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Abstract. Channel waves serve as a tool for the detection of 
discontinuities in coal seams caused, for example, by tectonic 
faulting. In this paper we study Love waves propagating 
along two-dimensional discontinuous coal seams. Synthetic 
seismograms, computed with an explicit finite difference 
method, are presented for three types of discontinuities: the 
seam end, the horizontal and the vertical offset. In all cases 
the discontinuity reflects mainly those waves with short wave­
length and transmits those waves with large wavelength. An 
additional damping term is introduced into the finite differ­
ence formulation in order to prevent reflections from the 
edges of the computational grid. The boundary conditions at 
interfaces are all approximated with a truncation error of 
second order. 
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Introduction 

Coals seams are often not continuous but are disturbed by 
micro-tectonic faults, sand channels or tectonic displacements. 
For an effective exploitation of a mine it is important to 
explore such discontinuities in advance. Channel waves are 
most commonly used to do this (Krey 1963). These waves are 
radiated from a source located within the coal seam and they 
are also recorded within the seam. Depending on the geo­
phone setup, either the transmitted or the reflected channel 
wave is recorded. Marked losses in transmission or the occur­
rence of a strong reflection indicate the presence of a discon­
tinuity. 

For a better understanding of the properties of these 
waves, it is useful to investigate the reflection and trans­
mission process theoretically. In the past, channel waves of 
the Rayleigh type were analyzed extensively by model seismic 
experiments (Dresen and Freystiitter 1976; Freystiitter and 
Dresen 1978). In real prospecting, however, mainly channel 
waves of the Love type are recorded, which are difficult to 
study by model seismic means. Therefore we construct 
numerically synthetic seismograms of Love channel waves 
propagating in discontinuous coal seams. The method used 
is an explicit finite difference method, which allows the 
numerical solution of the wave equation in two-dimensional 
inhomogeneous media. In the past this technique has been 
successfully applied to numerous wave propagation problems 
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(Alterman and Loewenthal 1972; Boore 1972; Kelly et al. 
1976). 

In this paper we use a new approximation of the bound­
ary conditions at interfaces, which has some advantage com­
pared to the usual approximation (Alterman and Rotenberg 
1969), as will be explained later. In addition we include a 
damping term into the wave equation which allows us to 
suppress the artificial reflections from the edge of the com­
putational grid. In the next section these extensions of the 
finite difference method will be described. In the subsequent 
section the propagation of a Love wave in a coal seam 
ending with a discontinuity perpendicular to the bedding 
plane is discussed and a simple analytical approximation of 
the frequency dependence of the reflectivity is derived. Some 
more complicated seam discontinuities are also discussed. 

Method of Calculation 

The equation of motion in heterogeneous elastic media can 
be solved with two different kinds of finite-difference schemes. 
In the so-called "homogeneous formulation", the equation of 
motion for homogeneous media is solved numerically. At 
interfaces between media with different elastic parameters the 
boundary conditions for continuity of stress and displacement 
have to be fulfilled in addition. The "heterogeneous formula­
tion" (Boore 1972; Kelly et al. 1976) uses the equation of 
motion in heterogeneous media, where the elastic parameters 
are arbitrarily space dependent. In this case there is no need 
to fulfil boundary conditions explicitly. Kelly et al. (1976) 
showed that these two formulations, when applied to the 
same problem, produce slightly different results. In our treat­
ment we employ the homogeneous formulation, but use a 
different approximation of the boundary conditions with a 
truncation error of second order. With this approximation we 
are able to generalize the homogeneous formulation, so that 
it becomes equivalent to a heterogeneous formulation. 

We start with the equation of motion for horizontally 
polarized shear (SH) waves in cartesian coordinates x and z: 

PVtt = µ(vxx + Vzzl· (1) 

p is the density, µ is the shear modulus and v(x, z, t) is the 
displacement. Subscripts t, x, z mean the partial derivatives 
o/ot, a;ax, a;az. 

The boundary conditions at a horizontal interface at 
depth z=a are: 

µO>v~l)lz-a = µ<2>v~2>1,_. (2a) 

v0 >1,_.=v<2>1,_. (2b) 

Here, the indices in brackets denote the different media. 
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Fig. 1. Arrangement of grid points at a horizontal interface at z = 

(N + 1/2) h. Real points are denoted by o, ficticious points by x The 
ficticious points below the interface belong to the upper medium and 
vice versa 

For the discretization, a rectangular grid with equal spac­
ings Llx=Llz=h is employed. The time step is Lit. Using the 
notation v(mh, nh, pLlt)=v~ "'the well-known finite difference 
approximation of Eq. (1) ~ith a truncation error of second 
order is (Boore 1970): 

where f3=(µ/p) 112 is the shear velocity: 
This scheme is numerically stable, if the condition 

f3Llt ,/,) 
-h-~ l/v 2 is fulfilled. 

The boundary conditions, Eq. (2) are usually approxi­
mated by introducing one line of ficticious grid points at a 
distance h from the boundary and approximating the de­
rivatives in Eq. (2a) by finite differences with a truncation 
error of first order (Alterman and Loewenthal 1972). This 
obviously causes some additional error in the numerical so­
lution. 

In our approximation we put an interface between two 
grid lines N and N + 1 and add a line of ficticious points on 
either side of the interface (see Fig. 1). The boundary con­
dition Eq. (2a) is approximated using central differences with 
respect to the interface at N +t resulting in a truncation error 
of second order: 

µ(!) - µ(2) -
-·(vP -vP )--·(vP -vP ) Ji m,N+I m,N - h m,N+I m,N · (4a) 

Ficticious points are denoted by a tilde. 
Equation (2b) is approximated by linear interpolation be­

tween neighbouring grid points: 

(4b) 
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Fig. 2. Arrangement of ficticious grid points ( x ) in a heterogeneous 
medium in the neighbourhood of a real point (o) at x=mh, y=nh. 
The hatched area indicates the homogeneous region with density Pm n 
and shear velocity /3m,n surrounding the point (m, n) ' 

Equations (4a) and (4b) can be solved for the unknown 
ficticious points: 

ii~.N=(2v~.N+(M -1) v~.N+ 1l/(M + 1) } 

ii~.N+ I =(2v~.N+ I +(M -1) v~,N)/(M + 1) 

with M = µ(2l/µ(ll. 

(5) 

This formulation can be analogously applied to vertical 
interfaces and so any interface consisting of horizontal and 
vertical sections can be modeled. 

We now consider a completely heterogeneous medium 
with velocity /J(x, z) and density p(x, z). In order to apply the 
above concept of boundary conditions to this case, we assume 
that each grid point (m, n) is located in the center of a homo­
geneous quadratic region with parameters /Jm,n and Pm,n (see 
Fig. 2). Between every two neighbouring points there exists 
an interface, where the boundary conditions of Eq. (2) have to 
be satisfied. The finite difference approximation of the homo­
geneous wave equation for the grid point (m, n) is, according 
to Eq. (3): 

p+I _ p-1 + (/Jm,n,dt)2(-p -p +-p +-p ) 
Vm,n - -Vm,n --h- Vm+l,n+vm-1,n Vm,n+l Vm,n-1 

(6) 

Note that ficticious points have been used for all neighbour­
ing points. The displacements at the ficticious points can be 
expressed in terms of real points by using Eq. (5) appro­
priately for all four boundaries. Equation (6) then becomes 

-M 2(v~,n-V~-1,n)+ M 3(v~,n+ 1 -v~.n) 

-M4(v~.n-v~,n-l)J (7) 

with 

We have now obtained a heterogeneous formulation, because 
Eq. (7) is valid in a medium, in which the elastic parameters 



|00000179||

may vary from grid point to grid point. In contrast to the 
heterogeneous formulation of Boore (1972) and Kelly et al. 
(1976), Eq. (7) is completely equivalent to the homogeneous 
formulation (Eqs. (3) and ( 4)). Furthermore, second order 
approximations are used throughout the whole scheme. 

It is interesting to note that Eq. (7) can also be obtained 
following the method of Tikhonov and Samarskii (Mitchell 
1969), which was also discussed in Boore (1972): 

Their approach to the equation of motion in hetero­
geneous media depends on the detailed variation of µ(x, z). In 
this case the coefficients M 1 to M 4 in Eq. (7) have to be 
replaced by integral formulas, for example 

h (Xm+1 dx )-1 
M=-· J -

I 2µm.n Xm µ(X, z) 
(8) 

If µ jumps from µm,n to µm+ l,n at Xm+t' Eq. (8) can be 
integrated and M 1 is the same as in Eq. (7). 

A problem which is common to all finite difference com­
putations is the occurrence of reflections from the boundaries 
of the model. Several methods have been developed to at­
tenuate these edge reflections (Smith 1974; Clayton and Eng­
quist 1977; Reynolds 1978), but none is able to prevent them 
completely. In this paper our approach is to modify the 
equation of motion in such a way that the energy is dissi­
pated within the medium. For the models in our study this 
proved to be a practicable way to suppress disturbing re­
flections almost completely. 

First, Eq. (1) is transformed into the frequency domain 
and the frequency w is substituted by the complex frequency 
w-i<I. Transformation back into the time domain yields a 
modified equation of motion: 

(9) 

Solutions of Eq. (9) describe the propagation of waves with a 

dissipation factor e-"', or, what is equivalent, e -ir (r =dis­
tance traveled by the wave). This means that after a distance 
r0 = {J/<I the amplitude of a plane wave has decreased by a 
factor of e - 1 . Suppressing of edge reflections is now achieved 
by including a zone with nonvanishing <J along the bound­
aries of the grid. This zone has to be so large that the 
amplitudes of waves passing it twice become negligible. In 
order to avoid additional reflections from the boundary sep­
arating the elastic medium with <I= 0 and the dissipating 
medium with <J>O we made <J space dependent and let it 
increase linearly with the distance from the boundary of the 
elastic medium. 

It should be noted that Eq. (9) implies a specific dissi­
pation function Q proportional to frequency and hence a 
strong frequency dependence of dissipation. Therefore, it is 
normally not suited for realistic modeling of dissipative wave 
propagation in seismic media, but only for the suppression of 
unphysical reflections. 

The finite difference approximation of Eq. (9) in a hetero­
geneous medium is obtained in the same way as shown 
before for the elastic wave equation. The difference equation 
corresponding to Eq. (7) becomes 

vP+ I =(<I LJt + 1)-1 {(<J LJt -1) Vp-1+2 (flm,nLJt )2 
m,n m,n m,n m,n h 

[Ml (v~+ 1,n-v~,n)-M 2(v~,n-v~-1.n) 

+M 3 (v~,n+ 1 -v~,.,)-M4 (v~,n-v~.n-ilJ 

+ 2[ 1-<Jm,nLl t] v~.n} (10) 
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Fig. 3. Geometry of the computational model. The dashed line in­
dicates the boundary between the elastic medium (O' =0) and the 
dissipating medium (O' > 0). The grid size was 250 x 80 grid points. 
The grid spacing h was 0.5 m 

With this method the amplitudes of the edge reflections are 
attenuated to about 3 % of the incident amplitudes, if the 
zone with slowly increasing <J is about 25-30 h thick. 

Results 

Reflection and Transmission of Love Waves at the End 
of a Coal Seam 

The first model which we will study in detail is a coal seam 
with thickness d = 2.5 m, shear velocity flc = 1 km/s and density 
Pc= 1.5 g/cm 3, embedded in homogeneous rock with {JR 
=2km/s and pR=3g/cm 3 . A line source is located in the 
middle of the seam. After the horizontal distance L = 20.5 d 
from the source the seam ends with a discontinuity perpen­
dicular to the bedding plane. The geometry of the com­
putational model is given in Figure 3. The source radiates a 
pulse s(t)=sin(2nt/T,)-1sin(4nt/T,J for O<t<T,. T, is the 
pulse duration. 

Figure 4 shows seismogram sections for two different pulse 
lengths T,. The receivers are located at the same depth as 
the source and at various horizontal distances x from the 
source. In Fig. 4a the dominant wavelength in the seam is 
four times the seam thickness d, in Fig. 4b it is reduced to 
2.5d. The dispersion of the direct seam wave is clearly seen, 
resulting in an Airy-phase with large amplitudes in the sec­
ond example. 

Having passed the discontinuity at x = L, the wave pro­
pagates in the rock as a body wave without further disper­
sion. The reflected seam wave shows strong frequency de­
pendence. In Fig. 4a, only a weak reflection can be seen, 
whereas for the higher frequencies in Fig. 4b the reflected 
amplitudes become fairly large, especially in that part of the 
seismogram containing the Airy-phase. A reflection coef­
ficient R and a transmission coefficient T, which are defined 
as follows, show this in more detail. R (T) is the maximum 
peak-to-peak amplitude of the reflected (transmitted) wave, 
measured at a distance x =0.5L (x =I.SL). Both R and Tare 
normalized with respect to the amplitude of the wave coming 
directly from the source, measured at x = 0.5 L. Figure 5 
shows R and T as a function of the dominant wavelength of 
the direct wave. Obviously R increases for higher frequencies, 
while T dominates at low frequencies. Waves which are very 
long compared to the seam thickness, are not reflected at all. 
Figure 5 gives rough information about the frequency range 
that should be used for the optimal detection of discon-
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Fig. 4a, b. Seismogram sections for the model of Fig. 3. The duration 
T, of the source pulse is a 10 ms and b 6.25 ms. L = 50 m 
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Fig. 5. Reflection coefficient R and transmission coefficient T of the 
seam end (model of Fig. 3) as defined in the text versus the dominant 
wavelength An in the seam 

tinmtles. In this case, wavelengths of up to 2-3d produce 
maximal reflection and minimal transmission. 

In order to get more detailed information about the fre­
quency dependence of the reflection and transmission process, 
we compute the reflectivity function r(w) and the transmis­
sivity function t(w) from the amplitude spectra of the three 
waves taken at the points mentioned above. r(w) and t(w) are 
shown in Fig. 6, r(w) behaving like a high-pass filter. It 
approaches zero for low frequencies and goes up to a maxi­
mum of about 0.55 for high frequencies. The transmissivity 
t(w), in contrast, drops to a small but constant value at high 
frequencies. 

In addition to these numerical results we derive in the 
following a simple analytical approximation for the reflec­
tivity r(w). It shows on which parameters the reflection pro­
cess mainly depends. 

Figure 7 gives the amplitude distribution A(z) of a plane 
harmonic fundamental-mode Love wave in a layer between 
two identical homogeneous half-spaces for various frequen­
cies. z=O denotes the middle of the layer and d is its thick­
ness. A(z) is given by 

F • D CHZ•Ml 

Fig. 6. Reflectivity r together with its analytical approximation r,h 
and transmissivity t versus fd for the model of a seam end 
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Fig. 7. Amplitude distribution for plane harmonic Love waves (fun­
damental mode) in a layer between two identical halfspaces for var­
ious frequencies 

{A0 cos(ky 1 z) 
A(z)= 

A0 cos(ky 1 d/2) exp [ -ky2 (1zl-d/2)] 
with 

Y1 =(c2//3?- l)112; Y2 =(l-c2//3~)112 

lzl ~d/2 

izl >d/2 
(11) 

c(w) is the phase velocity and k is the wave number. For 
higher frequencies, the amplitudes become more and more 
concentrated within the layer, as shown in Fig. 7. We now 
assume that only that part of the wave propagating inside the 
layer is reflected at the discontinuity with the reflection coef­
ficient for plane waves r0=(pcf3c-PR/3R)/(Pcf3c+PR/3R). 

Moreover, the amplitudes in the neighbouring rock are 
supposed to be not affected by the discontinuity. Under this 
assumption, an approximation for the reflectivity r(w) can be 
written as 

+d/2 I +oo 
r,h(w)=r0 _tz A(z)dz _J

00 
A(z)dz (12) 

Inserting Eq. (11) into Eq. (12) and making use of the disper­
sion relation for Love waves in a layer of thickness d/2 over a 
halfspace, 

tan [ w~ · (f3c- 2 -c- 2)112 ] = µR Y2/µc Y1 

the final result is 

(13) 
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Fig. Sa, b. Seismogram sections for the model with a vertical seam 
offset b at x = 50 m. The duration of the source pulse is 6.25 ms. Seam 
thickness d = 2.5 m. a b = 0.4d, b b = d 

r,h(w) is shown in Fig. 6. It agrees with the numerically 
obtained result to within a few per cent over the whole range 
of frequencies. From this we may conclude that the amplitude 
of the reflected Love wave depends mainly on the amplitude 
partition of the incident wave between rock and coal, and 
that other effects, such as diffractions at the seam corners, are 
not important in this case. 

Horizontal and Vertical Offsets 

In this section we will discuss the reflection and transmission 
of Love waves at more realistic seam discontinuities. The 
intrusion of a sand channel, for example, may be simulated 
by a horizontal offset. Similarly, a tectonic fault may result 
in a vertical offset of the seam. We compute seismogram 
sections for different values of the horizontal offset a and 
vertical offset b. From the seismograms the reflection and 
transmission coefficients R and T and the reflectivity and 
transmissivity functions r(w) and t(w) are obtained as de­
scribed before. The elastic parameters and the seam thickness 
are the same as in the previous section. The source time 
function is the same in all cases with a dominant wavelength 
Av=f3c· T,=2.5d. 

In Fig. 8, two seismogram sections with different values of 
the vertical offset b can be compared: b=0.4d and b=d, 
respectively. In the first case the reflected seam wave is weak, 
and the transmitted wave is nearly unaffected by the discon­
tinuity. In the second example, however, the reflected wave is 
quite strong, whereas the transmitted wave is relatively weak, 
particularly in that part of the seismograms dominated by the 
high-frequent Airy-phase. From this example we may con­
clude that offsets of less than one half of the seam thickness 
can barely be detected by seam wave observations. 

The reflection and transmission coefficients for both hori­
zontal and vertical offsets are drawn in Fig. 9. (We do not 
show seismogram sections for horizontal offsets, because they 
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Fig. 9a, b. Reflection coefficient R and transmission coefficient T 
versus a the horizontal offset a with b = 0 and b the vertical offset b 
with a=O 

look very similar to those in Fig. 8). For horizontal offsets the 
reflection coefficients are always greater than for the corre­
sponding vertical offsets. The transmission coefficients are not 
so different in the two cases. Only for offsets of about one 
seam thickness or more, are the transmission coefficients for a 
vertical offset significantly smaller than those for a horizontal 
offset. Apparently, reflected seam waves are more sensitive to 
discontinuities with a horizontal offset than to discontinuities 
with a vertical offset. Suppose a reflection coefficient of about 
0.5 is regarded as sufficient for a clear identification of a 
reflected seam wave, then a horizontal offset of about 0.5d 
could be detected, whereas a vertical offset of 1 d would be 
needed to produce the same reflection coefficient. The seam 
wave transmitted through the discontinuity, however, is more 
attenuated in the case of a vertical offset, if the offset is at 
least 1 d. Therefore a large vertical offset may be more easily 
detected with the aid of transmission measurements. 

Finally we look at the reflectivity and transmissivity func­
tions for some special cases. Figure 10 gives r(w) and t(w) for 
the seismogram sections with a vertical offset already shown 
in Fig. 8. For the large offset of one seam thickness in Fig. 
!Ob the reflectivity grows with frequency up to a maximum of 
about 0.6, while the transmissivity drops sharply for frequen­
cies of more than 450/d Hz. This is due to the fact that for 
higher frequencies the amplitudes of the incident wave be­
come more and more concentrated within the seam and 
therefore a higher percentage of the incident energy is re­
flected at the discontinuity. If the vertical offset is less than 
1 d, as in Fig. lOa, the two parts of the seam overlap at the 
discontinuity and the incident energy propagating inside the 
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Fig. lOa, b. Reflectivity r together with its analytical approximation 
r,h and transmissivity t versus fd for the model with a vertical seam 
offset a b =0.4d and b b =d 

seam is only partially reflected. Therefore the reflectivity is 
small over the whole range of frequencies and the transmis­
sivity is only slightly reduced at high frequencies. 

For the models with a horizontal offset we obtained re­
flectivity and transmissivity functions which differ only slight­
ly from those for vertical offsets. The general feature in all 
cases is an increase of the reflectivity and a decrease of the 
transmissivity with frequency. As a consequence it seems not 
to be possible to use spectral analysis of the reflected and 
transmitted seam waves to distinguish between different types 
of discontinuities. 

For the models with a vertical offset it is possible to 
compute the analytical approximation r,h(w) for the reflec­
tivity function. r,h is obtained according to Eq. (12) with the 
difference that integration over A(z) in the numerator is car­
ried out not from - d/2 to + d/2 but over that depth range, 
where a discontinuity is actually present in the special model. 
The approximation r,h is additionally given in Fig. 10. It 
follows that even for these rather complicated models r,h 
predicts correctly the order of magnitude of the reflectivity. 

Summary and Conclusions 

An explicit finite difference scheme has been presented for the 
solution of the equation of motion in heterogeneous media, 
which has the following advantages compared to commonly 
used schemes: 

(1) The boundary conditions at interfaces are all approxi­
mated with a truncation error of second order. Furthermore, 
this scheme is developed into a heterogeneous formulation 
with the same accuracy. 
(2) A damping mechanism is included which attenuates wa­
ves approaching the edges of the computational grid and thus 
almost completely prevents edge reflections. 

With this scheme the propagation of Love waves in coal 
seams with discontinuities was calculated. We restricted our­
selves to some simple discontinuities such as horizontal and 
vertical offsets, although it is possible to treat more com­
plicated models with the same finite difference scheme. 

The reflection and transmission process at a discontinuity 
depends strongly on the frequency range of the incident Love 
wave. As a general result, it was found that low frequencies 
are mainly transmitted and high frequencies are mainly re­
flected. This is explained qualitatively by the amplitude par­
tition of Love waves between rock and coal as a function of 
frequency. For the vertical offset we derive an analytical 
approximation for the reflectivity as a function of frequency, 
which agrees satisfactorily with the numerical results. 

The study predicts the amount of the offset which may be 
detected for a given detection level and a given dominant 
wavelength. The best results are obtained with dominant 
wavelengths up to about 3 seam thicknesses. The reflectivity 
and transmissivity functions differ slightly for different types 
of discontinuities, but probably not enough to allow for a 
discrimination in practice. 
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