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Abstract. A small part of the tidal forcing field whose 
contribution is omitted in the conventional spherical 
harmonic development of the tidal potential is caused 
by the flattening of the earth. It is a homogeneous tidal 
field of magnitude of about 1 ngal superposed on the 
commonly known tidal forcing field. The conventional 
tidal forcing field can be completely described by the 
spatial variation of the gravity field of the tide-generat­
ing body within the space occupied by the earth. The 
advantage of this description is that any reference to 
the Earth's motion with respect to the tide-generating 
body (called revolution without rotation) can be avoid­
ed. 
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Introduction 

Some decades ago Jung (1955) pointed out that the 
tidal forcing field of the Moon contains a small part 
which is not included in the conventional derivation of 
this field. Bartels ( 1957) noted this point but did not 
consider it in detail. Recently Wahr (1979; 1981) in­
sisted again on the existence of this part, surely without 
knowing Jung's paper. A reconsideration of Jung's ar­
ticle showed that some modifications have to be in­
troduced and that a clarification is needed. 

Tidal Forcing Field 

In every spatially extended physical system upon which 
an inhomogeneous forcing field is acting, relative forces 
are induced resulting from the inhomogeneity of the 
forcing field in the space occupied by the system. For 
example the Moon, for simplicity regarded as a point 
mass, exerts a corresponding inhomogeneous gravi­
tational field on the Earth. Introducing an inertial 
coordinate system with origin S at the unaccelerated 
common centre of mass, this gravitational field 
shall be described by gM(r) where f is the position 
vector. The difference between the gravitational field at 
an arbitrary point P(r) and the centre of mass O(r0 ) of 
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the earth is a relative gravitational field resulting from 
subtraction of the constant field gn = gM(r 0 ) from the 
spatially varying field gM(r) 

bd(r) = gM(r)- gM(r o) = gM(r) - gH · (1) 

It can be computed from a potential VAr) 

(2) 

with 

(3) 

where 

(4) 

and 

(5) 

V(r) is the lunar gravitational potential, VH(r) the po­
tential of the homogeneous field gH which has to be 
subtracted in Eq.(1), and C0 is a free constant which 
will be given a suitable value by Eq. (9). 

These fields can also be expressed in a geocentric 
spherical coordinate system (r, ~1, y) with its origin at 
the Earth's centre of mass 0 and its axis pointing to the 
Moon, see Figs. 1 a, 2. In this system P is characterized 
by its radius vector r and the fields given by the Eqs. 
(1)-(5) can be calculated by the conventional develop­
ment of V(r) in spherical harmonics (Bartels, 1957) 

GM 00 (r)" V(r) = V(r, l/J) =--L I - ?,,(cos l/J), 
(' n~ 0 (' 

(6) 

where G is the gravitational constant, ML the lunar 
mass, c the distance between the centres of mass of the 
Earth and the Moon. Introducing the unit vector § 
pointing from 0 to the Moon (Fig. 1 b) and regarding 

GML -
=-2-(rcos l/J-r0 ) + C0 , 

(' 

so that for 

(7) 

(8) 
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Fig. 1. a Spherical coordinate system r, I/; centred with respect 
to the axis OML, 0 centre of mass of the earth, S common 
centre of mass of earth and moon; ML lunar mass; c distance 
OM L· b Radius vector rand r of P in the inertial system with 
origin S and the geocentric system with origin 0 respectively; 
r 0 radius vector of 0 in the inertial system; s unit vector in 
direction OML 

Equatorial plane 

s 
Fig. 2. Spherical coordinates r, I/;, y of a mass point of the 
earth at P in the system centred with respect to the axis 0 ML 
and corresponding coordinates r, e, ). and c, 00 Ac of P and 
lunar mass ML with respect to a geocentric coordinate system 
with NS-axis, CJ. coazimuth of y. Unit vectors sand t designate 
r- and 8-direction at the moon's place r = c or at the corre­
sponding surface point C respectively 

(9) 

GM :xi (r)" Vk,t/J)=V(r,t/J)-V8 (r,t/J)=--L I - P,.(cost/J). 
(' n~ 2 (' 

( 10) 

This potential is known as the forcing tidal potential of 
the Moon and has been derived here without reference 
to the Earth's orbital motion, known as "revolution 
without rotation", and without any assumptions about 

its physical properties such as density, rigidity or elas­
ticity. 

However, the difference in the gravitational field of 
the moon between a point P of the earth and its centre 
of mass 0 is not the lunar tidal forcing field. As in­
itially mentioned, tidal forces are acting with respect to 
the centre of mass of a physical system which is ex­
posed to an inhomogeneous forcing field generating an 
acceleration of the centre of mass in an inertial frame. 
The subtraction of this orbital acceleration from the 
forcing field yields the relative forces, i.e. the tidal for­
cing field, in the accelerated system associated with the 
centre of mass. Hence, the tidal forcing field is the 
vector difference between the gravitational field of the 
tide-generating body at the observation point and the 
orbital acceleration of the Earth's centre of mass with 
respect to the unaccelerated common centre of mass of 
the Earth and the tide-generating body, i.e. with respect 
to the inertial frame. In the inertial system with origin 
S the lunar tidal forcing field b(r) is therefore 

( 11) 

where 

is the orbital acceleration of the Earth's centre of mass 
in the Earth-Moon system relative to S, ME is the mass 
of the earth and PE(r) the density of the Earth at r. The 
lunar tidal forcing field therefore by definition does not 
contribute to the orbital motion of the Earth with 
respect to the Moon which is completely determined by 
g0 . If the Earth were rigid no relative accelerations 
with respect to its centre of mass could occur in re­
sponse to the tidal forcing field and the orbital motion 
of the Earth would remain unchanged. However, the 
response of the Earth to the tidal forcing field actually 
has an influence on g0 and therefore on the orbital 
motion of the Earth. For example the dissipation of 
ocean tide energy is a major factor for orbital variation 
in the Earth-Moon system. But also the elastic response 
has, at least in principle, an effect on the orbital accele­
ration of the Earth by its flattening effect. 

The two fields bir) and b(r) given by Eqs. ( 1) and 
(11) are identical only if 

(12) 

It will be shown that this relation would be valid if the 
Earth were spherically symmetric. 

The acceleration g0 of the Earth's centre of mass is 
given by 

go=-:LgE(c) (13) 
E 

where gE(c) is the gravitational field of the Earth at the 
place r = c of the moon which is assumed to be a point 
mass. 

The gravitational field of the Earth is known from 
measurements of orbits of artificial satellites and can be 
expressed by its gravitational potential U(r) 

(14) 
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Neglecting longitude dependent terms m U(r) (Heis­
kanen and Moritz, 1967) 

GM [ 00 (a)n J U(r,8)=~ 1-n~/n -;. P,,(cos8) ( 15) 

where (r, 8, Jc) is a geocentric spherical coordinate sys­
tem centred with respect to the Earth's axis of main 
inertia, the constant a is the Earth's equatorial radius 
and Jn are the coefficients of the expansion in spherical 
harmonics. 

At the position of the Moon (r = c, 8 = AJ the gravi­
tational field of the Earth is 

= - G~E {[1-J
2
(n+l)Jn (~)"P,,(cos8J]s 

I (a)n dP,, I t} 
+n=/n ~ dO e=oc 

(16) 

where 8c is the lunar colatitude and § and t are the unit 
vectors in r- and 8-direction at r = c, 8 = 8c. Figure 2 
shows the geometric configuration. 

GM 
The first part -~s is the gravitational field of a 

c 
spherically symmetric Earth of the same mass ME act­
ing at the position of the Moon. The rest is contributed 
by the non-radially symmetric part of the Earth's mass 
distribution. 

If all coefficients Jn disappear 

Jn= 0, n = 2, 3, 4 ... 

( GMEA 
gee)= ---s 

('2 

and with ( 13) 

GMLA -
go =-2-s=gM(ro). 

c 

(17) 

(18) 

(19) 

Hence, only if the Earth were spherically symmetric 
would the acceleration of its centre of mass be equal to 
the gravitational field acting at its centre of mass. Ac­
tually, because of the flattening of the Earth g0 =1= gM(r 0). 
Therefore, the two fields ( 1) and ( 11) are not identical. 

The tidal field (11) can be split into two parts from 
which the effect of the flattening becomes obvious: 

b(r) = gM(r) - go= gM(r) - gM(r o) + gM(r o) - go 

= bd(r) + b(r o) = bir) + b8 . (20) 

The first part bir) is the relative gravitational field 
introduced by Eq. (1) which by Eq. (10) represents the 
conventional tidal forcing field whereas the second part 
is the specific tidal force at the Earth's centre of mass r 
=r0 which is non-vanishing for a flattened Earth. To 
the conventional tidal forcing field bAr) is added the 
homogeneous field b8 = b(r 0 ) if the flattening of the 
Earth is taken into account. 

From (2), ( 11 ). and ( 16) it follows for the tidal for­
cing field expressed in geocentric coordinates 
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(21) 

The first expression is the usual tidal forcing field 
which really is the relative gravitational field ( 1) and 
which is completely independent of the physical pro­
perties of the Earth. The second part is the expression 
for b8 . It depends on the density distribution of the 
Earth and vanishes if this density distribution is spheri­
cally symmetric. From (21) it is evident that the flatten­
ing of the Earth makes a contribution to the tidal 
forcing field of the Moon. The physical explanation for 
this effect is given by Eq. ( 16). The gravitational field of 
the Earth acting on the Moon depends on the aspheri­
cal part of the density distribution of the Earth and by 
the action-reaction principle the acceleration of the 
Earth's centre of mass g0 also depends on this part of 
the Earth's density distribution. Since g0 is involved in 
the tidal forcing field this field, too, must depend on 
the mass distribution of the Earth. A corresponding 
contribution from the Earth's flattening to the solar 
tidal forcing field is smaller by (Msf ML) · (c/c,) 4 ~ 10- 3 
where Ms is the solar mass and c5 is 1 AU. 

From (13) and ( 16) 

(' n= 2 c 
go= G ~ L {s - I (~)n Jn 

·[(n+l)P,,(cosOJs-~~le=octJ}. (22) 

Hence, the motion of the Earth is disturbed by its 
nonspherical mass distribution. These disturbances are 
however small compared to the gravitational distur­
bances caused by the sun (Kaula, 1968, p. 176) resulting 
from the change of the gravitational field of the sun by 
the variation of the distance between the geo-lunar 
mass centre S and the sun. This effect is of the order of 
2GM5 a/c; which is about c/(aJ2)~6· 104 times greater 
than the aspherical mass distribution effect in (22) for n 
= 2. Therefore the effect of the Earth's aspherical mass 
distribution is not revealed in orbital motion, but it 
shows up in precession and nutation. 

For the development of the tidal potential s · r and 
t · r have to be calculated. From Fig. 2 follows: 

§ · r =rcos ljJ 

t ·r= -rsinl/f cos a. 

Following from (10) and (20) the complete 
for the tidal forcing potential is given by 

V(r, l/f) = V,i(r, l/l) + r · b8 

GM { 00 (r)n r 'X) (a)n 
=-.-L I -: P,,(cos l/l)+-; I Jn -

C n=2 ( l n=2 C 

· [(n+ l)P,,(cos OJcosl/f 

dP,,I . J} +dOe=e,smljlcosa . 

(23) 

expression 

(24) 
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The last sum of (24) is caused by the non-spherical 
mass distribution of the Earth and relates to the homo­
geneous field bH in (20) whereas the first part is the 
usual tidal forcing potential. 

With 

cos 0 =cos Oc cos !/J +sin (Jc sin !/J cos rx 

cos ijJ =cos 0 cos Oc +sin 0 sin (Jc cos (A-Ac) 

P,,( cos i/l) = P,,( cos 8) P,,( cos (] J 

n (n-m)! 
+ 2 L ( ) 1 P,,m(cos 8) P,,m(cos Oc) 

m~I n+m. 

·cos m(), - AJ 

(25) 

(26) 

(27) 

where P,,m(cos 0) are the associated Legendre poly­
nomials, Eq. (24) can be expressed in geocentric coor­
dinates r, 0, A 

V(r,0,),)=GML i: (~)" 
C n~ 2 C 

{ 
n (n-m)' 

· P,,(cos 0) P,,(cos 8J + 2 I ; 
m~ I (n+m). 

· P,,m(cos 8) P,,m(cos 8J ·cos m(), - ),J} 
GM r OG (a)" +--L- L Jn -

(' cn~2 (' 

· {(n + 1) P,,(cos OJ [cos(] cos Oc 

. , d?.i( cos 0) I 
+sin 0 sm (Jc cos(A- ),c)] + d () e~ 

8
c 

· [cos(] sin Oc -sin(] cos (Jc cos(),- }J]}. (28) 

By introducing Cartesian coordinates it can be verified 
that the second sum in (28) determined by the coef­
ficients J" represents the potential of the homogeneous 
field bH. 

Numerical Results 

For the determination of the flattening effect on the 
tidal forcing field only the term n = 2 will be considered 
in (16) because J)J2 -;;:., io- 2 for n>2 (Kaula, 1968). 
With 

(29) 

- GMLA ML 
bH=gM(ro)-go=-2-s+-M gE(c) 

C E 

=G~L (l1_)2 ~J2 [(3cos 2 0c-l)s+sin20ct]. (30) 
c (' 2 

The corresponding term in the tidal potential 1s given 
by Eq. (24) 

r·bH= GML (l1_)2 ~~12 
c c c2 

· [(3 cos 2 (Jc -1) cos !/J-sin 20c sin !/J cos a]. (31) 

With a/c=0.016593, ME/ML=81.30, and CME, a and 
12 from the IAG 1980 system of constants (Muller, 
1980) 

~c~L (~Y12=9.46210-sm2;s2. (32) 

This is about 10 % of the n = 4 term of the normal tidal 
potential 

GM (a)4 
-.-L - =9.68810- 4 m 2/s 2. 

(' c 
(33) 

The magnitude of the corresponding force per unit 
mass given by Eq. (30) is 

3 GM (a)2 
-~ - J2 =1.4810- 11 m/s 2 ~lngal 
2 (' c 

(34) 

that is about 3 % of the magnitude of the vertical force 
per unit mass for n = 4 

GM (a)3 
4~ - = 62.3 ngal. 

c c 
(35) 

The first part of the homogeneous field bH in (30) 

3 GML (a)2 2 A bs=2l2-2- - (3cos ec-l)s 
(' c 

(36) 

always points away from the Moon since cos 2 Oc < ! for 
all possible values of the lunar declination bc=¥-8c. 
The second part 

(37) 

changes its sign for (Jc=¥ i.e., when the Moon is in the 
equatorial plane of the Earth. As bu is a homogeneous 
field it represents a constant tidal forcing field acting 
simultaneously on the whole Earth at a specific time t. 
It is of course varying with time. 

The periodicities can be determined from the corre­
sponding part of the potential expressed in geocentric 
coordinates. From the Eqs. (28) and (31) this is 

r · bH =GM L (l1_)2 ~~12 {(3 cos 2 (Jc - l)(cos 0 cos Oc 
c c c2 

+sin(] sin Oc cos(), - ..A.J) 

-sin 28c [cos(] sin (Jc -sin 0 cos Oc cos (A-AJ]}. 
(38) 

The time variations are caused by the variations of c, (Jc 
and Ac in Eq. (38). The major inherent periodicities are 
lunar-daily from cos(A-AJ, lunar-third-monthly from 
the products of cos (Jc and sin (Jc with cos 2 8c and 
sin28C' and monthly from c- 4 , cosec and sinec. 

At present it appears hopeless to search for the 
described effect in the tidal gravity records because it 



|00000141||

has an amplitude of only about 1 ngal. It should how­
ever be noticed that a homogeneous tidal field may 
raise deformations in a radially stratified Earth and 
especially a forced tidal motion of the central core of 
the Earth into an eccentric position, and it might be 
suspected that this effect could have significant dynami­
cal consequences. This suspicion must however be dis­
carded because the displacement will be of the order of 
1 µm as can be shown by considering the balance be­
tween the homogeneous tidal and the repelling gravi­
tational force acting on a solid inner core in a fluid 
outer core with constant but different densities and an 
assumed density difference of 2 g/cm 3 . 
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