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Abstract. The linearization approach to the evaluation
of travel-times of seismic body waves propagating in
inhomogeneous, slightly anisotropic media is discussed.
General linearization equations are specified both for
quasi-compressional and quasi-shear waves. Various sit-
uations of seismological interest are investigated in de-
tail. This applies, e.g., to the situation where the unper-
turbed medium is isotropic and to the case where the
unperturbed ray is a plane curve. The numerical exam-
ples presented suggest that the linearization approach
gives travel-times of seismic body waves with a ac-
curacy sufficient to solve direct and inverse kinematic
problems for inhomogeneous anisotropic models of the
Earth’s crust and the uppermost mantle.
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Introduction

The ray method was first.applied to inhomogeneous
anisotropic media by Babich (1961). In principle, the
ray tracing and travel-time computations can be per-
formed in arbitrary inhomogeneous anisotropic media
where all the 21 elastic parameters change with all the
three coordinates. The ray tracing systems for general
anisotropic media are derived and discussed in detail in
Cerveny (1972) (see also Cerveny et al., 1977; Crampin,
1981). The evaluation of rays and travel-times of seis-
mic body waves in inhomogeneous anisotropic media is
now a well-understood problem. Various computer
programs for simpler anisotropic media (e.g., trans-
versely isotropic) have been written. Some numerical
examples can be found in Cerveny and Psencik (1972),
Cerveny et al. (1977), and in Jech (in press 1982). The
computations are straightforward, but rather lengthy.
They may be simply applied to the solution of direct
kinematic problems, but it would be rather time-con-
suming to try to use these methods to solve some
inverse kinematic problems for inhomogeneous aniso-
tropic media.

A simpler procedure for the solution of both direct
and inverse kinematic problems in inhomogeneous,
slightly anisotropic media is based on a linearization. A
linearization procedure for the solution of direct and
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inverse kinematic problems in laterally inhomogeneous
isotropic media was suggested by Romanov (1972,
1978). The procedure has been used successfully in the
inversion of travel-time data for laterally heterogeneous
isotropic structures (Alekseev et al., 1970; Firbas, 1981;
Novotny, 1981). Romanov (1978) was also the first to
derive the linearized equation for one special simple
case of an anisotropic medium (which can be applied,
e.g., to quasi-shear SH waves in a transversely isotropic
medium). For general anisotropic media, the lineariza-
tion equations are derived in Cerveny (in press 1981).
This reference, however, gives only the derivation of
general equations; they are not discussed there from a
seismological point of view. Similar linearization equa-
tions have been obtained independently by Hanyga
(personal communication 1981).

In this paper, the linearized approach to the evalua-
tion of travel-times of seismic body waves in a general-
ly inhomogeneous, slightly anisotropic medium is in-
vestigated in greater detail. Attention is devoted to
both quasi-compressional and quasi-shear waves. Ex-
plicit solutions are written for several situations of
practical interest in seismology. This applies, e.g., in
case where the unperturbed medium is isotropic, and
where the ray in a unperturbed medium is a plane
curve.

Two numerical examples are presented. They sug-
gest that the accuracy of the linearization formulae will
be high enough to solve both the direct and inverse
kinematical problems in an inhomogeneous, slightly
anisotropic Earth’s crust and in the uppermost mantle.

The proposed method can be used in 3D laterally
inhomogeneous, slightly anisotropic media. The unper-
turbed medium may be either isotropic or anisotropic.
In this sense, the method gives some generalization of
the well-known approach suggested by Backus (1965)
which has been broadly used to investigate anisotropy
in the uppermost mantle. Backus’ method can be ap-
plied to homogeneous, slightly anisotropic media and
starts from an isotropic unperturbed medium.

Linearization of Travel Times
in Inhomogeneous Anisotropic Media

Let us consider an inhomogeneous anisotropic medium
described by 21 elastic parameters ¢, and by the
density p. The elastic parameters c,;,,, density p and



their derivatives are assumed to be continuous func-
tions of Cartesian coordinates x;, i=1, 2, 3. Instead of

the elastic parameters c;;,, we shall use the parameters

aijkzzcijkz/l’a (1)

and we shall also call them elastic parameters, for
simplicity.

We shall investigate the propagation for an elastic
body wave in the medium described above. We de-
scribe its wavefront by the equation

t=1(x,). 2)

A very important role in the investigation of aniso-
tropic media is played by the 3 x 3 symmetric matrix I,
whose elements are given by the expressions

I;k:pi D1 %jk1s (3)

where p,, p,, py are components of the slowness vector
p, p;=0t/0x;. In Eq. (3) and throughout this paper, the
Einstein summation convention is used.

The matrix I' has three eigenvalues, G,, G,, G;.
They are solutions of the characteristic equation

Det (I}, G, 5,)=0, @)

where §;, is the Kronecker delta, 6;, =1 for j=k, 6, =0
for j*k.

Three independent wavefronts can propagate in the
anisotropic medium. The propagation of any of these
wavefronts is controlled by a non-linear partial differ-
ential equation of the first order (also called the “eiko-
nal equation”)

G(pys Pys D3y X15 Xp, X3)=1, 5)

m=1,2,3, p;=0t/0x;. One of the wavefronts (say, m
=1) corresponds to the so-called quasi-compressional
wave, the other two wave-fronts (m=2, 3) to two dif-
ferent quasi-shear waves. In the degenerate case of two
identical eigenvalues, there will be only two indepen-
dent wavefronts. This applies, e.g., to the isotropic me-
dia, where G,=a?p;p;, G,=G3=p*p;p;; o and f being
the velocities of the compressional and shear waves,
respectively.

If the eikonal equations are known, it is not difficult
to write the ray tracing system for any of the three
waves propagating in an inhomogeneous anisotropic
medium, see Cerveny (1972). The ray tracing system
can be used to evaluate the trajectory of the ray, the
components of the slowness vector p; and the travel-
times at any point of the ray. For general types of
anisotropic media, however, the ray tracing systems are
rather cumbersome; the rays are mostly 3D spatial
curves, with a non-zero torsion.

A simpler procedure for the evaluation of travel-
times in slightly anisotropic inhomogeneous media was
suggested by Cerveny (in press 1981). The procedure is
based on linearization. Here we shall only shortly sum-
marize the results, without deriving them.

We shall consider a medium H® with elastic param-
eters af,, and call it the “unperturbed” medium. We
now change the elastic parameters slightly. The new
medium, denoted by H, will be described by the elastic
parameters d,
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Qi1 = A+ A (6)
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where a/;,, represent “small corrections” to or “small
perturbations” of ap, .

Let us now specify two points, M° and M, with
coordinates x? and x;. We select one of the three waves
propagating in the anisotropic medium and denote by
[’ the ray connecting the points M° and M and by
79(x?, x,) the travel-time along I’ from M° to M in the
H° (unperturbed) medium. The following expression
can then be written for the travel-time t(x?, x;) from
MP° to M in the H medium (described by the parame-
ters d; ),

T(X?’ x)=1°(x7, x)+ 1! (X?, X;)s (7)

where t!(x?, x;) is a small correction to the travel-time
7%(x?, x;) due to the perturbations in the elastic param-
eters, aj,,.

The basic linearization formula, derived by Cerveny
(in press 1981), gives a linear relation between t'(x}, x,)
and a}j,,

o (xp, x)=—3]
Lo

0G .
m ) oal, d:O 8
(0a,-jk,)o ikt 4° ®

The integral is taken along the ray L°, dt° is the
infinitesimal time increment along I°. The derivative
0G,/0a;;, is determined in the unperturbed medium
H°, and contains only the unperturbed slowness vector
components.

Thus, we have obtained a very important result: To
determine the travel-time correction t!, we can just
integrate the small perturbations of elastic parameters
al,, (multiplied by some weighting function) along the
unperturbed ray I°; we do not need to evaluate the
new ray in the perturbed medium. A similar result is
well known for isotropic media, see Romanov (1972),
Gubbins (1981).

Equation (8) is quite general. The expressions for
G,, are, however, rather complicated, except for cases
when the characteristic equation (4) factorizes (see be-
low). When the eigenvalue G, does not coincide with
any of the two remaining eigenvalues, the derivatives
can be found using the theorem of implicit functions
directly from (4). We then obtain

(aGm ), =21 D,/DY )

oa; jki1/0
where

D11=(F22—1)(F33—1)—F223,
D22=(F11—1)(F33—1)—F123,
D33=(F11_1)(F22'—1)_F122»

D=D,,+D,,+D,,, (10)
D12=Dz1=F13F23_F12(F33_1)»

Dy3=Dy, =1}, I 5(I3,—1),
Dy3=Dy,=1, 13— 11T, - 1),

I =pi Py G-

Again, p, (i=1,2,3) denote the components of the
slowness vector in the H® medium, along the ray L’.
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These are known, being obtained as a by-product in
the ray tracing of L°.
Inserting (9) into (8) yields

! (X?, x;)= _% f (pipy Djk/D)O ailjkl dt®. (11)
LO

Let us compare Egs. (8) and (11). Equation (8) can
be used generally, but it leads to applicable results only
in the case when analytical expressions for G, are
simple. Equation (11) gives the results analytically, in a
closed form, for an arbitrary anisotropic medium. Some
complications in the application of (11), however, ap-
pear when the unperturbed medium H® is isotropic.
For quasi-P waves, Eq. (11) can be used generally even
in the isotropic case. For S waves, its application is not
strictly permitted, as the two eigen-values correspond-
ing to shear waves coincide. But the equation yields
certain interesting results even in this case, as shown
below.

Isotropic Unperturbed Medium

Equations (8) and (11) give especially simple results
when the unperturbed medium H° is isotropic. This
situation has great practical importance. The evalua-
tion of rays and travel-times in an inhomogeneous iso-
tropic medium is now a well-understood problem, even
for laterally inhomogeneous media. A large number of
programs is available for computing rays in isotropic
media. Moreover, the computation of rays in isotropic
media is fast and not so time consuming as in aniso-
tropic media. In this section, therefore, we shall specify
the linearization formulae for the case where the unper-
turbed medium H° is isotropic. We shall also try to
show what can be obtained for S waves in this case.

To do this, we must first find the meaning of
(Dy/D), in (11) for isotropic media. Let us denote
Lame’s elastlc parameters by A and u; a=(1+2u)¥/p?
and B=(u/p)* being the velocities of compressional (P)
and shear (S) waves. To simplify the following equa-
tions, we shall also use the notations

A=4i/p, M=p/p. (12)
We can then write
Aijr1 = A5 5k1+M(5ik 5,‘1"‘5” 5,'1()» (13)

This yields

Ck:(A+M)pjpk+M(Pipi)5jk~ (14)
For D=D ,+D,,+D;; we obtain
=(1=Mp;p)3—Q2A+5M)p,py). (15)

As we can see from (15), the function D vanishes for
pipi=1/M=1/B?, ie. along the ray of the S wave. For-
tunately, the factor (1—Mp;p,) will also appear in the
expression for D;, and D;/D remains fully determined,
even for p; p,—»l/ﬁ2 After some manipulation, we ob-
tain

D
D
where T=p, p;.

(A+M)p;p,—8,[2—(A+3M)T]
3—QA+5M)T

—6+ : (16)

For a P wave, T=1/a* and (16) yields

Djk/D=a2Pij- (17)
Similarly, for an S wave, T=1/B? and (16) yields
Djk/Dz%(éjk—ﬁz PPy (18)

Let us now assume that the ray L% in the medium
H® corresponds to a P wave. For the travel time of a
quasi-compressional wave tp(x?, x;) in H we can then
write the following expression (see Eq. 7),

TP(x?: xi) = Tg(x?’ xi) + T;(X?, xi)a (19)

where 3 is the travel time of the P wave in the H°
medium along the ray L% and tp is given by the re-
lation

Th(x), x;) Ioc DiD; Dy Py Ay dT° (20)

Here « denotes the velocity of the P waves in the H°
medium. The components p; correspond to a ray L° in
the unperturbed medium H°, p; p,=1/a?.

The situation is more complicated if the ray in H®
corresponds to an S wave. Even though two quasi-
shear waves propagate in the anisotropic medium, Eq.
(11) gives only one travel-time correction t!(x?, x)). It is
not clear yet what the meaning of this correction is. We
shall denote it by t4(x?, x;). We can then write

‘CS(X?a xi) TS(xlax)+TS(xl’ 1) (21)
where
TS(xe 4j(61k B pjpk DDy Ukldr (22)

Here f again denotes the velocity of S waves in the H°
medium and the components p; correspond to a ray I°
in the unperturbed medium H®, with p, p,=1/B>

To decide the meaning of t§(x?,x,) in (22), if H
medium is anisotropic, we can use a slightly different
approach. Let us denote the travel times from M° to M
of two quasi-shear waves by 7y, (x?, x;) and 74,(x?, x;),
and the corresponding eigenvalues by Gg, and Gg,.
Then see (7),
Ts1 (X705 X) =19 (x7, x;) + 15, (x7, x,),

T, (x7, x)—rs(x,, x;) + 15, (x7, X)),

(23)

x;) is the travel time of the S wave in the
medium HY’ along the ray L°. The functions t}, and ti,
are given by (8), where G,, equals Gy, and Gg,, re-
spectively. Equation (23) yields

where t9(x?,

Ty (X7, xi)"'fsz(x?s x;)
=2Tg(X?, xi)+‘r§1( z’ 1)+TSZ(X?9 xi): (24)

where

‘CSI(xM x)+t52(xw ,)

__ j. {a(G81+GSZ)} ailjkldto~ (25)
2 Lo 0

aaijkl



Thus we evaluate the superposition of travel-time cor-
rections for both quasi-shear waves. We can find the
derivatives for Gy, + Gy, more simply than for Gg; and
Gy, independently. We find them analytically and spec-
ify them for the anisotropic medium. Finally we ob-
tain

Tay (X7, x) + 18, (x7, x;)
= _%jo(éjk~ﬁ2 pjpk) piplailjkldfo- (26)
L

Comparing (22) and (26) we find that ti(x?, x;) com-
puted in (22) is an average value of the travel-time
correction for both quasi-shear waves.

When the two quasi-shear waves separate, we can
write the linearizations for S1 and S2 independently.
This situation will be considered below where we find
that Eq. (26) is valid in all cases we investigate.

In the preceding equations, we used the notation
a;y, for the elastic parameters (divided by the density),
with four indices i, j, k, I. This form is particularly
suitable in equations for a general anisotropic medium
because of various symmetries and the Einstein sum-
mation convention. In practical applications, however,
it is more common to use the notation A4,,, for elastic
parameters, with two indices m, n. The A4,,, are derived
from the g;;, in the well-known way: m corresponds to
the first pair of indices, i, j, and n to the second pair, k,
I. The correspondence i, j—m and k,[—n is as follows:
L1-1; 2,2-2; 3,3-3; 1,2-6; 2,1-6; 1,3-5;
3,1-5;2,3-4; 3,24

We shall now rewrite the basic equations (20) and
(26) using the constants 4, instead of g,;,. We shall
again use the notation

mn

__AO +A1

mn?

(27)

where A9, corresponds to the H® medium, and 4,,, to
the H medium.

When the ray I° in the isotropic H° medium corre-
sponds to a P wave, we can rewrite the expression (20)
for the travel-time correction of the quasi-compres-
sional wave t,‘,(x?, x;) in the following form

T;(X?’ x;)= 0‘ {A11P1+A§2P2+A33P3

+2(A12+2A66)p1 p3+2(A15+245%5) pip3
+2(A35+2A44,) P5p3+4A1pip, +4A15PiDs
+4(A,+2A450) pip, ps+4A56 P3P, +4A45,P5D;
+4(A3s+2A456) P3P P3+4A5spip, 445,030,
+4(Aé<; +2455) p% Pi P2} dz°. (28)

The symbols p; again correspond to the components of
the slowness vector in the unperturbed medium H°,
. .:1/a2
pl pl . . ) . . . .
Similarly, when the ray I° in the isotropic medium
H° corresponds to an S wave, we get from (26), for the
sum of the travel-time corrections of quasi-shear waves,

Tél(x?, x,-)+t§2(x?, x;)
—SJALAT + AL+ AL P+ (AL + ALy + 450 P
L

+(A)y+ AL, + ALY P3+2(A1 + AL+ ALs) Py Dy
+2(A{5 Ays+A4e) Py D3+ 2(Aby + A3+ A5 Py D3]
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- p? [A11P1 22P2+A33P3+2(A12+2A66)P1Pz
+2(A +2A55)P1P3+2(A§3+2A 4)P2P3+4Aicp1p2
+4A}5P1P3+4(A14+2A§6)P1P2P3+4A26P2P1
+4A43,0303+4(A)5+2450) P3Py P3+4A35P3 D
+4A;4pgp2+4(Aé6+2Ai5) P:Zsp1pz]}dfo- (29)
Equation (29) can also be written in a different form,
which might be more useful in certain situations. If we
insert p, p,=1/B* into (29), we obtain
tél(x?,x)+t§2(x?,x)

jﬁz Aé5+A66)p1 (A41t4+A )p2+(A 4+A )P
+(A‘1+A s H AL A —241,—24%) p?p?
+(A11+A§3+Ai4+A61>6_2Ai3 2A;5)P1P3
+(A;2+A§3+Aé5+Aé6—2Ai3 2A‘114)P2P3

+2(A36+Ass—Ale) PIp,+2(Ass+ AL — Als) P} D3
+2(A§4+Aé4_2A14_3A§6) PipPaDs
+2(A16+Ags—As6) Py Py +2(ANg + AL — AL,) P3 P3
+2(A}5 +Aé5_2A55_3Aio) pgpl Ps

+2(A1s+ A4 —A3s) py Py +2(A5 + AL, — AL Py D3
+2(A}6+Aéb_2A;6—3Ai5)plpng} dz°. (30)

Let us again emphasize that p; denote the components
of the slowness vector in the unperturbed H® medium.
The quantities p; may be replaced by the direction
cosines n; of the direction of the slowness vector (per-
pendicular to the wavefront). In the integrals for quasi-
compressional P waves, we have p,=n;/a, and in the
integrals for quasi-shear waves p,=n,/p.

Especially simple formulae are obtained if the me-
dium H (perturbed) is also isotropic. Using (13) for a,lk,
and inserting it into (20) and (22), we obtain without
difficulty the following simple formulae
fo(/ayds, tg(x), x)= [ 6(1/p)ds
Lo Lo

T;)(X?, xi) =

Here 6(1/x) and 6(1/p) denote small corrections to the
quantities 1/« and 1/8, respectively. The quantity ds is
an elementary arc-length along the ray I°.

These equations are well-known in seismology (Ro-
manov, 1972; 1978). They have been used successfully in
the solution of 2D inverse kinematic problems in in-
homogeneous 2D isotropic media (Alekseev et al., 1970;
Firbas, 1981; Novotny, 1981). They have also been used
in the joint determination of velocity structure and
hypocenter location (Gubbins, 1981).

Linearized Expressions for Ray Velocities

In this section, we shall present one simple application
of the preceding theory - the linearized expressions for
ray velocities. By the term ray velocities we understand
the velocities with which the wave propagates along a
ray (group velocities). It is not difficult to show
(Backus, 1965) that the linearized expressions for ray ve-
locities are equivalent to linearized expressions for the
phase velocities; the differences between both the veloc-
ities are of a higher order. In strongly anisotropic me-
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dia, of course, the ray velocities may be rather different
from the phase velocities.

In this paper, we consider only slightly anisotropic
media. We shall start with Eq. (7) which gives the
travel-time from any point M° to a point M in a
slightly anisotropic inhomogeneous medium. The ex-
pression (8) for the travel-time correction can generally
be written in the following form

thx), x)=—3[ W°x,, p,) d<°. (31)
Lo

Specific expressions for W° for various situations can
be obtained from equations presented in the preceding
section.

Let us now assume that both the media H° and H
are homogeneous. Denote the distance between M°
and M by r, the ray velocity in H° by v, and the same
velocity in H by v. Equations (7) and (8) then yield

A, 32)

and, consequently,
v=r,(1=3W~Y,  v—vy=v,{(1-5W%~1—1}. (33)

As WO is small,
Dy~ O (34)
0 2 .

Similarly, we can write
v?—vg~vg WO. (35)

When the medium H° is isotropic, we can write the
following expressions for the velocity v, of a quasi-
compressional wave and the velocities of both quasi-
shear waves vg; and vg,:

vy 05,281~ B2 W, (36)
where W° can be obtained, e.g, from (20) and (26).
Inserting W°=a?p;p;p,p,aly, for P waves and W°

=(5j{‘)—ﬁ2 P;p) Pi Py, for S waves, see (20) and (26),
we obtain

vi—o?~o WO,

2 2 1 ’
Up— 0"~y Gy (37)

(377)

2 2 2 1 ,
Vg, T U5, —28% ~n;n aijkl(éjk_nj”k)'

The Eq. (37') corresponds fully to that obtained by
Backus (1965) for the phase velocities of quasi-compres-
sional waves (Eq. (17) in Backus, 1965).

Another simple equation is obtained by the com-
bination of both formulae (37°) and (37”). We take into
account that the rays of P and S waves in a homo-
geneous isotropic medium are the same (a straight line
between M° and M). From (37) and (37"), we then
obtain
Vp4 g, + 5, =22 o ~nmpal;,. (38)
An equivalent equation was also obtained by Backus
(Eq. (28), Backus, 1965).

Plane Curve Unperturbed Ray

The formulae (12)-(30) are applicable when the unper-
turbed medium H° is isotropic. Now we return to a
general case of an anisotropic medium H° The for-
mulae (8) and (11) remain valid, both for quasi-compres-
sional and quasi-shear waves. To specify these for-
mulae for some special cases of practical interest, it will
be useful here to write the expressions for I}; explicitely.
For a general anisotropic medium, we have

F11=A11P%+A66P§+A55P§
+2A416P1 Py +2A4,5P P3+2A54P,2 D3,

Ly =Agopi+ A5, p5+A4u D3
+2A4,6P1 P2+ 24460 P3+2A4,54P,5 P35

Iy3=Asspi+ A p3+A5;03
+2A4,45p1P2+2A455p,P3+245,P,P5,

r1z:F21=A16pf+A26P%+A45P:25+(Ax2+’466)l71Pz
T(A4+Ase) Py p3+(Aye+As5) P2 ps,

Ly=T5,=A15pi + Ay D3+ A35 3 (A4 + As) Py D
+(Ay3+As5) Py p3+(Ase+Ays) Py P »

Ly=Ty,=A56 Pt + A0 P53+ A543+ (A5 +A46) Py D,
+(A36+Ays) Py D3+ (Az3+A4l) P2 D3 (39)

Let us now assume that the ray L[ in the unper-
turbed medium H° is a plane curve and is fully situated
in a plane X. We choose the Cartesian co-ordinate
system x,, x,, x5 so that the plane is described by the
equation x,=0. We shall assume that the plane x,=0
is a vertical plane and that the x; axis corresponds to
the depth axis, as is common in seismological appli-
cations. (The following investigations may be applied,
however, to an arbitrary orientation of the plane 2.) If
the elastic constants do not depend locally on x, in the
vicinity of L°, the component p, of the slowness vector
p does not change along the ray. We shall consider the
case p,=0. In addition, we assume

A=A, =A3,=A3=A45=A5,=0, (40)
so that the matrix of elastic parameters is as follows

Ay A Ay 00 A4, 0
Ayy Ayy Ay, Ays Ay
Ay 0 A4, O

(41)
A44 0 A46
A, 0
A66

This is the most general selection of elastic parame-
ters for which the ray I° is fully situated in the plane
x,=0. The model (41) includes, e.g., the monoclinic
system with the symmetry plane coinciding with the
plane x, =0.

For I;; (39) then yields

r“=A11pf+A55p§+2A15p1p3,
F22:A66P%+A44P§+2A46P1p3>
F33:A55PE+A33P§+2A35 P1Ps>



F13=F31=A15pf+A35p§+(A13+A55)p1p3,
F12:F21=F23=F32=0. (42)

The characteristic equation (4) can be factorized in
this case. We can rewrite it in the form

(I3, — G){(!; 11— 0U33-06)— E23}=0~ (43)
Thus, two eigenvalues are solutions of the equation

(ﬂ1_G)(r33_G)_n23=0- (44)

If the plane x,=0 is a vertical plane, the two so-
lutions of (44) correspond to a quasi-compressional P
and a quasi-SV waves. We can denote them by G, and
Ggy. The remaining eigenvalue Gy, corresponding to a
quasi-SH wave, is given by the equation

GSH =I5,. (45)

Thus, the derivatives of the eigenvalues can be obtained
simply for quasi-SH waves. For G, and Gy, using (5)
and the theorem on implicit functlons (44) yields

0G _ 1 oL~ D= D)-T3]
0A; T, +Ty,—2 oA, ‘

tJ

(46)

By inserting (45) into (8), for the travel-time cor-
rections of the quasi-SH wave we obtain
(X7, x)=—3 j (Afepi+ ALy p3+2454p, py)dT°  (47)

For both the quasi-compressional P and quasi-SV
waves, we have formally the same equation,

rll’,SV(x; , X)) = (F101 +I5-2)7"

: {p%(A(5)5P%+A(3)3P§+2Ag5P1p3—1)A}1

+p3(A7 1P1+A(5)5P3+2A15P1P3 1)A§3
+(A33P3+A11P1 2A(1)3P1P3 p%)Aés
+2p1(p3Ag3+p1p3AgS—pi’A?S—pfpsA?3—p3)A}5
+2P3(p?A(1)1+P%P3A(1)5_P1P§A?3_P§A25_P1)A§5

—2p; p3(A?5 P%"'Ags P§+(A(1)3+A25)P1 p3)A}3} dr®.
(48)

Here p, are components of the slowness vector in the
H° medium; they correspond to the relevant waves.
They are dlfferent for a quasi-compressional P and a
quasi-SV wave.

Thus, we have obtained separated expressions for
the travel-time corrections corresponding to quasi-SV
and quasi-SH waves.

Let us now specify Eqs. (47) and (48) for the isotro-
pic H° medium. Then

A =A5, =A%, =07,

AG = A3 =A% = P,

AV =A% =A3,=0> =257

with all other elastic constants vanishing. For quasi-

shear waves we put pi+pi=1/p2 for a quasi-compres-
sional wave p}+p3=1/x*. From (48) we then obtain
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TI(X?, x;)
= 2{A11P1+A33P3+2(A}3+2A55)P1P3
LO
+4A}5p?p3+414;5p1pg} d°, (49)
Tév(x xX)=—3 j BZ{Ass P1 A5 Pg
+(A}1+A33—2A§5—2A13)p1p§
+2(A15 _A;S)lh Ps(Pg_p%)} dr®. (50)

Together with (47), Egs. (49) and (50) give a com-
plete system of linearization equation for all the three
waves propagating in the isotropic inhomogeneous me-
dium under study, when the ray I° is situated in the
plane x,=0. From (47) and (50), we also easily obtain
an expressions for the time difference between the trav-
el-times of both quasi-shear waves. If we multiply the
integrand of (47) by p*(p? +p3)=1, we obtain
o (x?, x) — iy (x?, X))

i L

= =3 [ B {455~ Ag6) Pt +(As — A4 Pl
LO
+(A}1+A;3_A41t4_A<1)6_2Ai3_2A;5) P% p§
+2(A15_A41m_‘4_§.5)l71 Pg
+2(A;5_A41t0—‘4i5) P? P3} dz®. (51)

Similarly we can check that Egs. (47) and (50) yield a
general formula (30) when we put p, =0 and insert (40).

Similar formulae can easily be derived also for cases
when the ray [? is situated completely in the plane x,
=0 or in the plane x;=0. They can either be derived
directly, or obtained by rotating the coordinate system.
We shall consider here only one of these two cases,
when the ray I° is situated in the plane x;=0 (constant
depth). A similar situation has often been considered in
seismological applications and was also discussed in
detail by Backus (1965). This may also be considered as
a “model situation” for refraction shooting measure-
ments, in which all the rays are “horizontal”. (They are
assumed to propagate just below the Mohorovicic dis-
continuity, which is assumed to be a surface of con-
stant depth.)

We shall assume p;=0 and put

Apy=A;s5=A4,=A4)5= A4 =A5,=0. (52)

As in (40), this is the most general selection of elastic
constants for which the ray I° is situated completely in
the plane x;=0. The model (52) includes, e.g., the mono-
clinic system with the symmetry plane coinciding with
the plane x;=0.

The characteristic Eq. (4) can then be factorized.
The separated quasi-shear wave corresponds to the
quasi-SV wave in this case, not to the quasi-SH wave
as in the previous case. The quasi-SH wave is coupled
with the quasi-compressional P wave. For the travel-
time corrections we obtain general equations, similar to
(47) and (48)

Toy (X0, x)=—3 jO(Aés pi+ ALy p3+2A455p,p,)dt% (53)

11+r202 2)-!

1 0
Tp,su(Xis X;)=— %j
LO



102

~{pi(A4Q 6p1+A 2p2+2A26P1P2 1) 4},
+P2(A(1)1p1+A26P2+2A16P1p2 I)Aéz
+(pTAY +p5 A3, — 249, pip5— pi—p3) A

+2p,(p3 A3, + Py P3 A3 — P1P2A12 Ao Py —D2) Ale

+2p, (49, pi— AL, pyp3+ AL PP, — ASep3—D1) Ao

—2P1p2(A(1)6P1+A26P2 (A?2+Ago)p1P2)Aiz}dTO~
(54)

The time differences corresponding to the quasi-com-
pressional P and quasi-SH waves in (54) are distin-
guished by different p, and dz°. If the unperturbed H°
medium is isotropic,

r},(xf’,x)
j o> {A}, p}+ A3, p5+2(A1,+245,) Pip3

+4A}6p1p2+4Aé6pgp1}d1:0, (55)
T3 (xXPs X)) = fﬁZ{A 6 P1+ A5 D3

+(A}, + 22_2Aiz_2Aée)P%P§

+2(A;6_A}6)p1 Pz(p% "P%)} dz°. (56)

. . . .
For the difference g, — 75, We obtain

Tév(x?’ X;)— TSIH(X?’ x;)

_%j BZ {(Aés”‘Aés)P?‘*‘(Aiéf'Aée) Pg

+(A ot Ass— AL — A}, +2A41,+245,) P 3
+2(A4s+ AL —ALe) PiD,

+2(A4s+ Ay —A1e) py P33} AT’ (57)

The discussion and application of all the formulae pre-
sented above is straightforward.

Let us mention one exceptionally simple application
of all the above formulae. If the unperturbed medium
H° is homogeneous, the rays [° are straight lines. This,
of course, does not mean that we can remove the
integrals from the formulae presented above, as the
medium H is inhomogeneous. However, it would be
possible to replace the integrals by sums and specify
the corrections of the elastic parameters A4}, is some
rectangular network. The values of 4}, at the grid points
of the network could then be found by some modi-
fication of the method suggested by Aki et al. (1977) for
3D isotropic media.

Numerical Examples

It is not simple to express analytically the accuracy of
linearized equations. It would be necessary to devote a
more detailed and extensive numerical study to this
problem.

In this section, we shall present two simple numeri-
cal examples. As the computer programs to evaluate
exact travel-times are now available for a vertically
inhomogeneous, transversely isotropic medium (Cer-
veny et al., 1977), we shall use such a medium for our
numerical experiments. For simplicity, we shall only
consider quasi-compressional waves, not quasi-shear
waves. For two selected models of vertically inhomo-
geneous transversely isotropic media, we shall compute

Table 1. Model of transversely isotropic medium used for
computing the travel-times in Fig. 2. 4,,, A5, Ass, A¢e and
A, are the depth-dependent elastic parameters divided by
density (in km?/s?), § is the coefficient of anisotropy

Depth 4, As; Ass Age Ay 0
(km)

0 7.84 4.00 1.33 2.61 284 299
1.5 12.25 7.24 243 4.08 448 239
4.0 23.04 17.64 5.88 7.68 8.33 139
18.0 4225 3844 12.81 14.08 14.66 5%
25.0 5329  51.04 17.28 17.76 18.00 2%
50.0 7482 6241 21.06 2492 2653 9%

VELOCITY (KM/S)

DEPTH (KM)

V3V vy

Fig. 1. Model used for computing the travel-time curves pre-
sented in Fig. 2. V,=) A, corresponds to the horizontal

velocity, V,=1/A4,, to the vertical velocity, V to the average
velocity, V=%V, +V,)

the travel time both exactly and by linearization. We
shall use Cartesian co-ordinates so that the ray I° is
situated in the plane x,=0. For computation of travel-
time corrections, we shall use Eq. (49) with A}5=A4;;
=0. The exact travel times are evaluated by numerical
ray tracing, directly for the perturbed model of the
medium specified by elastic parameters A,,. In the
linearization approach, we start with some unperturbed
isotropic medium specified by parameters A9 and de-
termine the unperturbed travel times t° for this me-
dium by well-known methods. Then we determine the
small perturbations of elastic parameters A.,=A,.,
—A? and evaluate the travel time correction t' by the
linearization equation (49). Then, the travel time 7 is
obtained by (7), t=1°+1!.

First Example

The model of the vertically inhomogeneous, trans-
versely isotropic medium used for the computations is
specified in Table 1 by the values of the elastic parame-
ters A, As3, Ass, Agg, A5 at depths of 0 km, 1.5 km,
4km, 18km, 35km and 50 km. These values are in-
terpolated by cubic splines to arbitrary depths. The

quantity V,=7/A4,; corresponds to the quasi-compres-
sional velocity in the horizontal direction, V;=1'A4,,
in the vertical direction. These velocities are shown in

Fig. 1. The coefficient of anisotropy ¢ (introduced here



REDUCED TIME (S)

0O 1 20 30 4 SO 60 70 80 90 100 M0 120
EPICENTRAL DISTANCE (KM)

Fig. 2. Reduced travel-time curves computed for the models
specified in Table 1 (see also Fig. 1). Reduction velocity is 6.0
km/s. The curve T, is exact and corresponds to a transversely
isotropic medium. The bold curves T;, Ty and T correspond
to isotropic media with the velocities V;, V3 and V, respec-
tively. The remaining three curves (thin) correspond to a
transversely isotropic medium and are obtained by linear-
ization; the thin continuous curve from T, the thin dashed
curve from T, and the thin dotted curve from T

as a ratio 0=100-(V, —V,)/V;) varies with depth; it is
very large close to the Earth’s surface (6~30%) and
smaller at larger depths, see Table 1 and Fig. 1.

The travel-time curve for this model of a trans-
versely isotropic medium is shown in Fig. 2, by a bold
line (denoted by T,). The same figure also shows the
travel-time curves for three isotropic media. The first
corresponds to the medium described by the P velocity

V=Y A,, (denoted by T), the second by the P ve-
locity V;=1/A,; (denoted by T;) and the third by the

average value V=1(]/4,,+1/4,,) (denoted by T). The
differences between the travel-time curve corresponding
to the anisotropic medium and the travel-time curves
corresponding to the three isotropic media are rather
large.

Figure 2 also shows three travel-time curves for the
transversely isotropic medium specified by Table 1 ob-
tained by linearization starting from the three isotropic
media discussed above. We can see that these travel-
time curves obtained by linearization are very close to
the exact travel-times. For example, if we start with the
“average” isotropic medium, the travel-time differences
with respect to the exact travel-time do not exceed
0.04 s in the range of epicentral distances 10-120 km.
In absolute terms, the travel-time differences at an epi-
central distance of 120 km is less than 0.2 9.

Second Example

The model is specified in Table 2, as in the first exam-
ple. The horizontal and vertical P velocities V; and V;
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Table 2. Model of transversely isotropic medium used for
computing the travel times in Fig. 4. A, A5, Ass, A¢, and
A, are the depth-dependent elastic parameters divided by
density (in km?/s?), § is the coefficient of anisotropy

Depth 4, As3 Ass Age As o
(km)

0 4.84 4.00 1.33 1.61 1.73 10%
1.5 8.82 7.29 243 294 3.14 109,
4.0 27.34 17.64 5.88 7.11 7.60 109
18.0 46.51 38.44 12.81 15.50 16.58 109
25.0 62.73 51.04 17.28 2091 21.89 109,
50.0 75.52 6241 21.06 2517  26.39 109

VELOCITY (KM/S)

DEPTH (KM)

50+

V3 v \

Fig. 3. Model used for computing the travel-time curves pre-
sented in Fig. 4. V|, V; and V correspond to the horizontal,
vertical and average velocity, respectively

REDUCED TIME (S)

00 10 120

0 1 20 30 4 S0 60 70 80 90

EPICENTRAL DISTANCE (KM)

Fig. 4. Reduced travel-time curves computed for the models
specified in Table 2 (see also Fig. 3). The reduction velocity is
6.0 km/s. The explanation of individual curves is the same as
in Fig. 2
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and the average velocity V are shown in Fig. 3. We can
see that the anisotropy increased in the lower part of
the model. The coefficient of anisotropy ¢ is nearly
constant throughout the model, independent of depth,
close to 10%,. All the travel-time curves shown in Fig. 4
are constructed in the same way as in the preceding
example. Again, when we construct the travel-time
curve by linearization from the “average” isotropic me-
dium, differences from exact travel-times do not exceed
0.05s. In absolute terms, the travel-time difference at
an epicentral distance of 120 km is less than 0.25 %,
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