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Abstract. The analytical solution for the load-induced 
deformation of a uniform, compressible, hydrostatically 
pre-stressed elastic half-space is derived. The solution is 
correct to first order in the quantity e, which is in
versely proportional to the wave number k of the defor
mation. Usually e is very small compared with unity for 
Earth deformations on a scale amenable to the half
space approximation. Since pre-stress advection is in
cluded in the analysis, the correspondence principle al
lows us to solve the field equations governing the de
formation of the associated Maxwell half-space. The 
viscoelastic solution shows that the relaxation of the 
Maxwell continuum is characterized by a fundamental 
mode and a rapidly decaying overtone of much smaller 
amplitude. In the incompressible limit the overtone is 
not excited. The significance of the results for the relax
ation of the Earth's mantle is briefly discussed. 
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Introduction 

The response of the Earth's lithosphere or mantle to 
applied surface loads, such as volcanic islands, sedimen
tary basins or glacial loads, has frequently been mod
elled using Maxwell continua (e.g. Walcott, 1970; 
Beaumont, 1978; Lambeck and Nakiboglu, 1981; Naki
boglu and Lambeck, 1982). In these models the Earth's 
compressibility was, however, usually neglected. This 
simplification was probably motivated by the view that 
allowing for compressibility would be unlikely to 
change the results markedly. 

In a series of papers starting in 1974, Peltier devel
oped a general theory for the relaxation of self-gravitat
ing, compressible Maxwell Earth models. The for
malism was applied to infer the Earth's viscosity strati
fication from deglaciation-induced relative-sea-level 
variations (see Peltier, 1982, for a summary). 

One of several interesting aspects of Peltier's investi
gations was the recognition of the complicated response 
pattern of "realistic" Maxwell Earth models whose 
elastic structure is taken from seismological Earth mod
els. The relaxation of realistic models is characterized 
by a multitude of discrete and exponentially decaying 

modes carrying distinct proportions of the total strain 
energy (Peltier, 1976; Wu and Peltier, 1982). 

Each non-adiabatic density contrast, for example, is 
associated with a characteristic mode. This is also a fea
ture of purely Newtonian viscous models (Parsons, 
1972). Each viscosity contrast, such as the contrast near 
the base of the lithosphere, causes additional modes in 
the Maxwell model. This is a feature not parallelled in 
Newtonian viscous models, in which discontinuities in 
viscosity primarily modify the relaxation of the funda
mental mantle mode associated with the density jump 
at the Earth's surface (McConnell, 1968). Some of the 
higher modes have relaxation times that are very short 
compared with the relaxation time of the fundamental 
mantle mode. Peltier (1976) therefore termed them 
transition modes. Usually these modes are only poorly 
excited, however. 

Wu and Peltier (1982) also studied the effects due to 
compressibility on the relaxation of Maxwell continua 
and compared the response of compressible and incom
pressible Maxwell models in the Laplace-transform do
main. They showed that, whereas the initial elastic re
sponse of the compressible model is characterized by 
significantly enhanced deformation, the final inviscid 
response is identical to that of the incompressible ap
proximation. 

In the following we will further examine the modifi
cations introduced by compressibility. For this purpose 
we will study the relaxation of a particularly simple 
Maxwell Earth model. The analysis will be based on 
the formal solution for a uniform, compressible and 
pre-stressed elastic half-space. Application of the cor
respondence principle and normal-mode analysis will 
then allow us to show that the associated Maxwell half
space is characterized by the usual fundamental mode 
and an "overtone" of short relaxation time. The 
geophysical consequences of this will be briefly dis
cussed by considering a characteristic numerical exam
ple. 

Theory 

Although the model of a uniform Maxwell half-space is 
elementary, it may serve as a first approximation when 
studying deformations of the Earth's mantle on a time
scale characteristic of deglaciation events. The solution 
of the equivalent elastic problem is published in several 



|00000107||

textbooks (e.g. Jeffreys, 1976, pp. 265-267). If the elastic 
solution is to be used to solve the associated Maxwell 
problem, it must be modified, however, and gravi
tational restoring forces must be included. 

This has recently been discussed for incompressible 
continua (Wolf, 1985a, b). In this approximation the 
governing equations can be re-formulated in terms of 
the total perturbation stress. If the continuum is com
pressible, this simple method fails and a more general 
approach is required. In the following, we will trans
form the field equations governing the deformation of a 
compressible, pre-stressed elastic half-space into a si
multaneous first-order differential system. This system 
can be solved using standard matrix methods. 

We confine ourselves to axisymmetric loading prob
lems and use cylindrical co-ordinates r, ¢, z. Then the 
stress-strain relations are 

(1) 

(2) 

Taking the first-order Hankel transform of Eq. (1) and 
the zeroth-order Hankel transform of Eq. (2), with re
spect to the radial co-ordinate r, we obtain 

Al k A 1 A 0 
U1 - Wo--O",zl = • 

µ 

).k A Al 1 A 

).+2µ U1 +wo-).+2µ O"zzo=O. 

(3) 

(4) 

Here u, w, u,z and uzz denote the radial and vertical 
displacement components and the appropriate elastic 
stress components, respectively. Parameters ). and µ are 
Lame's first and second constants. A circumflex denotes 
Hankel transformation of zeroth or first order, as in
dicated by the subscript; symbol k denotes the Hankel
transform variable or wave number. A prime is used to 
indicate differentiation with respect to the vertical co
ordinate z. 

The two components of the equilibrium equation 
are 

(5) 

(6) 

The last term in Eqs. (5) and (6), respectively, accounts 
for stress advection in a hydrostatically pre-stressed 
elastic continuum of density p. The external gravity 
field g is assumed to act in the positive z-direction. 
Density changes due to the dilatation of the material 
have been neglected. Upon first-order Hankel transfor
mation of Eq. (5) and zeroth-order Hankel transfor
mation of Eq. (6) we obtain 

4().+µ)µk2 A k A Al ).k A 

).+ 2µ U1 -pg Wo+O"rzl - ).+ 2µ O"zzo=O, (7) 

(8) 

where u., and O"q,q, have been eliminated using the ap
propriate stress-strain relations. 

This is the generalization, for a pre-stressed continuum, 
of the first-order system derived by Farrell (1972). If we 
assume solutions of the type exp(mz), the attenuation 
constants m will be roots of the secular determinant 

(). + 2µ)m 4 -2(). +2µ) k2 m2 +(). +2µ) k4 

+pgm3 -pgk2 m=0. 

We find 

m1,2= ±k, 

).+µ [ ().+µ)282]1/2 
m3,4= 2().+2µ) sk±k 1+4().+2µ)2 ' 

(10) 

(11) 

(12) 

where B=pg/[().+µ)k] has been introduced. As dis
cussed by Cathles (1975, pp. 38-39), B will in general be 
very small compared with unity for deformations of the 
Earth whose scale is sufficiently small to be modelled 
by half-space approximations. Neglecting higher-order 
terms, we therefore have 

(13) 

which is correct to first order in B. 

If pre-stress is neglected, g = 0 and therefore B = 0. If, 
on the other hand, the continuum is incompressible, 
). --+ oo and again B = 0. In both cases the secular de
terminant, Eq. (10), has two double roots, and Eq. (9) 
represents a degenerate system. The combined effects of 
compressibility and pre-stress advection therefore re
move the degeneracy of the system and cause a "gravi
tational splitting" of the attenuation constants, which 
has some similarity with the rotational splitting of the 
eigenfrequencies in the theory of the Earth's free oscil
lations. From Eq. (13) it is also evident that the attenu
ation of the elastic field quantities with depth is not 
solely determined by the lateral scale of the load but is 
also influenced by the material properties of the elastic 
continuum. 

The eigenfunctions belonging to the four eigenval
ues given by Eqs. (11) and (13) are calculated using ma
trix methods described by Frazer et al. (1938, pp. 61-70, 
156-172). We obtain, correct to first order in B, 

(14) 
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=n-1:12 

1 ±2(A.:2µ) i: 
A 3, 4 exp(m3 , 4 z). 

-2µk+µk-µ-i: 
A.+2µ 

±2µk-A.ki: 

(15) 

The following analysis will be limited to a uniform 
half-space. To be consistent with the direction of the 
gravity field adopted in Eqs. (5) and (6), the continuum 
must occupy the region z>O. If we impose the usual 
boundary conditions, 

u,z 1 (z=0)=0, 

azzo(z=O)= -qo, 
(16a) 

(16b) 

Since 2 v = A./(A. + µ), we obtain 

w0 (z=0)=q0 (1-v)/(µk+vpg). (23b) 

This equation is slightly different from that proposed 
by Nakiboglu and Lambeck [1982, Eq. (24)] as the so
lution to the same problem which is considered here. 
Their solution was, however, derived from physically 
unreasonable boundary conditions (see Wolf, 1985) 
and assumed to be universally valid for any value of k. 

According to the correspondence principle (Appen
dix A), Eq. (23a) can be interpreted as the Laplace 
transform Ji(s) of the impulse response of the associated 
Maxwell continuum. If A. and µ are replaced b~ Eqs. 
(30) and (31) and if the Laplace transform r<ve>(s) 
= Ji(s)jq of the viscoelastic transfer function is intro
duced, Eq. (23a) is thus transformed to· 

fCve>(s) 3(A.+2µ)s 2 +2(3A.+4µ)r- 1 s+(3A.+2µ)r- 2 ' 

3 [2µk(A.+ µ)+pg A.] s2 +2[µk(3A.+ 2µ)+ p g(3 A.+µ)] ,- 1 s+ p g(3 A.+ 2µ) ,- 2 
(24) 

we obtain, from Eqs. (14) and (15), 

A = 2(A.+2µ)-µi: cJo 
2 (A.+µ)i: 2µk+A.ki:' 

(17) 

A4= -2(A.+µ)+(A.+2µ)i: cJo . 
(A.+µ)i: 2µk+A.ki: 

(18) 

The solution for the vertical surface displacement, the 
quantity of prime geophysical interest, then becomes 

w0 (z=0)=q0 [1 +(2-i:) 2(A.:µJ /(2µk+A.kc;). (19) 

If pre-stress is neglected, c; = 0 and 

w0 (z =O)=(A.+ 2µ) q0/[2µk(A.+ µ)], (20) 

which is the familiar solution for the non-gravitating 
half-space. If compressibility is neglected, A.--+ oo and 

w0 (z =0)= q0/(2µk+ pg). (21) 

This is identical to the solution discussed in Wolf 
(1985b), which was, however, derived directly from the 
incompressible field equations. Equation (21) is correct 
without restrictions on the wave number k. Since we 
will be applying our elastic solution to solve the corre
sponding Maxwell problem, it is illuminating to reduce 
Eq. (19) to its inviscid limit, µ=0, which is also the 
infinite-time limit for Maxwell continua (Wu and Pel
tier, 1982). Then 

w0 (z =0)= q0/(p g), (22) 

which expresses local compensation of the load by 
buoyancy forces. 

If c; ~ 1, Eq. (19) is simplified to 

w0 (z =0) =(A.+ 2µ)q 0/[2µk(A.+ µ)+pg A.]. (23a) 

This may also be written in terms of Poisson's ratio v. 

where the subscript has been dropped. Taking the in
verse Laplace transform (Appendix B) yields 

rcve>(t) = r<e> c5(t) + r<v. 1> s< 1> exp( -s<1> t) 

+ r<v, 2 > sC 2> exp( -s<2 > t), 

for the impulsive forcing q(k) c5(t) or 

r<ve>(t)= r<e> _ r(v, l) [exp( -s<1> t)-1] 

-T<v, 2> [exp( -s<2> t)-1], 

for the Heaviside loading event q(k) H(t). 

(25) 

(26) 

The explicit formulae for the viscous transfer func
tions (normal modes) r<v, 1), r<v. 2 > and the associated 
inverse relaxation times s(l>, s<2 > are not very illuminat
ing. In the incompressible limit, A.-+ oo, however, simple 
analytical expressions result for the inverse relaxation 
times, viz. 

s<1>=r-1, 

s< 2>= p gr- 1 /(2µk+ pg). 

Numerical example 

(27) 

(28) 

The portion of the relaxation carried by the fundamen
tal mode in the uniform model was analysed previously 
to some extent (Nakiboglu and Lambeck, 1982; Wu 
and Peltier, 1982; Wolf, 1984). The existence of an 
overtone with a relaxation time close to the Maxwell 
time [and close to the relaxation times of the transition 
modes of realistic Earth models identified by Peltier 
(1976)] in this simple model was, however, appreciated 
previously and is therefore also discussed here. 

The effects due to compressibility are displayed in 
Fig. 1, where r<e>, r<v. 1), r<v. 2 >, sc 1> and s< 2> are plotted 
as functions of wave number. For definiteness we have 
taken A.=0.80xl0 11 Nm- 2, µ=0.67x10 11 Nm- 2 and 
p=3,380kgm- 3 . These values are fairly characteristic 
of the Earth at 100-km defith (Bullen, 1963, pp. 232-
235). The viscosity is 11=10 1 Pas, which appears to be 
typical of the upper mantle (e.g. Cathles, 1975). A cut
off angular order of n = k a = 5 has been chosen for the 
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Fig. 1 a-c. a Elastic transfer function re•>, b viscous transfer 
function r<•l and c inverse relaxation time s as function of 
angular order n according to compressible solution (solid) or 
incompressible approximation (dotted); symbols M and T de
note relaxation mode 

compressible model, where a is the Earth's radius. For 
this value of n we find e = 0.29 and thus e2 = 0.08. 

The elastic transfer function y<•l is illustrated in 
Fig. 1 a. Inspection of the diagram shows that v = 0.272 
(which corresponds to 2=0.80 x 1011 Nm- 2 ) leads to 
an increase in y<•> by approximately 40 % compared 
with v=0.5 (which corresponds to A.-+ oo). This is what 
is required by Eq. (23b). 

The relaxation of a particular deformation is gov
erned by the spectral characteristics of the viscous re
sponse. Figure 1 c shows that the neglect of compress
ibility causes an insignificant change in the relaxation 
times of either mode. This has already been noted for 
the fundamental mode (Wu and Peltier, 1982). 

In Fig. 1 b the amplitude spectra y<v, 1> and y<v. 2 i are 
displayed. The fundamental mode of the compressible 
model is characterized by reduced amplitude compared 
with the incompressible approximation. Since the sum 
y<•> + y<v, 1 l + y<v, 2 > is independent of the value adopted 
for A. [see Eq. (22)], this is consistent with the fact that 
the compressible model's elastic response is enhanced 
(Fig. 1 a). 

The overtone is only excited if A.< oo. It is therefore 
intimately related to the compressibility of the material. 
For 2=0.80x 1011 Nm- 2 , it carries a small fraction of 
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Fig. 2. Vertical surface displacement w as function of distance 
r from load axis for several times (in units of ka) after em
placement of load according to compressible solution (solid) 
and incompressible approximation (dotted) 

the total viscous response. The relative strength of the 
overtone increases with decreasing angular order. This 
trend is expected to continue for n < 5, which is, how
ever, below the range of validity of our approximation . 

In order to assess the geophysical significance of 
these differences, we study the response in the spatial 
domain for a square-edged disk load of 200-km radius, 
3-km thickness and a density of l,OOOkgm- 3, and for 
the Heaviside loading event q(k) H(t). In taking the in
verse Hankel transform (Appendix C), the limits of in
tegration have been fixed to n = 5 and n = 1,000. The 
truncation at the lower end primarily affects the ac
curacy of the response near the elastic limit. The be
haviour at large times is more influenced by the cut-off 
at n = 1,000. The total truncation error is, however, 
small and amounts to a few per cent at the most. 

In Fig. 2 the vertical surface deflection is shown. 
Since the distribution of the model parameters is uni
form, a peripheral bulge does not develop as relaxation 
proceeds (Nakiboglu and Lambeck, 1982; Wolf, 1984). 
The discussion has therefore been confined to the cen
tral region below the load. From inspection of the fig
ure it is evident that effects due to compressibility are 
noteworthy only during the initial period of relaxation 
following the emplacement of the load. At t=4 ka the 
differences in deflection have already decreased to ap
proximately 10 %; at t = 16 ka the discrepancy is only a 
few per cent. 

Conclusion 

The geophysical significance of compressibility is clear
ly contingent upon whether the earlier or later phases 
of relaxation are sampled by the observations. In in
terpretations of glacio-isostatic rebound, for example, 
the lithosphere is usually regarded as elastic and the 
adjustments are mainly controlled by the viscosity of 
the Earth's mantle. Since relaxation times are charac
teristically between 1 and 10 ka (Wu and Peltier, 1982, 
Fig. 10) and since deglaciation was almost complete at 
8 ka before present, the majority of the post-glacial-
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adjustment data sample the intermediate or later phases 
of relaxation. During the early phases when effects 
due to compressibility are more noticeable, relaxation 
is also markedly influenced by the unloading event it
self. The shape of the ice-sheet and the details of the 
deglaciation history are, however, not known with great 
accuracy. Consequently, the interpretation of isostatic
adjustment data from this time interval is subject to 
considerable uncertainties (e.g. Wolf, 1985c). We may 
therefore conclude that incompressible Maxwell con
tinua are adequate representations of the Earth's man
tle in most instances. 

Appendix A 

Correspondence principle 

According to the correspondence principle (Biot, 1954; Pel
tier, 1974; Cathles, 1975, pp. 23-29), the solution to an elasto
static problem can be interpreted as the Laplace transform of 
the quasi-static response, to an impulsive load qb(t), of the 
associated Maxwell continuum governed by Laplace-trans
formed stress-strain relations 

O'ij= A.(s) O'kk bii + 2 µ(s) B;i' 

provided that 

µ(s)=A.s/(s+i-- 1), 
A.(s)=(A.s+K ,- 1)/(s+c 1). 

(29) 

(30) 
(31) 

Here the tilde denotes Laplace transformation with respect to 
time t; s is the Laplace-transform variable. K =A.+ 2 µ/3 de
notes the bulk modulus and o=ri/µ the Maxwell time, with ri 
the dynamic viscosity. Since large values of s correspond to 
short-time-scale behaviour and vice versa, we realize, from in
spection of Eqs. (29)-(31), that the instantaneous response, t 
=0, is elastic. Constitutive relations appropriate to long times 
after the loading event are obtained by observing that K(s) 
= A.(s)+ 2 µ(s)/3 = K, which is readily verified from Eqs. (30) and 
(31). Then Eq. (29) may be written in the alternative form 

B;i= K ekk bij-2/3 µ(s) ekk b;i+ 2µ(s) eii. (32) 

In the limit of t--> oo Eq. (30) vanishes, and Eq. (32) takes the 
form 

O'ij=K ekk bij (33a) 

or, in the time domain, 

(33b) 

These are the inviscid constitutive relations for a compressible 
continuum. 

Appendix B 

Normal modes 

The Laplace transform y<••>(s), of the viscoelastic transfer 
function describing the relaxation of the Maxwell continuum 
following an impulsive forcing q b(t), can be split into an elas
tic portion T(e) and a viscous portion V(s). We may therefore 
write 

f'<••>(s) = y<•> + V(s), (34) 

where 

T(e) =Jim f'<••>(s). (35) 

Here T(e) represents the Laplace transform of the instan
taneous elastic response of the viscoelastic continuum to the 

impulsive load. The transform V(s) of the viscous portion can 
be cast into the form 

y1v.1) 511> y!•. 2) 512> 

s+s11 > + s+s<2> ' 
V(s) (36) 

where y<•· 1>, y<•. 2> and s(l>, s<2> are complicated functions of 
the model parameters. Taking the inverse Laplace transform 
yields 

y<••>(t) = y<e> b(t) + y<v. l) s<1> exp( -s<1> t) 

+ y<•. 2> s< 2> exp( -s12> t). (37) 

This is the system's impulse response. The response to a Heav
iside loading event q H(t) follows from convolving it with the 
impulse response. From Eq. (37) we obtain, for t~O, 

y<••>(t)= y!e) _ y(v, ll[exp( -s(l) t)-1] 
-T<•. 2> [exp( -s<2> t)-1]. (38) 

Appendix C 

Inverse Hankel transform 

We are concerned with square-edged, circular disk loads 

q(r)= {
O, 

1, 

O;;i;r<R 
R<r< oo' 

(39) 

where R is the radius of the disk. The load distribution q(r) 
can be written as the inverse zeroth-order Hankel transform 

00 

q(r) = J q(k) kJ0 (kr) dk, (40) 
0 

where (e.g. Sneddon, 1951, p. 528) 

q(k)=Ji(kR)R/k. (41) 

The response in the spatial domain is then obtained from 

"' w(r,0)= J y!ve)(k)q(k)kJ0 (kr)dk, (42) 
0 

for the half-space, where T1••>(k) denotes the viscoelastic 
transfer function. 
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