
|00000232||

J Geophys (1981) 49:226-233 Journal of 
Geophysics 

On a Type Classification of Lower Crustal Layers 
Under Precambrian Regions 

A.G. Jones 
Institut fiir Geophysik der Westfalischen Wilhelms-Universitiit, Gievenbecker Weg 61, D-4400 Munster, Federal Republic of Germany 

Abstract. Various parameters pertinent to the lower crustal layer 
under Precambrian regions are listed for locations where seismic, 
and geomagnetic or geoelectric, studies have been undertaken. 
The parameters define three distinct types of lower crustal layer 
with certain dominant characteristics: Type I - "Normal" - typi
cal continental seismic parameters and a high electrical resistivity 
(103-104 Qm); Type II - "Intermediate" - high compressional 
wave velocity (either fixed Vv=7.0 km s- 1 or transitional Vv= 
6.7-->7.3kms- 1 ) and a moderate resistivity (100-300Qm); Ty
pe III - "Low" - a low shear wave velocity layer (LVsL), high 
Poisson's ratio ( > 0.30) and low electrical resistivity (10-50 Qm). 
Possible conditions and rock types, existing at the P-T environ
ment of the lower crust and which could account for the observa
tions, are suggested. The zoning of Canada into types implies 
that Type II layers are shield "edge" effects, and that inability to 
observe what is regarded as the final stage of development of 
a shield region under certain shields may be due to their being 
too small. 
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Introduction 

Various seismic and electrical studies over Precambrian regions 
of the world have been able in the past to detail some of the 
parameters of the lower crustal layers, e.g., compressional wave 
velocity (Vp), shear wave velocity (Vs), density (p), Poisson's ratio 
(o") from multi-method seismic studies, and electrical resistivity 
(R - the normal symbol for electrical resistivity p is not used 
to avoid confusion with density) from geoelectric and geomagnetic 
methods. However, confusion is often apparent in the literature 
as to why certain features are found in some parts of the world, 
but not in others. This confusion is perhaps highlighted by Kovtun 
(1976) who states, with reference to geomagnetic studies, that 
"at present, we have almost no results on which a study of 
the 'normal' distribution of conductivity vs depth in Precambrian 
shields could be based" 

It is with these points in mind, that the author has attempted 
a broad classification of lower crustal Precambrian layers into 
three types. In the following section, each of these types will 
be described in turn and examples of their locations will be speci
fied. The locations and their corresponding data sets, both seismic 
and geoelectric, were chosen for the following reasons: 

(i) all come from stable regions of low seismicity and heat flow, 
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(ii) the data sets have all been thoroughly scrutinized by the 
groups involved, and 

(iii) the information is readily available. 

Finally, possible candidates for the rocks at lower crustal depths 
causing the various observed responses are suggested. 

Classification 

Type I - "Normal" 

The prime example of a Type I lower crustal layer is that observed 
in the centre of the Canadian shield. Seismic models presented 
by Wickens and Buchbinder (1980), based on surface waves (Wick
ens 1971) and refraction information (Mereu and Hunter 1969), 
Hall and Hajnal (1973), and Green et al. (1980), representative 
of middle and northern Manitoba, are illustrated in Fig. 1 a, and 
their estimated parameters for the lower crustal layer are detailed 
in Table 1. The model of Wickens and Buchbinder (1980) was 
shown by them to be consistent with the S-wave residuals observed 
in the central shield region. 

A transient electromagnetic sounding investigation undertaken 
by Jacobson (1969; reported in Keller 1971) in Manitoba inferred 
that there must exist a layer of uniform resistivity, of R ~2,000 Qm, 
to depths greater than 20 km, whilst magnetotelluric (MT) investi
gations by three groups in Alberta (Srivastava and Jacobs 1964; 
Vozoffand Ellis 1966; Reddy and Rankin 1971) all infer resistivi
ties for this layer of 103-104 Qm. 

It appears that the Ukrainian shield also falls into this Type I 
category. Models P2 and P3 of Jentsch (1979) display a lower 
crustal layer with VP= 6.2-6.4 km s- 1 (the very thin transitional 
layer between 32.5-33.4 km depth, of velocity increase from 6.8 
to 7 .6 km s - 1 can be ignored for this comparison), and the data 
from the majority of magnetotelluric stations recorded by Tkachev 
(1973; reported in Kovtun 1976) display apparent resistivities of 
greater than 103 Qm over the period range 1-103 s. Such values 
require a highly resistive crust, i.e., resistivity greater than about 
4,000 Qm. 

The heat flow observed on the Canadian shield is, on average, 
39 mW m- 2 (Rao and Jessop 1975), i.e., 0.93 HFU, whilst on 
the Ukranian shield values of 25-35 mW m - 2 (Kutas et al. 1979), 
i.e., 0.60-0.84 HFU, are reported. 

Type II - "Intermediate" 

The three main examples of a Type II lower crust are to be found 
in northern Scotland, eastern Canada, and northern Sweden. No 
heat flow estimates are available for northern Scotland (Bloomer 
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Table 1. Lower crustal parameters as inferred by the investigations reported in the text 

Type Code Area Parameters Reference 

VP (km s 1 ) V, (km s - 1) p (g cm - 3 ) (J R(Qm) 

w { 6.6 3.8 0.252' Wickens and Buchbinder (1980) 
G Central Canadian shield 6.55 Green et al. (1980) 
HA 6.85 4.0 0.241 a Hall and Hajnal (1973) 
JA Manitoba 2,000 Jacobson ( 1969) 
SR Alberta 940 Srivastava and Jacobs (1964) 
R Alberta 3,500 Reddy and Rankin (1971) 
VO Alberta 10,000 Vozoff and Ellis (1966) 

JE { 6.4 Jentsch (1979) 
T Ukrainian shield >4,000 Tkachev (1973) 

BA { 7.0 Bamford et al. (1978) 
A Northern Scotland 4.04' 0.249 Assum p~ao and Bamford (1978) 
H 100-300 Hutton et al. (1980, 1981) 

0 
Southern Superior Province { 7.0-7.2 O'Brien (1968) 

ST 50-1,500 Sternberg (1979) 
Bl Eastern Superior Province 6.7-.7.l Berry and Fuchs (1973) 
HA Southwestern Superior Province 7.1 ±0.04 Hall and Hajnal (1973) 

II G Southern Churchill Province 7.1, 7.2 Green et al. (1980) 
B2 Northern Grenville Province 6.7-. 7.5 Berry and Fuchs (1973) 
KU Grenville Province 200 Kurtz and Garland (1976) 
D Superior Province 270 Duncan et al. (1980) 
JO Southeastern Grenville Province 7.14 4.11 3.11 0.25 Jordan and Frazer (1975) 

{ 
6.75-. 7.15 Hirschleber et al. (1975) 

Northern Sweden -7 Lund (1970) 
140-450 Jones (1981) 

Southern Norway 7.17 Masse and Alexander (1974) 

BL { 6.8 3.75-3.85 2.95 0.28' Block et al. (1969) 
v Southeastern Africa 10-50 van Zijl (1977) 
B 50 Blohm et al. (1977) 

III 
JO { >6.8 3.4 3.11 >0.30 Jordan and Frazer (1975) 
c Southeastern 10-30 { Connerney et al. ( 1980), 

Grenville Province Connerney and Kuckes (1980) 

• denotes a calculated value assuming perfect elasticity on the rock 
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et al. 1979), but in eastern Canada values of 40-50 mW m- 2 (1.0-
1.25 HFU) are most commonly observed (Lachenbruch and Sass 
1977), and in northern Sweden 38-47 mW m- 2 (0.91-1.12 HFU) 
are reported (Eriksson and Malmquist 1979). 

In northern Scotland there exists between the Highland Bound
ary Fault and the Great Glen Fault a lower crustal layer with 
Vp=7.0 km s- 1 (Bamford et al. 1978) and a=0.249 (Assumpi;ao 
and Bamford 1978), giving a calculated Vs=4.04 km s- 1 , which 
corresponds with a layer of electrical resistivity R= 100-300 Qm 
(Hutton et al. 1980, 1981). The original seismic interpretation of 
this layer was of a velocity gradient layer from 6.7 to 7.3 km s- 1 

(Bamford et al. 1976), but such a layer was later found not to 
be consistent with ray-tracing and a uniform layer of 7.0 km s- 1 

was found to be most effective (Bamford et al. 1978). 
In eastern Canada, various seismic and geomagnetic studies 

have been carried out. In southern Superior Privince, O'Brien 
(1968) reported a zone with Vp=7.0-7.2 km s- 1 at a depth of 
19. 5 km for stations on the north eastern side of Lake Superior, 
whilst Berry and Fuchs (1973; reproduced in Berry and Mair 
1977) interpret their data as inferring a velocity gradient layer 
with Vp=6.7--> 7.5 km s- 1 between 27-40 km depth. This layer 
correlates with a geoelectric layer of 270 Qm, the top of which 
deepens from 19 km in the south-west to 29 km in the north-east, 
defined by Duncan et al. (1980) for the region around Timmins, 
and with a layer of R=50-1,500 Qm for Wisconsin found by 
Sternberg (1979). 

In Grenville Province, Berry and Fuchs (1973) find another 
velocity gradient layer with VP=6.7-->7.l kms- 1 between 22-
40 km, whilst Jordan and Frazer (1975) report a layer between 
15-25 km with Vp=7.14 km s- 1 and Vs=4.11 km s- 1 The 2-di
mensional geoelectric model for eastern Canada presented by 
Kurtz and Garland (1976) has a uniform crust under Grenville 
Province of R=200 Qm. 

In northern Sweden, the best fitting gradient model to the 
"Blue Road" seismic data includes a layer with VP increasing 
from 6.5 km s- 1 at 20 km depth to VP=7.15 km s- 1 at 42 km 
depth (Hirschleber et al. 1975). Values of around 7 km s - l for 
the bottom crustal layer were confirmed in a more sophisticated 
analysis of the data by Lund (1979). Monte-Carlo inversion (Jones 
and Hutton 1979) of the geomagnetic response function observed 
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Fig. 2. a, b as Fig. 1 but for investiga
tions over Type II lower crustal layers 

at Kiruna (Jones 1980), with the constraints that i) the top layer 
have a resistance of 104 Qm (Westerlund 1972) and ii) that the 
second interface be at 46 km, to correspond with the latest values 
of Moho depth (Bungum et al. 1980), yielded a lower crustal layer 
of R= 140-450 Qm (Jones 1981). 

Type III - "Low " 

The two examples for a Type III lower crustal layer are from 
the Adirondacks, New York State, and the southeastern African 
shield region. 

In the Adirondacks, a joint controlled-source and horizontal 
spatial gradient (HSG) investigation by Connerney et al. (1980) 
and Connerney and Kuckes (1980) determined a zone of low 
electrical resistivity (LRL - low resistivity layer) of R= 10-30 Qm 
at a depth of 25-34 km. This is exactly the depth at which Jordan 
and Frazer (1975) interpret a shear wave low velocity layer (LVsL) 
from SP phases for stations mostly situated close to Ottawa. The 
studies of Jordan and Frazer inferred that the layer must have 
a minimum Poisson's ratio of a=0.30, hence the value of the 
compressional wave velocity for the layer VP= 6.80 km s- 1 is to 
be regarded as a minimum. Thus, the existence of a compresssional 
wave low velocity layer (L VpL) is not proven, but the existence 
of an L VsL has been confirmed by Wickens and Buchbinder 
(1980). 

Two geoelectric studies on southern African cratons inferred 
LRLs. These were on the Kaapvaal craton (van Zijl 1977) and 
the Zimbabwe (formerly Rhodesian) craton (Blohm et al. 1977). 
Data from the Limpopo mobile belt also were explained in terms 
of an LRL, but heat flow estimates on mobile belts have been 
observed to be anomalously high when compared with cratonic 
terrains (Carte and van Rooyen 1969) hence the model is not 
included here. Bloch et al. (1969), in an analysis of surface waves 
observed by an array of seismometers centered on Johannesburg, 
infer from their data the existence of two LVsLs, one at 12 km 
and the other at 24 km (Fig. 3 a). The depth of the deeper L VsL 
corresponds exactly to the depth of the LRL as interpreted by 
Blohm et al. (1977), and the LRL under the Limpopo mobile 
belt (van Zijl 1977). It may be significant that the model of Bloch 
et al. (1969) does not display an LVPL. 
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Resistivity ( Q.m) 

Discussion 

The notable characteristics of the three types classified are: 

a) Type I - Normal 

typical continental VP, Vs and (J values 
- highly resistive, i.e., greater than 103 Qm. 

b) Type II - Intermediate 

VP of around 7.0 km s- 1 , either fixed (northern Scotland) or 
transitional from 6. 7 -> 7 .2 km s - 1 (eastern Canada, northern 
Sweden) 
typical (J values of around 0.25 
moderately resistive, R= 100-300 Qm. 

c) Type III - Low 

low shear wave velocity layer (LVsL), possibly without a corre
sponding low compressional wave velocity (no L V PL) 
high Poisson's ratio, of (J > 0.30 
highly conductive, with R= 10-50 Qm. 

The association of L VPL layers with LRL layers in more tecton
ic regions has been known since the early 1970's (see, for example, 
Landisman et al. 1971), even though the existence of both was 
initially in question (Healy 1971; Porath 1971). Many theories 
have been proposed to explain these layers, the two most often 
mentioned being the role of water of dehydration escaping into 
pore spaces (Hyndman and Hyndman 1968), or of hydrated rocks 
under typical P-T conditions in the lower crust (Landisman et al. 
1971; Jordan and Frazer 1975). For Precambrian regions, the 
former of these is however considered untenable (see later). 

At Moho depths under the centre of the Canadian shield ( -
35 km, Wickens and Buchbinder 1980), the temperature is be
lieved to be in the range 400°-500° C (Rao and Jessop 1975), 
preferably towards the upper end of this limit (475° C as given 
by Eq. (5) of Hall 1977), with a pressure of around 10 kbar 
(9.5 kbar, Eq. (7), Hall 1977). At such P-T and anhydrous condi
tions, eclogite is the stable mineral assemblage for basalt of quartz 
tholeiite composition, rather than garnet granulite (Ringwood 
1975, p. 25, Figs. 1-6). However, the inferred compressional wave 
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B 
Fig. 3. a, b as Fig. 1 but for 
investigations over Type III lower 
crustal layers 

velocities for eclogite under these P-T conditions, of Vp=7.8-
8.6 km s- 1 (Press 1966, Table 9-2; Manghnani et al. 1974; Chris
tensen 1979), require the presence of large amounts of minerals 
of relatively low VP, e.g., quartz and alkali feldspars (Ringwood 
1975, p. 39). This implies a dioritic rock in the granulite-eclogite 
facies as a suitable candidate, e.g., quartz diorite, VP= 6.71 km s- 1 , 

Vs=3.8 km s- 1 (Press 1966, Tables 9-2 and 9-3), p=2.68-
2.96 g cm- 3 (Daly et al. 1966, Table 4.1). Measurements of electri
cal conductivity on alkali basalts at 500° C indicate values in 
the range R= 103-104 Qm (Bondarenko and Galdin 1972; re
ported in Haak 1980) whilst Volarovich and Parkhomenko (1976) 
specify a range of R= 104-105 Qm for granodiorites, quartz dio
rites and diorites at this temperature. 

The compressional wave velocity for the Type II layer, VP= 
6.8-> 7 .2 km s - 1, can be explained by either a garnet granulite 
in an anhydrous crust, as suggested by Manghnani et al. (1974) 
and Ringwood (1975, p. 39), or by amphibolites in a hydrous 
crust (Ringwood 1975, p. 41). Measurements of Poisson's ratio 
at 10 kbar by Manghnani et al. (1974) on their garnet granulite 
samples give a mean of a= 0.282 ± 0.01 7 (one standard deviation), 
which is too large compared with field observations (northern 
Scotland, (J = 0.249 ± 0.020, Assumpi;;iio and Bamford 1978; east
ern Canada, u=0.25, Jordan and Frazer 1975). Also, the electrical 
resistivity of the majority of dry rocks expected to be found at 
lower-crustal depths under Precambrian regions is never below 
103 Qm for temperatures less than 500° C (Brace 1971, Fig. 3; 
Haak 1980), with the notable exception of a Wisconsin gabbro 
with R=650 Qm at T=500° C (Housley and Oliver 1977). The 
effects of increasing the pressure to 10 kbar at this temperature 
were shown by Volarovich and Parkhomenko (1976) to have little 
effect on the electrical conductivity, i.e., less than one third an 
order of magnitude. However, Ringwood (1975, pp. 35-47) be
lieves that gabbro is not stable at the P-T conditions of the lower 
crust. Seismic evidence appears to confirm this suggestion because 
although gabbros display compressional wave velocities of the 
correct order when at 10 kbar (VP - 7.2 km s- 1 , Press 1966, 
Table 9-2), the effects of temperature will reduce this to VP -
6.8 km s - 1 (Press 1966, Fig. 9-7; Christensen 1979). Also, gab bros 
do not show sufficiently large shear wave velocities, e.g., Vs= 
3.84 km s- 1 (Press1966, Table 9-4). Thus, having apparently dis
qualified all suitable rocks that might exist in an anhydrous lower 
crust, it is necessary to conclude that hydrous conditions prevail 
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Fig. 4. Sketch map of Canada illustrating the zones of lower crustal layers, letters refer to investigations as reported in the text (see Table I) 

in Type II lower crustal layers. Amphibolites , as suggested by 
Ringwood (1975, p. 41) as the probable rock at the P- T conditions 
of a hydrous lower crust, display the correct order of seismic 
velocities (Vp= 7.18- 7.22kms - 1

, Christensen 1965 ; Vs= 
4.03 km s - 1

, Christensen 1966) but it is probably necessary to 
infer a slightly seismically faster epidote amphibolite (VP = 7.67-
7.75 km s- 1 , Christensen 1965) due to the reduction in veloci ties 
at temperatures of around 400- 500° C (Christensen 1979). Unfor
tunately, not many measurements of the electrical resistivity of 
amphibolites a t these P-T conditions have been made, but the 
data ofVolarovich and Parkhomenko (1976) illustrate that certain 
amphibolites display the required resistivity of a few hundreds 
of Qm at 500° C. 

For the Type III lower crustal layer , Jordan and Frazer (1975), 
van Zijl (1977), and Connerney et al. ( 1980) all independently 
suggested the effects of serpentinisation to explain their data. Jor
dan and Frazer (1975) observe that a serpentinised peridotite has 
the high Poisson' s ratio required , and van Zijl (1977) and Conner
ney et al. (1980) both remark that serpentinised rocks display the 
appropriately low resistivities, of 10- 50 Qm, provided that the 
water of hydration does not escape (Zablocki 1964; see van Zijl 
1977). 

An interpretation of the high conductivities observed in Ty
pe III crusts in terms of electrolytic conduction is considered un
tenable by Connerney et al. (1980) because investigations by 
Richter and Simmons (1977) on Precambrian igneous rocks showed 
that the majority of the original cracks were healed or sealed 
by secondary minerals. However, the somewhat speculative models 
presented by Dewey (1969a) and Ringwood (1975, p. 298- 304) 
for the development of a Benioff zone require, as a passive initial 
state, a thick accumulation of sediments, the prime example of 
which is the non-volcanic margin of the spreading Atlantic Ocean 
(Drake et al. 1959). Assuming that the east coast of North America 
represents such an initial state, and considering that there is much 
support in the Appalachians for a progressive migration of defor
mation and metamorphism towards the stable continental foreland 
(Dewey 1969b), it is not inconceivable that the lower foreland 
crust be fractured and fissured. If so, then electrolytic conduction 
effects would become significant, which would explain the results 
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of Connerney et al. ( 1980) for the Adirondacks, and also those 
of Edwards and Greenhouse (1975), of a highly conducting lower 
crustal layer, R=2 Qm, underlying the southern Appalachians. 

An eigenparameter investigation by Edwards et al. ( 1980) of 
the model presented by Blohm et al. ( 1977) revealed that the resis
tivity and depth of the lower crustal conducting layer are not 
independently estimated when geoelectric sounding data are in
verted . The resolvable eigenparameter pertinent to this layer is 
the layer's depth-integrated conductivity, i.e., thickness-conductiv
ity product. Hence it may be possible that the data of van Zijl 
(1977) and Blohm et al. (1977) are also consistent with a slightly 
less conducting but thicker zone of Type II class. A similar possi
bility cannot be suggested for the conducting zone delineated by 
Connerney and Kuckes (1980) and Connerney et al. (1980) as 
their controlled-source electromagnetic induction experiment in
ferred a resistivity in the range R = 12.5- 25 Qm for this layer. 
The conductance of this layer was defined by Horizontal Spatial 
Gradient (HSG) data as being approximately 400 S (Connerney 
and Kuckes 1980), hence inferring a thickness of 5- 10 km. This 
estimate is fully consistent with the 10 km thick L VsL delineated 
by Jordan and Frazer (1975). 

There is evidence from Jordan and Frazer (1975) that a Ty
pe III crustal layer underlies a Type II layer. The data from Berry 
and Fuchs (1972) and Kurtz and Garland (1976) imply that the 
Type III layer pinches out to the north, leaving solely a Type II 
layer, and the work of Connerney et al. (1980) suggests the oppo
site is true on going further southeast, i.e., that the Type II layer 
pinches out and a Type III layer exists a lone. For the Canadian 
shield, a sketch map is shown in Fig. 4 illustrating the lower 
crustal layers as classified in this paper. The illustration includes 
the recent results of Green et a l. (1980) with a layer of VP= 7.1-
7.2 km s - 1 underlying southeastern Churchill Province at a depth 
of 36-45 km and those of Hall and Hajnal (1973) of a layer with 
Vp=7.1 ±0.04 km s - 1

, observed south of Lake Winnipeg. 
It is apparent from Fig. 4 that a Type II lower crustal layer 

is an "edge " phenomenon of the Canadian shield, where " edge " 
means not the actual physical boundary of the shield, but a wide 
zone encompassing the central core of the shield. This may be 
evidence of a general feature of shield regions in that their centres 
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Table 2. Classification system with values of the parameters inferred for the lower crustal layer and conditions and possible candidates for 
the rock responsible 

Classification 

Type I "Normal" 
Type II " Intermediate" 
Type III "Low" 

Parameters 

VP (km s -l) 

6.6 
6.8--> 7.3 
6.8 

V, (km s- 1 ) p (g cm_,) 

3.8 
4.1 3.11 
3.4-3.7 3.11 

have evolved into what is regarded as the final stage of develop
ment of a continental plate (see, for example, Hyndman and Hynd
man 1968) whilst their edges develop much more slowly due to 
their tectonic juxtaposition to other environments. This is in agree
ment with the classification that the "edge" of the Fennoscandian 
shield, as inferred not only in northern Sweden (see above) but 
also by Masse and Alexander's (1974) reinterpretation of Sellevoll 
and Warrick's (1971) data revealing a lower crustal layer of be
tween 21.8-42.2 km depth with Vp=7.17±0.05 km s- 1 for south
ern Norway, displays a Type II lower crustal layer. Such an inter
pretation of the information described by Fig. 4 leads naturally 
to the suggestion that there may be a size criterion involved, 
in that if a shield is below a certain size, it may never evolve 
into the final stage, hence explaining the southeast African data. 

It is possible that a different explanation is required for the 
existence of the Type II lower crustal layer observed in northern 
Scotland, as the temperature at the depth of the transition from 
high to intermediate resistivities could be of the order of 500° C 
(Hutton et al. 1980), leading to a hotter Moho boundary than 
herein discussed. However, the tectonic equivalence of northern 
Scotland and the Grenville Province of eastern Canada, i.e., both 
zones belonged to the same continent before the closure of the 
Early Paleozoic lapetus Ocean, has been noted by many authors 
(see, for example, Phillips et al. 1976; Jones and Hutton 1979; 
Keen and Hyndman 1979; Williams 1979) and hence 1t 1s not 
too surprising that they should display the same type of lower 
crustal layer. 

Conclusions 

From this comparison of seismic and electric investigations over 
various Precambrian regions of the world, it appears that the data 
may be classified into three distinct groupings with regard to 
their information content concerning the lower crustal layer. The 
descriptive parameters of each of these three types are listed in 
Table 2, together with possible conditions and rock types that dis
play the required characteristics in the P-Tenvironments involved. 

The zoning of the Canadian shield region implies that the 
Type I layer should be expected in the centre of large shields, 
surrounded by a Type II layer. This suggests that there may be 
some size criterion, in that if a shield is too small it does not 
fully develop to a Type I crust, which may be regarded as the 
end stage of a development process (Hyndman and Hyndman 
1968). 

The Type III lower crustal layer requires a more complete 
explanation, especially in terms of the high values of conductivity 
associated with it. The two observations reported here may be 
local effects, in that both have radically differing explanations 
(possible fracturing due to the passive initial state of Benioff zone 
development in eastern North America?), or may be global effects, 
e.g., that the layer is another edge effect of a shield region. 

Conditions and possible 
rock types 

(5 R (Qm) 

0.25 103-104 Anhydrous: Quartz Diorite 
0.25 100-300 Hydrous: Amphibolite 

>0.30 10-50 Hydrous: Serpentinite 

It must be remarked that it is not expected that all Precambrian 
lower crustal layers fall into one of the three general categories 
detailed in Table 2. One seemingly notable exception to this classi
fication is the East European Platform. Seismic models of this 
platform include a lower crustal layer with VP= 6.8-7 .2 km s - 1 

(Bozhko and Starovoit 1969; Kosminskaya and Pavlenkova 1979; 
Pavlenkova 1979; Patton 1980), hence defining it as Type II. How
ever, magnetotelluric data (Kovtun and Chicherina 1969), particu
larly the "generalised curve" for the region (Vanyan et al. 1977), 
imply a highly resistive crust, i.e., a Type I lower crustal layer. 
This latter result is, in the opinion of the author, not totally 
conclusive as it is based solely on apparent resistivity information, 
whereas the magnetotelluric phase is far more discriminating be
tween Types I, II, and III. 

Finally, this study has shown the decided advantages of under
taking cooperative seismic and geomagnetic or geoelectric mea
surements in the same area. Independent interpretations of the 
data recorded may differ wildly, hence either, or both, may be 
wildly wrong. This may be particularly true for seismic data from 
shield regions because, as noted by Pavlenkova (1979), compres
sional wave velocities of between 6.6-7.7 km s- 1 are not usually 
observed in the first arrivals, hence implying that seismically Ty
pe II layers are difficult to delineate. A good example of this 
is Masse and Alexander's (1974) reinterpretation of Sellevoll and 
Warrick's (1971) data from southern Norway. The initial model 
had a lower crustal layer of Vp=6.51 km s- 1 (Sellevoll and War
rick 1971), whereas a more sophisticated analysis gave a value 
of VP=7.17 km s- 1 (Masse and Alexander 1974). Joint interpreta
tion of dual data sets, in the manner described in this work, 
is likely to reduce drastically the number of possible likely candi
dates for the lower crustal layer. 
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