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Abstract. An apparent paradox is discussed, ansmg 
from the contrast between an inferred constant mantle 
viscosity profile and theoretical and experimental 
rheological flow laws, which predict a mantle viscosity 
function varying strongly as a function of both temper
ature and pressure. One can explain the paradox by a 
particular choice of material parameters, but then man
tle temperatures (computed adiabatically) are too low; 
increasing the temperature by inserting compensatory 
thermal boundary layers is considered to be dynami
cally unfeasible, again because of the flow law. We 
consider this an impasse, and to resolve it, we suggest 
that old dogmas concerning boundary layers and adia
bats need to be critically re-examined, to understand 
their basis. When this is done, we find that the ob
served constant viscosity is, in effect, demanded by the 
interplay of the rheology with the convective process, 
the mantle temperature is not necessarily adiabatic, and 
some form of layering effect may be expected, although 
the ideas presented here are virtually independent of 
the precise dynamical style of the convective motion. A 
consequence of these results is that explanations and 
extrapolations taken from constant-viscosity convection 
models are, a priori, unjvstifiable. (Specifically, a con
stant viscosity mantle is a fundamental consequence of 
the state of flow together with the fluid parameters and 
rheology: it is not a passive coincidence, which may 
then be used to deduce the flow state, etc.) 
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Introduction 

Fifteen years after the pioneering theoretical paper of 
Turcotte and Oxburgh (1967), our understanding of the 
nature of the convective flow in the Earth's mantle is in 
a somewhat confusing state. Although both theoretical 
(Stocker and Ashby, 1973) and experimental (Goetze, 
1978) work on mantle-type minerals show that the ef
fective viscosity is a strongly varying function of both 
temperature and pressure (which is why the lithosphere 
is 'rigid', i.e. does not deform significantly on con
vective time scales of interest (at least away from 
trenches)), there have been relatively few really serious 

attempts at modelling the mantle as a fluid with such a 
viscosity, and where this has been done (Parmentier 
and Turcotte, 1978; Schmeling and Jacoby, 1981; Kop
itzke, 1979; Christensen, 1982), various stop-gap mea
sures have to be introduced in order to simulate the 
real earth. Particularly, the vital issue of subduction of 
the lithosphere at oceanic trenches has either been 
treated kinematically, or simply ignored; this has se
rious consequences since it is precisely the subduction 
which causes the active style of convection in the man
tle: without subduction, numerical models have a ten
dency to exhibit a rigid, passive, conducting lid (Daly, 
1980; Schmeling, 1980; Schmeling and Jacoby, 1981) as 
they (obviously) should. Turcotte eta!. (1977) propose 
an elastic transverse buckling of the lithosphere to ex
plain subduction, and if we follow this idea, one should 
really study viscoelastic convection of the mantle, a 
proposal which has not been previously considered, 
except in the recent paper by Ivins eta!. (1982). 

On the other hand, many workers have used models 
of high-Rayleigh-number, constant-viscosity convection 
to study various features of interest (McKenzie et a!., 
1974; Hewitt eta!., 1981; Olson and Corcos, 1980; El
sasser eta!., 1979): a recent paper in this style is that of 
Jarvis and Peltier (1982). One can argue variously 
about the merits of such models: on the one hand, the 
inference of a relatively constant sub-lithospheric vis
cosity (Cathles, 1975; Peltier, 1980) supports their use
fulness, but this inference is something which itself 
needs to be explained, and can lead to apparently cir
cular arguments (Elsasser et a!., 1979), or misconceived 
analogies (Hewitt eta!., 1981). 

In any case, difficulties remain with the formulation 
of the problem. Recent geochemical evidence (De 
Paolo, 1981) supports circumstantially the notion that 
there is a chemical layering of the mantle across the 
transition zone. This is plausibly explained by a con
vective layering, which may also be consistent with the 
cessation of deep earthquakes at ~ 700 km, and the 
existence of a seismic discontinuity there. While none 
of these observations has irrefutable implications, they 
are self-consistent, and there is no countering evidence 
in support of whole-mantle convection, other than 
dynamical reasoning (Schubert and Spohn, 1981) (again 
on the basis of constant viscosity convection). It would 
be worthwhile seeing if these dynamic objections stand 
up in the context of a temperature and pressure de
pendent rheology. 
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This paper will not be overtly concerned with the 
specific issue of a layered convection, but will address 
directly the issue of a constant viscosity distribution in 
the mantle, and study how it may be reconciled with 
the expected rheology of the real Earth. In so doing, we 
shall infer some characteristics of the style of con
vection, and will thus be led to a new proposal for the 
mantle geotherm. 

On the face of it, constant viscosity observations 
from post-glacial uplift (Cathles, 1975; Peltier, 1980) or 
polar wander (Yuen et al., 1982) do not appear likely if 
the effective viscosity (Goetze, 1978) based on dislo
cation creep, is of the form 

A [E* + pV*] 
IJ=~exp RT ; (1.1) 

here, r is the second stress invariant, Tis temperature, p 
is pressure, E* is activation energy, V* is activation 
volume, and R is the gas constant. For any acceptable 
temperature in the mantle, one finds E*/RT~ 1 (e.g. 
~ 30) using laboratory measurements of E*, and the 
exponent is far and away the most important part of 
determining the viscosity. In particular, isoviscous tem
peratures are those for which the exponent is approxi
mately constant, i.e. TccE* + p V*; for constant E* 
and V*, this would imply that isoviscous tempera
ture profiles are essentially linear with pressure, 
and hence depth. With commonly quoted 
values E* ~ 125 kcal/mode, V* ~ 11 em 3 /mole, such 
isoviscous profiles have temperature gradients 
d~sofdz ~ 0.7 K km- 1 : here z is the depth coordinate. 
On the other hand, the internal temperatures (i.e. away 
from boundary layers) of a vigorously convecting fluid 
should be approximately adiabatically related (see fur
ther discussion of this below), that is d~d/dz;::;;agT,jc . 
Using values cP~0.27calgm- 1 K-t, g~103 cms-12, 
a~3 x 10- 5 K- 1, ~d~2,000 K (a mean value) we ob
tain d~idz~0.5Kkm- 1 as a reasonable estimate. 
These fairly roughly calculated values show that adia
batic and isoviscous temperature profiles have gradients 
differing by probably no more than a factor of two. 
Nevertheless, a difference of 0.2 K km- 1 in the mean 
temperature gradient across the mantle would imply a 
difference of these two profile temperatures at the core
mantle boundary of 600 K, and in view of the largeness 
of E* /R T, this could correspond to a viscosity differing 
from that in the asthenosphere by at least four orders 
of magnitude: the viscosity law is very sensitive to 
changes in temperature. 

This discrepancy led Weertman (1978) to suggest 
that transient creep processes in the mantle might ex
plain the apparent viscosity, even though the long term 
behaviour would be governed by thermally activated 
steady state processes. Indeed, extrapolation of experi
mental results of Goetze and Brace (1972) to mantle 
strain rates ~ 1 o- 15 s- 1 would suggest a time-scale for 
transient creep of ~ 10,000 years, just that over which 
post-glacial rebound occurs. Peltier et al. (1980) exam
ined the data for transient rheologies, and did not find 
any need to include such effects. In any case, transient 
creep should also be thermally activated, and 
Weertman's motivation would disappear. 

O'Connell (1977) and Sammis et al. (1977) have 
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proposed that other factors may contribute to the res
olution of the isoviscosity problem. It is plausible (see 
also Karato, 1981) that the activation volume V* de
creases by up to a factor of about 4 as p increases 
through the mantle. Such a decrease is able to offset 
the slower than isoviscous increase in temperature due 
to adiabaticity, and it becomes possible to accom
modate the observations with plausible Earth param
eters. On the other hand Jaoul et al. (1981) show that E* 
for forsterite increases with temperature: this would act 
in the opposite direction to decreasing V*. Further, if 
one appeals to variation of V* with p, consistency 
demands adoption of the best constraints available on 
thermodynamic parameters. From results of Dzie
wonski and Anderson (1981), Anderson and Sumino 
(1980) and Stacey (1977), we can infer that the thermal 
expansion coefficient a decreases (a factor of about 3) 
with pressure in the mantle. If we adopt these various 
results, one can compute an adiabatic temperature 
which (given the largeness of E* I RT) to all intents and 
purposes gives a relatively uniform mantle viscosity (see 
Table 1); obviously by adjustment of dK/dp, dV*/dp, 
etc., one could tune the viscosity to be absolutely con
stant. However, more importantly, the resultant adia
batic temperature only reaches a temperature of 
~ 2,400 K at the base, about 800 K less than the con
strained value due to extrapolation of the FeS solidus 
to core pressures (Stacey, 1977). One could again rem
edy this by fiddling with parameters until both adia
batic and constant viscosity temperatures overlap: this 
is a philosophically unsatisfactory and academically un
sound procedure, amounting to no more than curve
fitting, and the remedy should lie elsewhere. In fact, 
Jeanloz and Richter (1979) noted the same difficulty 
and suggested that the temperature deficit could be 
made up by one or more thermal boundary layers at 
the base of the mantle, and at the transition zone 
(670 km) if layered convection occurs: they do not con
sider that temperature jumps at phase changes can 
amount to more than about 100 K in total. 

This proposal sounds reasonable provided one ac
cepts boundary layers as inevitable, and indeed, this is 
exactly what constant viscosity convection leads us to 
expect. However, it is not a priori obvious in what 
manner boundary layers, in which the temperature 
jumps <: 500 K, can and will occur in a temperature
dependent viscous fluid: in fact, more recent consider
ation of this proposition suggests that boundary layers 
in convection of such fluids become asymmetric, the 
bulk of the temperature jump occurring across the cold, 
upper thermal boundary layer: this is evident in 
numerical studies (Schmeling, 1980), experimental stud
ies (Nataf and Richter, 1982), and may be understood 
in terms of a marginal stability criterion of boundary 
layers (Howard, 1966); one can easily compute the or
der of magnitude temperature jump that basal bound
ary layers can sustain, from linear stability results of 
Schubert et al. (1969): when E*/RT~ 1 (as for the man
tle), this temperature jump is O[RJ;,2/(E*+pV*)], 
where 1;, is the basal temperature (see also Fowler, 
1982b; Morris, 1980); when J;,~3,000K, this is ~lOOK 
at the core-mantle boundary, with reasonable estimates 
for E* and V*. Thus one should not expect a tempera
ture jump of ~ 800 K in the D" layer: this would entail 
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Table 1. Values of rx, p, p, g, V*, Tad' I] and K computed using the formulae K=K 0 +K 1 p, rx=ypcvfK, p=p0 [1-rx(T-T0 )] 

exp U dp/ K(p)], V* = V0* /(K/ K 0 ), I]= (A/r2) exp [E* + p V*)/ R T]. The lithostatic pressure p and gravity g are calculated 

after solving Poisson's equation for the gravitational potential. For the results here, we have used p 0 = 3.8 gm em - 3 , T0 = 273 K, 
K 0 =131 GPa (1 GPa= 104 bar), K 1 =4.0, y= 1.0 (Gruneisen parameter), r=10bars, A= 1/70bar3 s, cP= l.26kJkg- 1 K- 1, 

V0*=11cm3/mol, E*=122kcal/mol, R=8.3Jmol- 1 K- 1 , and the adiabatic temperature is determined from di;,d/dp=yi;,d/K, 
where also I;.d(O) = 1,550 K here. These values are either taken from commonly quoted values (V*, E* .. . ) or induced from Earth 
models such as that of Dziewonski and Anderson (1981). With the chosen values of K 0 , K 1 , y, p0 , we see that p, p, g and K look 
pretty much like their inferred values from the above Earth model, V* decreases in line with inferences of Sammis et a!. ( 1977), 
and rx decreases as expected. The computed adiabatic temperature fails to approach the constrained value of ;z:: 3,000 K at the 
core mantle boundary, whereas the viscosity is relatively uniform over the whole sub-lithospheric mantle, though still varying by 
a factor of fifty or so. We emphasise that the point of this table is not to predict anything precisely (viscosity or temperature) 
but rather to show the qualitative results which may reasonably be expected 

depth (km) rx (K -I) 

100.0 
200.0 
300.0 
400.0 
500.0 
600.0 
700.0 
800.0 
900.0 

1,000.0 
1,100.0 
1,200.0 
1,300.0 
1,400.0 
1,500.0 
1,600.0 
1,700.0 
1,800.0 
1,900.0 
2,000.0 
2,100.0 
2,200.0 
2,300.0 
2,400.0 
2,500.0 
2,600.0 
2,700.0 
2,800.0 
2,900.0 

0.32£-04 
0.30£-04 
0.28£-04 
0.26£-04 
0.25£-04 
0.24£-04 
0.22£-04 
0.21£-04 
0.20£-04 
0.19£-04 
0.19£-04 
0.18£-04 
0.17 E -04 
0.17 E -04 
0.16£-04 
0.15£-04 
0.15£-04 
0.14£-04 
0.14£-04 
0.14£-04 
0.13£-04 
0.13£-04 
0.12£-04 
0.12£-04 
0.12£-04 
0.11£-04 
0.11£-04 
0.11£-04 
0.11£-04 

p (k bar) 

36.1 
73.3 

111.3 
150.3 
190.0 
230.6 
271.9 
313.9 
356.6 
400.0 
444.0 
488.6 
533.8 
579.6 
625.9 
672.8 
720.3 
768.3 
816.9 
866.1 
916.0 
966.4 

1,017.5 
1,069.3 
1,121.9 
1,175.3 
1,229.5 
1,284.8 
1,341.1 

3.7 
3.8 
3.9 
4.0 
4.1 
4.2 
4.3 
4.3 
4.4 
4.5 
4.6 
4.6 
4.7 
4.8 
4.8 
4.9 
4.9 
5.0 
5.1 
5.1 
5.2 
5.2 
5.3 
5.3 
5.4 
5.4 
5.5 
5.5 
5.6 

9.81 
9.81 
9.81 
9.80 
9.79 
9.78 
9.77 
9.75 
9.74 
9.72 
9.72 
9.70 
9.68 
9.67 
9.66 
9.66 
9.65 
9.66 
9.66 
9.67 
9.69 
9.71 
9.75 
9.79 
9.84 
9.90 
9.98 

10.D7 
10.18 

a viscosity decrease with depth on the order of a factor 
103, which I suggest would be wildly unstable (Howard, 
1966; Schubert et al., 1969). Alternatively, as Jeanloz 
and Richter (1979) suggest, one could have two layered 
convection cells, so that the temperature jump neces
sary could be accommodated by smaller boundary 
layers at the base of the lower and upper mantle. How
ever, one would still have temperature jumps ~400 K, 
and consequently the lower mantle would have a vis
cosity say 102 times that of the upper mantle. Accord
ing to rotation and uplift data (Peltier, 1980; Yuen 
et al., 1982) this is not possible. We think that J eanloz 
and Richter found a real problem, but that their so
lution is not feasible - the problem remains. Note that 
we are not saying that a geochemical layering is im
possible: simply that large internal or basal tempera
ture jumps are improbable, for dynamical reasons. 

If we accept the premises (constant sub-astheno
spheric viscosity and thermally activated creep), ap-

V* Tad 
(cm 3 mole- 1) (K) 

9.9 
9.0 
8.2 
7.5 
7.0 
6.5 
6.0 
5.6 
5.3 
5.0 
4.7 
4.4 
4.2 
4.0 
3.8 
3.6 
3.4 
3.3 
3.1 
3.0 
2.9 
2.8 
2.7 
2.6 
2.5 
2.4 
2.3 
2.2 
2.2 

1,591.1 
1,630.3 
1,667.7 
1,703.5 
1,737.9 
1,771.0 
1,802.9 
1,833.7 
1,863.5 
1,892.4 
1,920.3 
1,947.5 
1,973.9 
1,999.7 
2,024.7 
2,049.2 
2,073.1 
2,096.4 
2,119.3 
2,141.7 
2,163.7 
2,185.3 
2,206.6 
2,227.6 
2,248.2 
2,268.7 
2,288.9 
2,308.9 
2,328.8 

I] 
(poise) 

0.15£ +21 
0.52£+21 
0.13£ +22 
0.24£ +22 
0.37£+22 
0.49£+22 
0.59£ +22 
0.64£ +22 
0.65£+22 
0.64£+22 
0.58£+22 
0.52£+22 
0.45£ + 22 
0.39£+22 
0.32£+22 
0.27£+22 
0.22£+22 
0.18£ +22 
0.14£+22 
0.11£+22 
0.92£+21 
0.73£+21 
0.59£+21 
0.47£+21 
0.37£+21 
0.30£+21 
0.24£+21 
0.19£+21 
0.15£ + 21 

K 
(GPa) 

145.5 
160.3 
175.5 
191.1 
207.0 
223.2 
239.8 
256.6 
273.7 
291.0 
308.6 
326.4 
344.5 
362.8 
381.4 
400.1 
419.1 
438.3 
457.8 
477.5 
497.4 
517.6 
538.0 
558.7 
579.8 
601.1 
622.8 
644.9 
667.4 

parently we still have a dilemma on our hands. One 
can always escape by choosing not to believe either the 
reasoning or the results, but it is also worth pursuing 
the logic of the argument, to see if it is truly self
consistent. The impasse we have is that a feasible adia
batic temperature for an internal (i.e. away from 
boundary layers) isoviscous flow is too low for the 
core-mantle boundary constraint (T,;;::: 3,000 K). The 
implication is simply that the internal temperature vari
ation with depth is faster than adiabatic. The descrip
tion of the temperature of convecting fluids in terms of 
boundary layers and adiabats is usually taken for grant
ed, but it may be worthwhile to examine these con
cepts in a little more detail, to understand under what 
circumstances such a description is appropriate, since 
there is a tendency in the geophysical literature to 
misconstrue the mathematical significance of boundary 
layers, and to put them in freely whenever there is a 
temperature deficit to be made up. 
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Boundary Layers and Adiabats 

For the purposes of this section, we require only an 
energy equation 

(2.1) 

in which Tis temperature, p is pressure, p is density, cP 
is specific heat, oc is thermal expansion coefficient, k is 
thermal conductivity, and d/dt = q · V in the steady state. 
We can also define the Griineisen parameter 

(2.2) 

where K is the (adiabatic or isothermal) bulk modulus, 
and can be indirectly estimated from seismic and mean 
density data. The equation of state may then be written 
(Bullen, 1975) 

iJp p 
p=p(p, T) and iJp K' 

iJp 
ar= -ocp, (2.3) 

and K=K(p), oc=oc(p) (dependence on Tis weak). We 
will consider a viscosity in the form 

[E*+pV*] 
Yf=Yfo exp RT , (2.4) 

where really '7o =A/r 2 (Goetze, 1978), or perhaps Yfo 
= A/r2 + B to include diffusion creep, but we suppress 
dependence on r to emphasise the strong exponential 
variation of '1 with T and p. 

We must scale the variables; thus we write 

T=~(), p=p0 gdp*, x=lx*, y=dy*, 

t=(l/U)t*, u=Uu*, v=(dU/l)v*, (2.5) 

where g is gravity, q = (u, v) is the velocity, ~ is the sub
lithospheric temperature (this will be made more specif
ic in due course), d and l are vertical and horizontal 
scale heights, and U is a horizontal velocity scale. 
Adoption of (2.5) then leads to the following dimen
sionless equations, where we drop asterisks on the vari
ables: 

(2.6) 

where '1a = Yfo exp (1/e) is (roughly) the sub-lithospheric 
viscosity (() = 1, p ~ 0). In (2.6) there are five dimension
less parameters 

v=d/1, 

()2 =_!_!____ 
Ud 2 

(K is the thermal diffusivity k/ peP), 

D=ocgdjcP, 

J.l=p 0 gdV*/E*, 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

and 

e=R~/E*. 
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(2.11) 

If we are being realistic, then all these are functions of 
p and T: particularly D = D (p ), J.l = J.l(P) (both decreas
ing). If we define a stress scale 

[r] =Yfa Ujd, (2.12) 

and non-dimensionalise the stress components with [r], 
the dimensionless constitutive law may be written 

r 2 =Yf*(uy+v2 vx), 

(2.13) 

where 17* is the dimensionless viscosity= '11'1a· 
We have some comments. We are now going to 

choose 'representative' values of the various param
eters, and examine the analytical implications of these 
choices for the possible temperature field. Our dis
cussion will use asymptotic orders of magnitude for the 
various quantities b, etc., and to this (mathematical) 
extent, such discussion will be reasonably general. 
However, in attempting to make an application to one 
particular planet at one particular epoch (the present 
Earth), we are naturally forced to consider whether the 
quantitative values of b, etc., that we adopt can be 
construed as having a realistic bearing on this one 
sample. 

Being biased in favour of the views promoted here, 
it is natural that the scales so chosen will happen to 
give a satisfactory explanation of some observed fea
tures of the mantle. However, one should be aware 
that, even where the scaling analysis is qualitatively 
valid, precise numerical estimates depend on numerical 
evaluation of fixed 'order one' constants, whose actual 
magnitude can vary substantially. 

As an example, consider the well-known boundary 
layer analysis (Turcotte and Oxburgh, 1967) of isovis
cous convection at high Rayleigh number, Ra. Scaling 
alone (for stress free boundar~ conditions) suggests that 
the Nusselt number Nu~Ra 13 as Ra--+oo, whereas ex
periments and analysis give the more accurate 
Nu~0.1Ra 1 1 3 : here 0.1 (an order of magnitude) arises 
as a coefficient of "0(1)". In fact, one can understand 
the appearance of such a factor by writing 
Nu~(Ra/Rae) 1 ' 3 , where Rae is the critical value at the 
onset of convection; this form is suggested by Howard's 
(1966) marginal stability argument, where Rae 
=27n4/4~657 is "0(1)"! Thus, one should beware of 
treating approximate scaling results in an exact man
ner. 

One might argue as a result of the caveat above 
that these kind of arguments are of little use, but the 
success of such techniques in many areas of applied 
mathematics belies this statement, and in any case the 
main thrust of such arguments is in suggesting the 
possible (or plausible) structure of solutions: precise 
quantitative results require a detailed numerical so
lution. 

One might also then ask for such a numerical so
lution, but this inverts the argument: one can hardly 
give a numerically parameterised result (e.g. the factor 
0.1 referred to above) without a previous analysis of the 
boundary layer structure. 
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As an illustration of these comments, consider the 
parameter 62 in (2.8). Below we shall find 62 -10- 2 , 

and this will fit nicely with the inferred viscosity of the 
mantle. However, if 62 is much smaller (say, < 10- 3), 

then this nice correspondence becomes less tenable. 
Now the obvious choice of d = l = 3,000 km for the 
whole mantle and U=10cm yr- 1 leads to 62 -10- 4 , 

too low for our needs. However, the same parameters 
with a viscosity "'m-1022 Poise define a stress scale [r] 
='1m U jd -10 bars, much less than the negative buoy
ancy in a down-going slab would suggest [- 500 bars]. 
Alternatively, if we supposed layered convection can 
occur, then a more arpropriate choice ?f d is 700.~m, 
so that then 62 -10- , and the 10 bar figure (mod1f1ed 
by d but also (probably) by '1a) becomes more recognis
able as an inferred sub-lithospheric stress. But if shal
low convection is considered, then more typically 
l-7,000 km than 700 km, and 62 -10- 2 ! The impor
tant point to note is that in any case 62 ~ 1, and that 
the subsequent discussion of this paper relies only on 
asymptotic estimates 1 ~ 62 ~ exp [ -1/e], which are in 
any case qualitatively applicable. Since a result of this 
analysis will be that the effective depth of vigorous 
convection is generally less than that of the whole 
mantle (see also Fowler, 1982a), we will simply antic
ipate this below in choosing d. 

To proceed, however: in principle, scaling of the 
entire system of equations (not all given here) should 
rationally be done in terms only of the actual inputs to 
the model (basal temperature, depth, etc.) (Fowler, 
1982b). This is not our present concern, and we simply 
use observation to choose 

(2.14a) 

as may already have been suspected, we will define 

d=700 km, (2.14b) 

as representative of layered mantle convection (or if 
one likes, the viscous scale. height which might control 
the dynamics: Schubert eta!., 1969). The length scale of 
surface plates is taken as 

1=8,000 km, (2.14c) 

and then other standard (quoted) values 
(K-10- 2 cms- 1, R-8.3Jmole- 1 K-1, T,-1,500K, 
E*-122kcalmole-1, a-3x10- 5 K-1, g~10ms- 2 , 
cP~0.27 cal gm- 1 K-1, p 0 ~3.5 gm cm- 3 , V*~ll cm 3 

mole- 1) lead to typical values 

f1~0.5, E~ 1/40; (2.15) 

particularly 

D, J1;;S0(1), E, 62 ~ 1. (2.16) 

The ensuing discussion will now proceed precisely on 
the basis of the asymptotic limits implied by (2.15), i.e. 
E, 6~0; D, J1;;S0(1). It should be noted that these argu
ments apply regardless of whether 62 ~ 10- 2 or 10- 4 , 

for example; it is only in the specific application to the 
Earth that any quantitative selection is indicated. 

Let us first consider the energy equation (2.6) in the 
light of these estimates. Since the scales are specifically 

chosen so that the dimensionless variables are 0(1), we 
are led to neglect 62 17 2 e in (2.6) on the basis that 
62 ~ 1, and that if e~ 1, then we should expect 
11781, 117 2 81, etc. to be 0(1) unless this leads to incon
sistency. In the case that this is valid, i.e. if lql ~ 1 and 
117 2 81 ~ 1, then 

q·I78-Dq·Vp;:;::;O (2.17) 

(at least in a steady state) and we have the adiabatic 
temperature profiles 

8=exp U D(p)dp] (2.18) 

(we can choose e = 1 at p = 0 by choice of Ta). This is 
the basis for the assumed adiabatic thermal profile. 

The neglect of 62 17 2 8 in (2.6) constitutes a removal 
of the highest derivatives of the equation, and a con
sequent reduction of order. As a result of this, the 
reduced (hyperbolic) equation (2.17) cannot generally 
satisfy all the prescribed boundary conditions (on top 
and bottom), and at least one must be ignored (we 
could choose 80 to satisfy one of them). As a result of 
this, our original assumption that 62 17 2 e is always 
small must break down, and this implies that IVBI be
comes large over a length scale small compared to one, 
i.e. e changes rapidly in a thin boundary layer. Nat
urally, since the inconsistency is due to an inability to 
satisfy boundary conditions, one looks first for such layers 
near boundaries, but it should be emphasised that 
(since the problem is non-linear) nothing precludes in
ternal layers or multiply-layered solutions (Kevorkian 
and Cole, 1981) except possibly our hope that these are 
less likely, physically, to occur. Furthermore, the occur
rence of symmetric upper and lower boundary layers in 
constant viscosity convection, heated from below (Tur
cotte and Oxburgh, 1967) is a consequence of the sym
metry of the problem, and two boundary layers are not 
a necessary result of small 6, e.g. when internal heating 
drives the flow (Peltier, 1981). To re-iterate: one expects 
boundary layers to occur when 6 ~ 1 because of the 
singular nature of the approximation (2.17), but where 
and how many these are depends on the particular 
situation; basal boundary layers, particularly, are not 
always inevitable, especially in variable viscosity flows. 
Arguments about 'getting the heat out of the core' are 
also not germane, since it is quite feasible to have a 
singular layer in which ae;ay jumps by 0(1), but e 
jumps only by a small amount (e.g. 0(6)): consider e 
=6exp[ -y/6] near y=O. 

Let us now suppose we are away from any bound
ary layers or thermal plumes, so that we expect the 
adiabatic temperature (2.18) to be valid. Substitution of 
this e = e ad into (2. 7), and recalling the dimensionless 
viscosity '1* = '11'1a, yields a dimensionless adiabatic vis
cosity 

(2.19) 

We recall from Table 1 that it is feasible to have func
tional forms for Jl(p) and D(p) which make "lad nearly 
constant; however, note that any slight deviation from 
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these isoviscous forms will lead to a substantial varia
tion of '1ad because of the fact that B ~ 1. For example, a 
variation in [1+,up-8ad]/8ad ofO(eln(1/<5)) will cause a 
variation of 0(1/<5) in the viscosity. In an asymptotic 
sense, it is clear that as e, D--+0, very small departures of 
8ad from the isoviscous profile 8iso will cause large var
iations in 11*: yet the observational data apparently 
constrains 11* to less than a factor of ten within the 
lower mantle. It is therefore unrealistic and unreason
able to suppose that ,u and D are just precisely such 
that '1ad=constant, rather it is more pertinent and ge
neric to suppose that even if '1ad does not vary sub
stantially (i.e. many orders of magnitude), even small 
departures of 8ad from 8iso will ensure that '1* will vary 
by perhaps one or two orders of magnitude. We will 
return to a detailed discussion of the Earth below but 
for the moment Jet us suppose that 11* does so vary. 

Now consider the effect of a varying 11* on the 
velocity. Stress and velocity are related in order of 
magnitude by 

(2.20) 

(we will not write full equations as our intention is to 
discuss scales, although with our choice of d and 1, 
v~0.1 and (2.20) accurately represents (2.13)). In order 
to try and understand how lql may vary with l'f, we 
must first understand how stress is produced in con
vection. For this purpose, consider the Turcotte-Ox
burgh boundary layer theory of convection (1967). In 
this situation, shear stress is generated by thermal 
buoyancy in the thermal plumes at the cell boundaries. 
Away from these plumes, the interior (isoviscous) fluid 
experiences a net torque which drives the convection 
cell. The stress (actually vorticity*) is distributed (by 
Laplace's equation*) through the cell interior, and 
there are no internal stress boundary layers. The flow is 
then determined (by Poisson's equation*), and there are 
similarly no large velocity gradients. In the absence of 
large velocity and stress gradients, (2.20) then implies 
that 

(2.21) 

(N.B. we do not mean lql oc 1/'1*). 
In other words: if 11* increases, lql decreases. We 

claim to have deduced this, but it is in fact an obvious 
physical proposition. However, (as was the case with 
the magnitude of <5 2 ) it could be rather important for 
the quantitative application of our theory that (2.21) 
holds rather than, say lql -·1/'1* t. In the present con
text, we cannot hope to prove (2.21) preferentially, but 
we can perhaps give some further indication of why it 
may obtain. 

There are only two obvious ways in which (2.21) 
does not follow from (2.20), in the interior of the con
vection cell. One is that there are internal stress con
centrations. As already outlined, this seems implausible 
and unlikely. Alternatively, since only strain-rates tend 
to zero as 11*--+ oo, one could have a state of 'quasi
rigid' motion, which would be, most likely, a parallel 
return flow. The trouble with this is that one would 
then naturally expect stresses in the upwelling plume of 

* In this Turcotte-Oxburgh isoviscous case 

47 

comparable magnitude to those in the slab in order to 
obtain the necessary strain rate to alter the direction of 
flow fn;>m horizontal to vertical: however, it is part of 
the later argument of this paper that large thermal 
anomalies at the base of the convecting zone are pre
cluded by virtue of the strong temperature dependence 
of the viscosity (they would be highly unstable). Con
sequently, stress in the ascending plume should be an 
order of magnitude smaller than that in the descending 
slab. It would seem that the more plausible alternative 
is a quasi-stagnant zone, as described. So let us now 
suppose that lql decreases as 11* increases, as in (2.21). 

If we remain on an adiabat, we can thus expect lql 
to fluctuate. But now re-examine (2.6): 

q · V8-D8q · Vp=£5 2 V2 8. (2.22) 

The adiabatic temperature was derived from (2.22) on 
the basis that I £52 V2 81 ~ 1. This is motivated by <5 2 ~ 1, 
and is valid provided IV2 81 ~ 0(1) (we are away from 
boundary layers, i.e. in the interior) and lql ~0(1): 
specifically lql ~ 0(<52). But if lql decreases to 0(£52), the 
adiabatic assumption is not valid, and we are no longer 
warranted in assuming an adiabatic temperature. We 
explore the consequences of this statement below. For 
the moment we observe that if the adiabatic gradient is 
0.5 K km- 1, the isoviscous gradient is 0. 7 K km- 1, and 
if we take T ~ 2,000 K, representative of upper mantle 
conditions, then we can expect non-adiabaticity when 
8ad-8iso~2Bln(1j£5), corresponding to a temperature 
difference ~ 260 K, which at 0.2 K km- 1 divergence 
rate occurs at a depth of 1,300 km, certainly well within 
the mantle. Actually, this is only a rough order of 
magnitude, and a glance at Table 1 shows an increase 
of ~40(~0(1/<52)?) at a depth of ~700km. We note 
the coincidence, if it is that, that this depth is in the 
middle of the transition zone, and is commonly taken 
as the proposed chemically induced barrier separating 
lower and upper mantle convection (Jeanloz and Rich
ter, 1979). 

A Non-Adiabatic Temperature in the Lower Mantle 

Let us now examine the depth dependence of the tem
perature in the mantle in some detail. The discussion 
essentially centres on sub-oceanic mantle, so that the 
lithosphere participates actively. Consequently, there is 
a boundary layer at the surface of dimensionless thick
ness 0(<5), over which the temperature jumps by 0(1). 
Hence 

(3.1) 

i.e. the Nusselt number Nu ~ 1/<5. The viscosity de
creases by exp [0(1/e)] through the lithosphere, attain
ing a minimum just outside the lithosphere in the as
thenosphere (it attains a minimum since by assumption 
d8ad/dp<d8isofdp, at least near p=O). For the sake of 
argument, we suppose this minimum is ~ 1020 P (Cath
les, 1975): the precise figure is irrelevant. 

We now consider isoviscous profiles corresponding 
to this minimum viscosity, and two more, bigger by 
O(lj£52 ) and 0(1/<54 ). Specifically, these are for viscos-
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adiabatic 

asthenosphere 

... ~ 

+
lithosphere 

"7 = 1020 P 

"1 = 1022 P 

"1 = 1024 P 

conductive 

1~1 « 1 

p 

Fig. 1. Control of the temperature by the viscosity. Below the 
'asthenosphere' the temperature becomes non-adiabatic and 
follows approximately the dotted (isoviscous) profile, thereby 
implying an approximately constant viscosity and a more 
reasonable geotherm in conformation with constraints at the 
core-mantle boundary 

ities ~1022 P and --1024 P, if c5~10- 1 . Again, these 
are for illustrative purposes only (see Fig. 1). Choose 11a 
=1020 P, so the three profiles correspond to 17*~1, 
17* ~ 1/c52 , 17*"' 1/c54 . Then in the asthenosphere, 17* ~ 1, 
so lql ~ 1 and (}~(}ad. We make the (constitutive) as
sumption that (for small p, at least) d(}adfdp<d8;.)dp. 
Then as p increases, 17* increases till (} intersects 8;.'2 for 
17*~1/c52 • At this point lql-c52 , and putting q=c5 q*, 
we have 

q* . v e-DOq* . J1p = 172 e, (3.2) 

lq*l-1 (if -r"' 1) and the temperature is not necessarily 
adiabatic: the question is, what is it? To answer this, 
we need to solve (3.2), together with the other equa
tions: this would not be easy. However, we can very 
easily say what the solution is not. Essentially 
11-1020 P represents a barrier above which lq*l ~ 1 
(;c;0(1/c5 2)), and hence the temperature there would be 
adiabatic. Equivalently 11-1024 P represents a barrier 
below which lq*l~1 (;50(c52 )), and hence in that case, 
one could ignore the left hand side of (3.2) and have a 
purely conductive profile. Since the heat flux through 
stagnant zones must equal the heat flux through the 
surface, one would have the result 

(3.3) 

from (3.1 ). If we make the constitutive assumption that 

(3.4) 

then thermal profiles above the 11"' 1020 P barrier tend 
to pass below it, while those below the 11"' 1024 P bar
rier tend to pass above it, as shown in Fig. 1. Since (3.4) 
is realistic for the mantle (e.g. o(}adfop--0.5 Kkm- 1, 

i38;.)i3p "'0.7 K km - 1, o(}condfop"' 1.2 K km- 1 ), assump
tion of (3.4) leads to the conclusion that the tempera
ture will self-regulate itself so that the viscosity lies in a 
narrow band centred on (in our case) l022 P. We could 
in fact reasonably restrict this band to be 
102 1 P < 11 < 102 3 P below the asthenosphere. The low 
viscosity zone 11 ~ 1020 P is essential so that there is a 
viscosity contrast of 0(1/c52) across it. The importance 
of the smallness of e now becomes manifest. If e ~ 1, 
then the width of the 8-band is O(eln(1/c5)), and (} is 

. therefore quite well-constrained by this restriction. 
Since e~eiso below the asthenosphere, we are quite 

well able to satisfy basal temperature constraints for 
reasonable V*,E*. In fact, using 11 determined by (1.1) 
with the same values as Table 1 for A, -r and E*, we 
find that (with 17=1022 P) for V*=4.5cm3 mole-l, I;, 
=2,900 K, for V* =5.4 cm3 mole- I, 7;,=3,200 K, fairly 
reasonable given uncertainties in E*, V* at these 
depths, as well as ignoring increases due to phase changes 
and a small (in temperature jump) basal thermal 
boundary layer. 

The above idea, that the rheology controls the tem
perature, is not new, as Tozer (1967, 1972, 1977) has 
proposed a similar idea; however, apparently (Tozer, 
1967) the idea in that form assumed that the interior 
viscosity was constant (in space), and then stated that 
this assumed constant viscosity controlled the basal 
temperature. This essentially deals with the case of an 
isothermal interior (no adiabatic heating, D = 0) and a 
temperature dependent viscosity (no activation volume, 
J1 = 0). Here we deal with the control of temperature 
within the convecting cell by a non-adiabatic tempera
ture, altogether a different notion: the present dis
cussion would also, for example, be applicable to the 
case D = 0, J1 =t= 0. 

Although the reasoning leading to Fig. 1 seems 
elementary and logical, there is one disquieting feature: 
if the temperature is closely constrained by the rheol
ogy, what does the temperature equation solve for? To 
examine this question we need a simple model equation 
which exhibits the same essential physical process 
which is of concern. To this end, consider the second 
order ordinary differential equation 

V[(}z- DO]= (}zz, (3.5) 

where 

(3.6) 

here z is depth, and we choose boundary conditions 
such as 

8(0)=80 E(0, 1), 8(1)= 1. (3.7) 

The velocity V is chosen as in (3.6) for the reason that 
when (} < li(z) (the isoviscous profile of relevance) then 
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we expect v to decrease (1'/* increases) and if e > 8, v 
increases; we can think ofjas=1/1J*, and a measure of 
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fluidity. For example, we might choosef(¢)ocexp [¢]. temperature (K) 

Previous discussion in this section suggests the fol
lowing solution for 8; firstly e~e(z) (for large enough 
z); assuming the adiabat is more slowly increasing than 3000 

the isoviscous profile e (as we suppose), then (3.5) implies 

(3.8) 

a given function. Consider first V =!= 0, i.e. 8 is not linear 2ooo 

in z; then V ~0(1) (generically), and (3.6) gives the first 
correction to e as 

8= B(z) + sf- 1 [V(z)]; (3.9) 

further terms may be found similarly. Secondly, sup
pose V = 0; this corresponds tO {j = 1 + JlZ, J1 COnstant 
(i.e. V* constant), and is at first sight puzzling, since by 
assumption a conductive profile is steeper than an iso
viscous one. The resolution, of course, is that 8- 8 is not 
zero precisely: in fact, choosing 

f(O)=B, (3.1 0) 

(as can always be done by shifting e up or down 
slightly, e.g. by eln(1/s) ifj(¢)ocexp(¢)), putting 

f(¢)=sg(¢), g~0(1), 

and writing 

8=B(z)+s¢, 

we find that (3.6), (3.5) and 3.11) give 

g(¢) [h(z) + O(e)] = cPzz' 

where 

h(z) = ez- DB> 0 by assumption, 

(3.11) 

(3.12) 

(3.13) 

g > 0 is monotonically increasing (e.g. g = ecf>). (3.14) 

We thus solve 

(3.15) 

together with boundary conditions at z = 1 and z = c on 
¢, where z = c is where the adiabatic asthenospheric 
solution first intersects the isoviscous profile e. It is 
easy to prove (almost by inspection) that (3.15) is a 
well-posed two-point boundary value eroblem, so that 
again (3.12) provides the correction to 8. Thus in either 
case, the net effect of the energy equation is to calculate 
at leading order the O(s) correction to the isoviscous 
temperature profile. If we (as seems reasonable) trans
mit this back to the real problem, we should infer that 
8- eiso = O(s) below the asthenosphere, and thus that 
viscosity variations in the lower mantle truly are no 
more than 0(1), as observed. 

Discussion 

In this paper we suggest that the temperature profile in 
the mantle regulates itself in such a way as to produce 

1000 

1000 2000 3000 

depth 
(km) 

Fig. 2. One possible geotherm for the mantle. This is intended 
to be schematic, since (for example) it would depend numeri
cally on a full solution of the governing equations, but more 
importantly on the precise form of V* and E* as functions of 
p and T. We have illustrated a lithospheric thermal boundary 
layer, a vigorous low viscosity asthenosphere/upper mantle, a 
less vigorous isoviscous lower mantle, and a small basal ther
mal boundary layer, in which e jumps by (probably) O(e) in a 
small region. This basal layer 'gets the heat out of the core' 

a relatively constant lower mantle viscosity, and that 
this temperature is essentially isoviscous, i.e. non-adia
batic, in the lower mantle. A typical geotherm of this 
type is shown in Fig. 2. Such a geotherm is computed 
on the basis of fairly elementary reasoning, nevertheless 
we emphasise that the temperature in the lower mantle 
may be non-adiabatic, since we propose that the con
vective velocity there is small (;:SO(mm/yr)) due to the 
strong temperature (and pressure) dependence of vis
cosity. This geotherm seems to fit geophysical con
straints better than other (adiabatic) models (e.g. 
O'Connell and Hager, 1980), and additionally predicts a 
mantle viscosity which is relatively constant below the 
asthenosphere, and a low viscosity zone (asthenosphere) 
between the lithosphere and lower mantle, in which the 
viscosity decreases by (say) a factor of 50. Our reason
ing is based on a simple scaling analysis of the energy 
equation, coupled with consideration of a realistic vis
cosity law. 

In the course of our analysis, we are led to recon
sider the role played by boundary layers and adiabats 
in vigorous, thermoviscous convection. In supposing 
that a combination of such thermal profiles can provide 
a complete understanding of the geotherm is, we sug
gest, misleading, and in fact, ignoring the effect of a 
strongly temperature and . pressure dependent rheology 
may lead to gross misconceptions of the nature of 
mantle convection. We cannot emphasise this too 
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strongly, since, apart from suggestions of Tozer (1972; 
1977}, and a variety of numerical computations (Ko
pitzke, 1979; Schmeling and Jacoby, 1981}, much weight 
has been placed on conclusions of constant viscosity 
calculations, with only minimal considerations being 
given to the real rheology (Peltier, 1980). 

Part of the concept of this paper has been that 
Jeanloz and Richter's (1979) argument concerning basal 
or internal boundary layers is unrealistic since tempera
ture jumps much greater than, say, 200 K across such 
layers are not feasible, as such jumps entail a viscosity 
decrease of at least an order of magnitude, which 
would be expected to be highly unstable. If this is 
correct, then an explanation of the seismic D" layer at 
the base of the mantle in terms of such a comparatively 
small temperature jump is necessary. Decisive estimates 
of this jump do not seem available: O'Connell and 
Hager (1980) quote 300 K, which would be at the upper 
end of our allowable range. 

We have not discussed either phase changes or 
chemical discontinuities in the mantle. This omission is 
partly intentional, since the aim is to lay extremely 
heavy emphasis on the dynamical effect of a varying 
rheology on the convective style of the mantle, and we 
actually do not imagine that phase changes, at least, 
will have a major influence on this. Chemical discon
tinuities have been invoked (De Paolo, 1981; Anderson, 
1982a, b) to explain heterogeneous geochemistry in 
varying kinds of surface rocks, the idea being that a 
layered upper and lower mantle would convect sep
arately, consistently with this viewpoint. We do not 
wish to enter the layering argument here, beyond point
ing out firstly, that Peltier (1980) has already observed 
that increasing the dissipation number D in a constant 
viscosity fluid can lead to layered convection (he omit
ted to extend his observation to the mantle), and sec
ondly, the style of convection implied by our dis
cussion already has a 'layering' implicit in it. We have 
a 'rigid' lithosphere, a 'fluid' asthenosphere (e.g. 
17-1020 P, iul-10 em yr- 1} and a 'sludgy' lower mantle 
(e.g. 17-1022 P, lul-0.1 cm·yr- 1}. Whether the circu
latory pattern is actually segregated is unclear, but cer
tainly, a direct implication would be that the sampling 
of lower mantle material at the surface will be com
paratively rare. Of course, this is an approximate dis
cussion, and an examination of the origin of thermal 
plumes/upwellings is required before any specific opin
ion is stated. We simply wish to point out that vari
able-viscosity dynamics appears to carry with it a self
imposed style of 'layering' so that arguments about 
vigorous whole mantle convection (Davies, 1977; 
O'Connell, 1977) need to be critically re-examined. 

In conclusion, some currently held 'truths' concern
ing mantle convection should be re-evaluated in the 
light of the implications of a strongly temperature and 
pressure dependent rheology. 
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