spherical solution 
amounts to S-10 per cent of the surface deflection. For 
n < S this is smaller, by a factor of more than two, than 
the purely geometrical effect of sphericity. 

The significance of self-gravitation for the relaxation 
of spherical Maxwell Earth models is not very well 
documented. As a crude guideline, strains in the elastic 
problem translate into strain rates in the associated 
viscoelastic problem. Therefore, changes in the defor­
mation of an elastic sphere due to self-gravitation and 
the inviscid core are paralleled by corresponding 
changes in the relaxation times of a Maxwell sphere. As 
relaxation proceeds, the Maxwell continuum degen­
erates into an inviscid fluid, and the core loses its 
special role. Quantitative studies are, however, lacking 
so far. Recently, Dragoni et al. (1983) have derived 
analytical solutions for the deformation of a two-lay­
er incompressible Maxwell sphere without a core in 
an attempt to examine whether earthquake-triggered 
movements of material can excite the Chandler wobble. 
The inclusion of self-gravitation into their analysis is 
reflected by the great complexity of their equations. If 
desired, appropriate modifications of their solution 
would permit a quantitative assessment of the effects of 
self-gravitation on the relaxation of spherical Maxwell 
Earth models. 

In view of the limited objectives of the present 
study, the neglect of both self-gravitation and the in­
viscid core appears to be justified. In the following we 
will therefore derive the analytical solution describing 
the deformation of a two-layered, incompressible and 
pre-stressed Maxwell Earth model subject to an exter­
nal gravity field and deduce the half-space limit directly 
from this solution. This approach will then allow us to 
obtain better constraints on the range of load scales 
amenable to flat-earth approximations. 

Theory 

Our derivation of the equations appropriate to the 
quasi-static deformation of a Maxwell sphere will be 
based on the correspondence principle. For geophysical 
applications, this method has been developed in papers 

25 

that began with Peltier (1974). Major results from this 
work are summarized in Peltier (1982). The main ad­
vantage of the correspondence principle is that it allows 
us to derive the viscoelastic solution from the solution 
for a~ associated elastic problem. For the present pur­
pose it is sufficient to restrict our analysis to incom­
pressible Earth models. Together with the assumption 
of external gravitation this significantly simplifies the 
general form of the momentum balance appropriate to 
the quasi-static deformation of a viscoelastic continuum 
(Peltier, 1974). Defining a total perturbation stress by 

(1) 

the momentum balance in Cartesian co-ordinates X; is 

(2) 

In Eq. (1) ajj1 denotes the elastic portion of the per­
turbation stress, and pg u,(r/a 1) [Jii accounts for stress 
advection in a hydrostatically pre-stressed sphere of 
radius a 1 and density p subject to gravitational acceler­
ation g, with u, the radial displacement component at 
the radial distance r (Love, 1911, pp. 89-9 3). The pre­
s tress term was first included in the viscoelastic for­
mulation by Peltier (1974). Its importance was ex­
plicitly discussed by Wu and Peltier (1982), who noted 
that its consideration in the momentum balance is re­
quired in order that, for a Heaviside loading history, 
the correct solution be obtained in the inviscid limit 
(t---+ oo) of the viscoelastic continuum. Recently, the sig­
nificance of pre-stress has been further analysed by 
Wolf (1984a). 

Since incompressibility has been assumed, Hooke's 
law takes the form 

(au. au.) 
a\~l= -p(e)fJ .. +µ -' +-J 

IJ IJ ax. ax. > 

J ' 

(3) 

with µ Lame's second constant and u; the displacement. 
p<e> denotes the elastic portion of the perturbation pres­
sure p and 

p<e> = lim (A.LI), 
;.~ 00 

Ll~O 

(4) 

where A. is Lame's first constant, and LI= aujax; de­
notes the dilatation (Love, 1927, pp. 2SS-2S7). Sub­
stituting for aii in Eq. (2) yields 

ap az ui 
--a fJij+µ-a z =O, 

xi xi 
(Sa) 

or, in vector notation, 

- v p - µ v x v x u = 0. (Sb) 

Confining our analysis to axially symmetric problems, 
we obtain for the radial and zonal components of Eq. 
(Sb), respectively 

a . e i i . eap 
ae(2rw"'sm )+r µ- sm a,:-=0, (6) 
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(7) 

where 2wq,=(Vx u)q, is implied. Here r, (}and <P denote 
the radial, zonal and azimuthal components of the co­
ordinate vector, respectively, with (}=0 on the axis of 
symmetry. For spherical co-ordinates, the equation of 
continuity V·u=O becomes 

(8) 

To solve the system of Eqs. (6)-(8) for u., u8 and p, we 
seek solutions of the type 

u, = R 1 (r) P,,( cos(}), 

u8 = -R 2(r) sin(} P:(cos (}), 

p = R 3(r) P,,( cos(}). 

(9) 

(10) 

(11) 

Here P,, is the Legendre polynomial of degree n, where 
n=O, 1, ... , and a prime denotes differentiation with 
respect to the argument. Substitution in Eqs. (6)-(8) 
yields 

n(n+ l)(R 1 -rR~ -R2)+ µ- 1 r2 R'3 =0, 

R;-2R~-rR~+µ- 1 R 3 =~ 
rR'1 +2R 1 -n(n+l)R2=0. 

(12) 

(13) 

(14) 

Equations (12)-(14) constitute a system of coupled or­
dinary differential equations for R 1,R2 and R 3 . Elim­
inating R 2 and R 3 in Eqs. (12) and (13) yields 

r4 R\4 >+ 8r3 R\3> +2[6-n(n+1)] r2 R'{ -4n(n + 1) r R'1 

-n(n+l)[2-n(n+l)]R 1=0. (15) 

The solution of Eq. (15) is 

RI =A.r"+ I +s.r-•+ e.r•- 1+v.r-<•+ 2>. (16) 

Substituting for R 1 and R'1 in Eq. (14) we obtain 

1 
R = [(n + 3) A r" + 1 - (n - 2) B r - " 

2 n(n+l) n n 

+(n+l)e.r•- 1-nv.r-<•-+- 2>]. (17) 

Solving Eqs. (12) and (13) for R 3 yields 

r2 R'~+2rR'3 -n(n+l)R 3 =0, 

with the solution 

(18) 

(19) 

The integration constants E. and F. are not indepen­
dent. Substituting in Eq. (12) and equating coefficients 
we obtain 

nE.=2µ(2n+3)A., 

(n+ l)F.=2µ(211-l)B •. 

(20) 

(21) 

For the elastic shell, where µ=µ 1, the solutions for 
displacement components and pressure are therefore of 
the type 

u,(r, (})=[A. r•+ 1 + B. r-• + e. r•- 1 + D. r-<•+ 2>] P.(cos (}), 
(22) 

1 
---[(n+3)A r"+ 1-(n-2)B r-• 
n(n+l) " " 

[2n+3 2n-l ] p(r,(})=2µ 1 --A.rn+--B.r-<•+ 1> P,,(cose). 
n n+l (24) 

If we observe that 

(25) 

(26) 

the solutions for the stress components can be shown 
to be of the type 

[~-n-3 n2+3n-l 
O' (r (}) =2µ A rn - B r-<n+ 1 l 

rr ' I l1 n n+l n 

+(n-1) enrn- 2-(n+2)D.r-<•+ 3>] P,,(cos (}), (27) 

2µ 
---'-1 -[n(n+2)A rn+(n2-l)B r-<n+IJ 
n(n+l) " " 

+ (n 2 -1) e. r•- 2 + n(n + 2) D. r-<n+ 3l] sin(} P,;(cos (}). (28) 

The integration constants An, B., en and D. can be 
determined from the boundary conditions. If the elastic 
sphere is subject to a load pressure P,,, we have for the 
elastic perturbation stress at the surface r = a 1 

u~,>(a 1 ,(})= -P,,(cose), (29) 

(30) 

From the general solution for the deformation of a 
uniform elastic sphere of rigidity µ 2 , we obtain at the 
interface r = a 2 between mantle and shell (see Appendix 
A), 

2µ 2(n -1)(2n2 +4n + 3) u,(a2, (}) 

=na2[(2n+1) u,,(a2, (})-3(n + 1) sin~P: u,8(a2, (})l (31) 

2µ 2(n -1)(2n2 +4n + 3) u8(a 2, (}) 

[ sin (} P,; 2 ] 
= -a2 3-p-u,,(a2,(})-(2n +n+3)u,8(a 2,(}) . (32) 

n 

Substituting in Eqs. (29)-(32) for u,, u8 , u,, and u,6 from 
Eqs. (22), (23), (27) and (28) at r=a2 , a system of four 
equations is obtained, which allows the determination 
of the four integration constants for the specified 
boundary conditions. After considerable algebraic ma­
nipulation we obtain 

A = n(n+l)(n2-l)[k -k ( I )-2 
n 2 I 2 a2 al 

µ1D 
+ k3(a2/a1)-(2n+ IJ], (33) 

B - n2(n+ l)(n+2) [k -k ( I )-2 
.- 2µ1D 4 2a2a1 

D n(n+l)(n2-l)[k -k ( / )2-k ( / )2n+1] n I 6a2al 5a2al · 2µ 1 D 
+(n + 1) en r•- 1 -nD. r-<n+ 2 i] sin(} P.'(cos (}), (23) (36) 
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Here the integration constants have been transformed 
according to a~An--+An, a1<n+ 1'Bn--+Bn, a~- 2 Cn--+C", 
a1<n+ 3l Dn--+Dn. k1, .•. ,k6 and D are complicated ex­
pressions in terms of µ 1 , µ 2 , p and n (see Appendix B). 

In the following we will be concerned with the 
radial surface displacement u,(a 1 , 0). Substituting for the 
integration constants in Eq. (22) and putting r =a 1 

yields 

u, = T,,{e) P,.' 

where 

T_(e) 
n 

(37) 

(38) 

Several special solutions may be derived from Eq. (37); 
for example, the solution for the elastic shell surround­
ing an inviscid mantle, which is obtained by taking µ 2 

= 0. A similar solution was previously discussed by 
Slichter and Caputo (1960). Solutions for the uniform 
elastic sphere result from µ 1 = µ 2 , a2 = 0 or a 1 = a2 • 

In the present context it is of particular interest to 
compare Eq. (37) with the associated flat-earth solution 
for the same physical model. The two-layer elastic 
half-space can be treated as a separate boundary-value 
problem. More insight is gained, however, if Eq. (37) is 
reduced to the flat-earth solution. This approach will 
be employed in what follows. 

If h=a 1 -a2 , we simply require that h/a 1 is a small 
quantity. Also n must be large enough that k = n/a 1 

remains finite. If we observe that a2/a 1 =1-h/a1, put 
n0=nr'/a 1 =kr' and substitute the asymptotic approxi­
mations for the constants in T,,(e), we obtain, after some 
algebra, the flat-earth approximation of Eq. (37) as 

u,(a 1)= -w(O)= -r<el(k)J0 (kr'), (39) 

where 
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(spherical) caps or (plane) disks. Thus, for the sphere, lo, o~0</3 
q(O)= 1/2, 0=/3 

· 1, f3<0~n 

(43) 

and for the half-space 

\

0, OS,r'<R 

q(r')= 1/2, r'=R . 
1, R<r'<oo 

(44) 

Here f3=R/a 1 is the angular radius of the cap and R 
the radius of the disk. q(O) can be expanded into a 
Legendre series 

00 

q(O)= L qnP,.(cosO), 
n= 0 

where (e.g. Lebedev, 1972, pp. 68-69) 

{
( 1 - cos /3)/2, 

qn = [P,._ 1 (COS ,8) - P,. + 1 (COS ,8)]/2, 
n=O 
n=l,2 ... · 

(45) 

(46) 

Similarly q(r') can be written as the inverse zeroth­
order Hankel transform, i.e. 

00 

q(r')= J q(k)kJ0(kr')dk, 
0 

where (e.g. Sneddon, 1951, p. 528) 

q(k) =~J1 (kR). 

(47) 

(48) 

The generalization of our solutions for Maxwell 
continua is straightforward. Here we will only remark 
that the correspondence principle allows us to identify 
the solution of any elastic problem with the Laplace 
transform of the solution of an associated Maxwell 
problem, if we substitute 

r<e> k -{ _ k (M2 -l)(kh)2 +[Mcosh(kh)+sinh(kh)J 2 }- 1 

()-pg 2µ 1 (M 2 -l)kh-[Msinh(kh)+cosh(kh)][Mcosh(kh)+sinh(kh)] ' 
(40) 

with M = µ 2/ µ 1 • Here we have used an asymptotic ap­
proximation for Legendre polynomials in terms of 
Bessel functions, viz. (e.g. Watson, 1944, p. 155) 

Jim P,.(cos O)=J0 (n 0), (41) 
n-oo 
o-o 

where J0 is the Bessel function of the first kind and 
zeroth order. r' denotes the radial co-ordinate in the 
cylindrical system z =a1 -r, r' = Oa1, and w is the verti­
cal displacement in this system. For M = 0, the lower 
half-space becomes inviscid. If, on the other hand, µ 1 
=µ 2 , Eq. (39) is reduced to 

1 
w(O)= 2 k J0 (kr'). (42) 

pg+ µ1 

This is the solution for the uniform (and incompress­
ible) elastic half-space. If pre-stress is neglected, Eq. 
(42) reduces to w(O)=J0/(2µ 1 k) (e.g. Sneddon, 1951, 
pp. 468-486; Jeffreys, 1976, pp. 265-267). 

In the following, we will be concerned with circular 
load distributions q in the form of straight-edged 

A.(s)=(A.s+r- 1 K)/(s+r- 1), 

µ(s)=µs/(s+r- 1), 

(49) 

(50) 

for A and µ, respectively. In Eqs. (49) and (50) r=17/µ, 
where 11 is the dynamic viscosity, K =A+ 2/3 µ denotes 
the bulk modulus, ands is the Laplace transform variable 
of the time t. 

Since the pronounced temperature dependence of 
viscosity renders most of the Earth's lithosphere elastic 
on a time scale of the order of 10 ka, 17 1 --+ oo and 
therefore µ 1 (s)= µ 1 , and the transformation only applies 
to µ2 • 

Before the inverse Laplace transform can be imple­
mented, some algebraic operations must be applied to 
the elastic solution. These are outlined in Appendix C. 

Numerical Results 

In order to illustrate the effects of sphericity, we begin 
with a comparison of the response spectra between the 
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spherical solution and those obtained in the half-space 
approximation. In the following, superscript e will refer 
to the amplitude of the elastic or instantaneous portion 
of the response, whereas superscript v will denote the 
viscous or time-dependent part of the response. We 
have, from Appendix C, for the viscoelastic transfer 
function y!ve'(t) of the continuum subject to a Heavi­
side loading history H(t) 

y <v•>(r) = y<e> _ y<v. I l [exp( - s<I l 1) - 1] 

-T(v, 2>[exp( -s<2> t)-1 ], 

which, for t-+ oo, becomes 

y <i) = y(e) + y <v. I)+ y<v. 2), 

(51) 

(52) 

where superscript i denotes the inviscid limit at t-+ oo . 
The response is therefore completely characterized by 
the quantities y<e>, y<v. ii, T<"·2l, s0 >, s< 2>. As mentioned 
in Appendix C, Eq. 51 applies both for the sphere and 
for the half-space. 

For our numerical analysis we choose three dif­
ferent Earth models. Model A is uniform, i.e. without 
elastic shell. Since the Earth is known to have a litho­
sphere, the uniform model may appear inappropriate. Its 
main purpose in the present discussion is to illuminate 
the modification of the response by the presence of this 
structural feature. In Model B the lithosphere is l 00 km 
thick. This is a standard value for continental regions 
based on much previous geophysical research. A simi­
lar value has, for example, been inferred by McConnell 
( 1968) in his analysis of glacio-isostatic rebound in 
Scandinavia. Model C is characterized by an enhanced 
lithospheric thickness of 200 km. This reflects recent 
estimates proposed by Peltier (l 984) from his interpre­
tation of deglaciation-induced relative-sea-level rise and 
polar-wander information. 

In all three models the density is taken to be p 
= 3320 kgm - 3

. This is considerably below the average 
value appropriate to the whole Earth but fairly charac­
teristic of the material at a depth of 33 km (Bullen, 
1963, pp. 232-235). Combined with g = 9.8 l m s- 2

, this 
reduced value insures the correct surface deflection in 
the inviscid limit, which, for low angular orders, is 
essentially independent of the elastic parameters of the 
lithosphere and largely determined by the near-surface 
density contrast. For the shear modulus of the visco­
elast ic mantle the value p 2 = 1.45 x 1011 Nm - 2 is adopt­
ed. This is the mean value for the whole Earth (e.g. Wu 
and Peltier, 1982, p. 442). For the lithosphere we 
choose p 1 = 0.67 x 1011 Nm - 2

, which is typical of a 
depth of 100 km (Bullen, 1963, pp. 232-235). In all 
models the dynamic viscosity is ,,, 2 = 1022 P, which ap­
pears to be fairly characteristic of both the upper and 
the lower mantle (Cathles, 1975; Peltier, 1982). 

In discussing F igs. l - 3, we will postpone the analy­
sis of the accuracy of the half-space approximation 
momentarily and focus on the properties of the spheri­
cal solution. 

F igure 1 shows the transfer functions for the uni­
form Earth model as a function of the angular order n. 
The quasi-linear decrease of the elastic transfer function 
with a slope of - 1 on the double-logarithmic plot 
(Fig. 1 a) is familiar. If the effects of gravity and sphe­
ricity are neglected, the theoretical solution is (e.g. J ef-
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Fig. 1 a, b and c. a Elastic transfer functions T!•> and inviscid 
transfer functions T<i>, b viscous transfer functions T (v) and c 
inverse relaxation times s as functions of angular order n for 
Model A The solid do1s refer to the spherical solution, the 
dotted lines illustrate the appropriate half-space approxi-
mat ions 

freys, 1976, pp. 265- 267) 

y<•l(k) = l / (2111 k). (53) 

Since Model A is uniform, the time dependence is 
characterized by a single relaxation mode. As F ig. 1 b 
shows, the viscous transfer function y<v> increases with 
increasing n. This simply compensates for the reduced 
elastic response at la rge angular orders such that the 
inviscid transfer function T(il be independent of 11. The 
inverse relaxation time l /s increases almost linearly 
with angular order. For a viscous half-space proportio­
nality holds rigorously such that (Haskell , 1935) 

l /s=2Yf 2 k/(p g). (54) 

Figure 2 displays the response pattern of Model B. 
Since the shear modulus of the lithosphere is smaller 
than the mantle value, y<•> is enhanced at larger 
angular orders. The time dependence of Model B, how­
ever, differs fundamentally from that of the uniform 
model and is characterized by two relaxation modes. 
Wu and Peltier ( 1982) calcu lated the radial distribution 
of the shear energy for each mode and differentiated 
between a fundamental mantle mode M 0 and a shal­
lower fundamental lithospheric mode LO. Their termi­
nology is adopted here. As Fig. 2 b shows, the contri­
bution of L 0 is usually insignificant except around 11 

=7, where MO a nd LO are of comparable, even 
though reduced, amplitude. The pronounced decrease 
of the inviscid transfer function T(i> for n > 30 is a 
consequence of the attenuating effect of the lithosphere 
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Fig. 2. Same as Fig. 1, but for Model B 
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Fig. 3. Same as Fig. 1, but for Model C 

at higher angular orders. If 2na 1/n < h, the lithosphere 
is nearly "opaque", and the response is essentially elas­
tic. Compared to Model A, the relaxation time of the 
dominating mantle mode M 0 is diminished at higher 
angular orders. This effect of the lithosphere is already 
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known from Newtonian Earth models (e.g. McConnell, 
1968). 

Figure 3 summarizes the response of Model C. The 
general character resembles that of Model B. Since the 
thickness of the lithosphere is increased, the viscous 
contribution · to the response is reduced and can be 
neglected for n > 100 (Fig. 3a and b). The inverse relax­
ation times s1 l J and s12', which can be shown to become 
identical when n-> oo, have almost merged at n = 100. 

The most interesting feature of Figs. 1-3 is the close 
match between spherical and half-space transfer func­
tions down to very low angular orders. This does not, 
however, apply to n = O, I. At n=O, incompressible 
spherical models appear rigid and 

TJe>=O. (55) 

For the half-space models, however, we find from Eq. 
(40) at k=O 

y<e>(O) = l /(p g), (56) 

which is identical to the inviscid limit T(i1(0) for uniform 
loading. For the spherical model this is obtained from 
Eq. (38) for n = 1, where 

ne) = 1/(p g). (57) 

Apart from that, differences are generally confined to 
the lithospheric mode LO of the viscous transfer func­
tion, whose amplitude is negligible at most angular 
orders. 

The significance of the differences mentioned above 
for the response to physical loads is governed by their 
spectral representation. If high angular orders dominate 
the load spectrum, the low end of the response spec­
trum is not sampled efficiently and the half-space ap­
proximation is expected to be adequate. For extended 
loads, however, the lower angular orders become in­
creasingly important. The Laurentide ice sheet, for ex­
ample, had its energy concentrated near n = 5 (as com­
pared to n = 15 for the F ennoscandian ice sheet). An 
additional effect is that at low orders the Legendre 
series Eq. (45) will differ from its approximation Eq. 
(47). This is a direct consequence of the identity for 
Legendre functions and Bessel functions expressed by 
Eq. (41). If n is finite and 8>0, Eq. (41) holds only 
approximately. 

In the following figures, the radial surface displace­
ment ur(a 1) due to circular loads, as calculated from the 
spherical solution Eq. (37), is plotted and compared 
with the vertica l surface displacement -w(O) according 
to the half-space approximation Eq. (39). We thus com­
pare, for R = 800 km and R = 1600 km, 

00 

u,(a 1, 8) = - L Tn<ve>q.J~1 (cos8), (58) 

with 
00 

- w(r', 0) = - J y<vel (k) q(k)kJ0(kr' )dk, (59) 
0 

where r,,<ve> and y<v•l(k) a re given by Eq. (51) and qn 
and q(k) denote the appropriate load spectra according 
to Eqs. (46) and (48), respectively. In each case the 
thickness hf of the load is 3 km, while its density Po is 
lOOOkgm- . 

F igures 4 and 5 show the deflection for the uniform 
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Fig. 4 a and b. Radial surface displacement u, as a function of 
distance a 1 0 from the load axis for a the central region and b 
the peripheral region, and for several times (in units of ka) 
after the emplacement of the load. The solid lines refer to the 
spherical solu tion, the dotted lines illustrate the appropriate 
half-space approximation. Results are for Model A and 
R=800km 
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Fig. 5. Same as Fig. 4, but for Model A with R = 1,600 km 

Model A. If R = 800 km, the half-space approximation 
is excellent. This also holds for R = 1600 km except for 
times directly following emplacement of the load. With 
increasing time, local compensation is approached. In 
that limit, the radius of the viscoelastic sphere is slight­
ly increased (Figs. 4 b and 5 b). Th is reflects the con­
servation of volume for the incompressible model con­
sidered. 

Figure 6 illustrates the response of Model B for R 
= 800 km. For this combination of lithospheric thick­
ness and load radius, the half-space approximation is 
adequate. If R = 1600 km, the region peripheral to the 
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Fig. 6. Same as Fig. 4, but for Model B with R = 800 km 
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Fig. 7. Same as Fig. 4, but for Model B wi th R = 1,600 km 

load requires special a ttention (Fig. 7b). Here displace­
ments are reduced by about one order of magnitude 
compared to the cent ra l region below the load. This, 
however, results in relatively larger differences between 
the spherical and half-space solutions in the peripheral 
region. The maximum of the peripheral bulge, for ex­
ample, is underestimated by about 40 per cent on the 
basis of half-space theory. 

For Model C, which is characterized by a 200-km­
thick lithosphere, the results are comparable to those of 
Model B. If R = 800 km (Fig. Sa and b), half-space 
solutions are again adequate. For R = l600 k m (Fig.9a 
and b), they become marginal in the cent ral region and 
inadequate in the peripheral region. As before, the 
max imum of the forebulge is underestimated by ap­
proximately 40 per cent. 

A different aspect of our theoret ical results is the 
sensitivity of the response to lithospheric thickness. 
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Fig. 9. Same as Fig. 4, but for Model C with R = 1,600 km 

Since the lithosphere becomes increasingly " trans­
parent" with decreasing angular order of the excitat ion, 
we expect that, for R = 1600 km, the central region be­
low the load (a 1 0 < R) reflects this insensitivity to a 
certain extent. As a comparison of F igs. 5 a, 7 a and 9 a 
shows, the surface deflections a re quite similar for dis­
tances a 1 8 <800km. At larger distances from the axis, 
and pa rticularly at larger times, the three models differ, 
however, and Models B and C display an edge effect. 
This overshoot is already familiar from elementary thin­
plate solutions for sq uare-edged loads (e.g. Brotchie 
and Silvester, 1969) and has also been discussed for 
realistic Earth models by Wu and Peltier ( 1982). These 
authors also show that the edge effect is partially relat­
ed to the load shape and vanishes if more realistic 
loads of parabolic or similar cross-sections a re em­
ployed. As can be seen from Figs. 5 b, 7 b and 9 b, the 
effect of the lithosphere becomes even more pronounced 
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in the periphery of the load (a I e > R), where the lo­
cation, amplitude and shape of the bulge are closely 
controlled by lithospheric thickness. 

If R = 800 km, the situation is different. Near the 
load axis the presence of the lithosphere causes the 
deflection in the inviscid limit to exceed tha t appropri­
ate to local compensation (Figs. 4a, 6a and 8a). By 
comparing Figs. 6a and 7a we realize that this be­
haviour is best explained by the superposition of two 
edge effects. As for R = 1600 km, the excess displace­
ment will, however, decrease for loads of smooth cross­
section. T he shape of the deflection curves is neverthe­
less distinct and reflects the effect of the lithosphere. 
The surface deflection in the peripheral region, on the 
other hand, seems less suitable for inferring lithospheric 
thickness. This is mainly related to the fact that, for R 
= 800 km, the volume displaced by the load is small 
and the bulge therefore not pronounced (Figs. 4 b, 6 b 
and 8 b). 

Discussion and Conclusions 

Prior to completion of the work discussed in this pa­
per, the adoption of either spherical or half-space mod­
els in the interpretation of isostatic adjustment data has 
been based more on intuition than on rigorous analysis. 
For the Fennoscandian ice sheet, for example, the tlat­
earth approximation has been considered adequate by 
most authors (e.g. Haskell, 1935; McConnell, 1968). 
The Laurentide glaciation in Canada, on the other 
hand, has a lmost exclusively been analysed in terms of 
spherical Earth models (see Peltier, 1982, for a sum­
mary). A notable exception is Walcott's (1970 b) in­
terpretation. This author used a two-dimensional load 
representation and a !lat-earth model to infer the thick­
ness of the lithosphere from tilt data of proglacial Lake 
Algonquin. 

Our previous ana lysis has confirmed the adequacy 
of half-space approximations when modelling defor­
mations induced by loads comparable in scale to the 
Fennoscandian ice sheet. The main advantage of 
analytical half-space solutions is clearly that they yield 
much more tractable algebraic expressions compared to 
those required for the spherical solution. Of some 
consequence may also be the fact that the numerical 
implementation of the inverse Hankel transform, based 
on Simpson's rule, converges faster than the Legendre 
series of the associated spherical problem. 

We have further shown that, for load scales com­
parable to that of the Laurentide ice sheet, the neglect 
of sphericity usually yields incorrect results. T his holds 
particularly for the deflection in the periphery of the 
load. Here deformations are also sensitive to the pa­
rameters characterizing the lithosphere and may be 
used to infer its thickness (Peltier, 1984). This, however, 
renders the use of spherical models mandatory in such 
interpretations. 

In the past, Walcott's (1970b) inference of litho­
spheric thickness on the basis of tilt data from Pleis­
tocene Lake Algonquin near the margin of the Lauren­
tide ice sheet was repeatedly questioned (e.g. Nakiboglu 
and Lambeck, 1982). The main objection in this criti­
cism has been his assumption of an inviscid mantle. 
Here we will briefly comment on the geometry of his 
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model, which is characterized by a two-dimensional 
load resting on a flat Earth. 

Using simple half-space models, it may be shown 
that, for load scales comparable to the Laurentide ice 
sheet, circular disk loads may be replaced by two­
dimensional loads when calculating the deflection near 
the load margin (Wolf, 1984b). This, however, does not 
interfere with the question whether sphericity can be 
neglected in this case. As a cursory inspection of 
Walcott's theoretical curves shows, the peripheral bulge 
is quite small, both in amplitude and lateral extension, 
in his flat-earth solution. Walcott interpreted it is a 
short-wavelength "static bulge" superimposed on a 
"dynamic bulge" of larger amplitude and extension, 
and associated the tilt data with the former. 

Quite obviously, Walcott's differentiation between 
two such bulges is physically not justified. From the 
present analysis it is further clear that the theoretical 
bulge increases in amplitude and lateral extent, if the 
appropriate spherical solution is employed (Fig. 7b). 
The value of approximately 100 km for the thickness of 
the lithosphere inferred by Walcott must therefore be 
viewed with some caution. Since this value is also small­
er, by a factor of two, than recent estimates of litho­
spheric thickness for the same region (Peltier, 1984), the 
Lake Algonquin tilt data require re-interpretation. 

A second result of our analysis has been the demon­
stration of the overall sensitivity of the response to 
lithospheric thickness for load scales comparable to the 
Fennoscandian ice sheet. As discussed in the previous 
section, this sensitivity is a simple consequence of a 
shift in the load spectrum to higher angular orders, at 
which the lithosphere appears increasingly "opaque". 
This is at variance with Cathles' (1975, p. 153) con­
clusions, who believed that the strength of the litho­
sphere was not sufficient to affect the uplift in the cen­
tral regions of Scandinavia. McConnell (1968), on the 
other hand, argued that a lithosphere was required in 
order that the observed decrease in the relaxation time 
spectrum at shorter wavelengths could be explained, 
and inferred a value of 120 km for its thickness. 
McConnell's whole analysis may, however, be criticized, 
since it is based on the incorrect assumption that the 
area deformed by the glacial load essentially coincides 
with the area covered by the load. Considering the 
limitations of the past interpretations and in view of 
the fundamental importance of the lithosphere for sev­
eral geodynamic phenomena, the Fennoscandian uplift 
data therefore deserve renewed attention. 

Appendix A 

If we are interested in the solution for a uniform elastic 
sphere of radius a2 and shear modulus µ 2 , the general 
solution of the coupled system of Eqs. (12)-(14) must 
yield finite field quantities at r=O. Then Bn=Dn=O for 
n =0, 1, ... , and the general solutions Eqs. (22)-(24), (27) 
and (28) simplify accordingly. 

The constants An and en are determined from the 
boundary conditions at r=a 2 • For generality, we allow 
for arbitrary pre-specified surface tractions and solve 
Eqs. (27) and (28) at r=a2 for An and en. We obtain, 
since Bn=Dn =0, 

2µ 2 a'i(n -1)(2n2 + 4n + 3) An 

= -n(n2-1)[a"(a2, (}) + na~o(a2,,B)], 
P,, sm BP,, 

(60) 

2µ2 a2- 2(n -1)(2n2 + 4n + 3) en 

[ ( 2) arr(a2 ,B) (n+l)(n 2 -n-3)a,6(a 2 ,B)] 
=n n n+ + . 

P,, sin (} P,; 
(61) 

Substituting for An and en in Eqs. (22) and (23) yields 

2µ 2 (n -1)(2n2 + 4n + 3) u,(r, (}) 

= (:2 r- l na2 { [ n(n + 2)-(n2 -1) (:2 f] arr (a2, (}) 

+ [(n+ 1) (n 2 -n-3)-n(n2 -1) (:2 f] si:OP,,' 0',9(a2, e)}. 
2µ 2 (n -1)(2n2 + 4n + 3) u6(r, (}) 

(62) 

= -(:Jn-l a2{[ n(n+2)-(n +3)(n -1) (:J2] 
sin (JP,; 

· -p- a.,(a 2 , (}) 

n 

+ [(n + l)(n2 -n -3)-n(n+ 3)(n -1) (:J2] 0',9(a2, e)} 
(63) 

If we put r=a2, the required relation between the field 
quantities at a2 is obtained. 

Appendix B 

For the constants in Eqs. (33)-(36) we obtain 

D = [k'1 k4 +k1 k~ -k~ k6(a2/a1)2 -k2 k~(a2/a 1)- 2 

-k'3ks(a2/a1fn+1 -k3 k~(a2/a1)-(2n+ ll]' 

where 

k 1 =n(n+2)(2n-l)(M-1) 

· [(2n 2 +4n+3)M +2n(n+2)], 

k 2 =(2n+l)(n 2 -l)(M-1) 

· [(2n 2 +4n+3)M +211)(n+2)], 

k3 = [2(n2 -1) M +2n 2 +1] 

· [(2n2+4n+3)M +2n(n+2)], 

11(n + 2) k4 =(2n + 3)(n2 -1)2 (M -1) 

· [(2n2+4n+3)M+2n(n+2)], 

k 5 = -2(n2 -1)(2n2 +4n+3)(M -1) 2, 

k 6 = [(2n+ l)M -(n-2)](n2 -1)(2n2+4n+ 3)M 

+2n2 (n+2)(n2+3n-l)(M-1) 

-[3M +2(n-l)](n+ 1)2(112 -n-3) 

- [(2n + 1)(2n2 + n + 3) + 3(n + 3)(112 - l)](n + l)M, 

k'1 =n2(n+2)2(2n-I), 

k~ =11(n+ 1)(2n + l)[(n - l)(n+ 2) + F1], 

k~ = -n[(n +2)(2n2+1)-(n+ 1)(2n+ l)F1], 

(64) 

(65 a) 

(65 b) 

(65 c) 

(65 d) 

(65 e) 

(65f) 

(66a) 

(66b) 

(66c) 
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k~ =(n2 -1)2 (2n + 3), 

k~ =(n+ 1) [(n-1)(2n2+4n+3)+n(2n+ l)F1], 

k~ =(n+ l)(n2 - l)(n2 -n -3) +n2 (n +2) 

(66d) 

(66 e) 

· (n2+3n-1)-n(n+1)(2n+l)F1. (66f) 

Here we have used M=µ 2/µ 1 and F1 =pga1/(2µ 1). 

Appendix C 

In the following, y<eJ may be interpreted either as the 
elastic transfer function r,.<eJ according to the spherical 
solution Eq. (38) or the half-space approximation 
y<el(k) according to Eq. (40). In either case, y<eJ can be 
written in the form 

(e) eo+e1M+e2M2 
T 2' d0 +d1 M+d 2 M 

(67) 

where M = µ 2/µ 1• The coefficients are complicated ex­
pressions of the model parameters. With M-+M(s) 
=µ 2(s)/µ 1 , where µ2 (s) is given by Eq. (50), Eq. (67) can 
also be interpreted as the Laplace transform 

y<vel(s) Eo+E1s+E2s2 
D0 +D 1 s+D 2s2 

(68) 

of the transfer function y<vel(t) appropriate to the as­
sociated viscoelastic solution for an impulsive surface 
load qb(t) (see Peltier, 1974, for details). Equation (68) 
is written in terms of powers of the Laplace transform 
variable s. The upper-case coefficients of Eq. (68) are 
easily expressed in terms of the lower-case coefficients 
of Eq. (67) and M(s). The transform t<vel(s) of the 
viscoelastic transfer function may be ~lit into an elas­
tic portion y<e) and a viscous portion V(s), i.e. 

'f<ve)(s) = T(e) + V(s), (69) 

where 

y<e) = lim 'f<vel(s). (70) 
s-oo 

T(e) is given by Eq. (38) or Eq. (40) and interpreted as the 
"Laplace transform of the instantaneous elastic response 
of the viscoelastic system to the impulsive load applied 
at t=O. The transform V(s) of the viscous portion can 
be cast into the form 

- s<l) s<2l 
V(s) = y<v, 1) ___ + y<v. 2) __ _ 

s+s<1> s+s<2J' 
(71) 

where y<v, 1>, y<v, 2l and s(ll, s<2J are given in terms of the 
coefficients in Eq. (68). Implementing the inverse La­
place transform yields 

y<ve)(t) = y<e) b(t) + y<v. 1) s<l) exp ( -s<l) t) 

+ y<v, 2) s<2J exp ( -s<2J t). (72) 

This is the system's impulse response. The response to 
a Heaviside loading history follows from convolving it 
with the impulse response. From Eq. (72) we obtain for 
t~O 

y<ve)(t)= y<el _ y(v, ll[exp( -s(ll t)-1] 

-T<"· 2l[exp(-s<2lt)-1]. 
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