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versatile solution. The success of the method depends 
on Liouville's theorem, Eq. (21). Although the Jacobian 
(17) may be zero or infinite, the Jacobian of position 
and slowness is always unity. The method follows 
Chapman and Drummond (1982) and Thomson and 
Chapman (1985). 

First, we define the Fourier transform with respect 
to spatial co-ordinates: 

J(w,y)= (-~:f }1) cJ)(w,x)e-iwpxdx=F[cj)] (24) 

with the inverse 

cP(w, x)= (iw)t J </>(w, y)eiwpxdp=F-1 [</>]. (25) 
2n -Cf) 

The vector y is the mixed vector (p, y, z). In general, 
this transform can be defined for any number of the 
coordinates, but for simplicity we restrict ourselves to 
one coordinate, x. Applying this transform to the wave 
equation (3), we obtain the transformed wave equation 

( -w2 p2 +17fl¢ + w 2 u2 [( -iw)- 1 ap, y, z] ¢ =0 (26) 

where 17J_ =(0, ay, az). The exact meaning of the second 
term uses the definition of the pseudo-differential oper­
ator (Hormander, 1979; Thomson and Chapman, 
1985). We attempt to solve this equation using the 
same technique as ART. Thus we use an ansatz 

_ if ,4<nl(y) _ 
</)(w, y)=cPo(w) L -.-n eiwT(y) 

n=O ( -1w) 
(27) 

substitute in Eq. (26), collect terms of equal order in w 
and obtain modified eikonal and transport equations. 
These are (from w 2 ) 

(VJ_ f)2 -ii2 + p2 = 0 

and (from w) 

217 A_(0).17 'f+A_(O)l7 2 T+a A_(O)d u2 J_ J_ J_ p x 

+1-A.( 0 )a a u2 =0 
2 p x 

(28) 

(29) 

where ii=u(-aPf,y,z) (Thomson and Chapman, 
1985). Comparing the eikonal equations, Eqs. (7) and 
(28), we see that T and T must be related by the partial 
Legendre transformation [Courant and Hilbert (1962), 
p. 35, Eqs. (7) and (8)] 

T(y) = T(x(y), y, z)- px(y). (30) 

The transport equation, Eq. (29), can be solved using a 
suitable form of Smirnov's lemma and 

(31) 

These results can also be obtained by connecting the 
asymptotic solutions, Eqs. (4) and (27), through the 
transform (24). Substituting the zeroth-order term from 
Eq. (4), cj)< 0l say, in Eq. (24), the phase has stationary 
points when 

<\T=p. (32) 
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The transform variable, p, can be identified with the 
horizontal slowness, Eq. (9), at these points. Evaluating 
the Fourier transform by the stationary phase method, 
we find 

n 
~ lax It -isgn(w)-Jnd(o;T)+iwT 

F[¢<0l] ~A<0>(x) - e 2 
ap 

(33) 

where all terms are evaluated at the stationary point, 
Eq. (32). The Morse index, Ind ( ... ), is defined by the 
orientation and shape of the stationary point. In gener­
al, it is the number of negative eigenvalues of the 
Hessian matrix, ax,ax1 T (Morse lemma, Milnor, 1969, 
p. 6). In our case, because we have only transformed 
one co-ordinate, it is zero if a; T =a xP > 0, and unity if 
a;T=axp<O. Thus we have 

n 

l

ax It -i-lnd(c 2 T) A_(Ol(y)=A(O)(x) - e 2 x 

+ + ap 
n 

=A<0>(x ) ~ - e 2 (34) I ax 1-t lax It -i-[lnd(u;T)+a(X,Xo}] 

+ 0 axo v ap 

which agrees with Eq. (31). The asymptotic relationship 
between the zeroth-order terms in the x- and y-spaces 
has been called the asymptotic Fourier transform 
(AFT) by Ziolkowski and Deschamps (1984) (see also 
Thomson and Chapman, 1985). It can be written as 

(35) 

where F0 represents the second-order stationary phase 
evaluation of the FT and is given exactly by Eqs. (30) 
and (34) (with the added generality that there may be 
multiple stationary points or rays). Its inverse can be 
written 

(36) 

Although expression (36) is an exact relationship, and 
therefore breaks down at caustics, the canonical trans­
formation (ay/ax 0 ) for A.< 0l(y) is generally finite, even at 
caustics where a PX= 0. In general, this follows from 
Liouville's theorem, Eq. (21). In the phase space xx p, 
the ray trajectories do not form caustics (Liouville's 
theorem - the flow is incompressible). The ray paths lie 
on a 3-dimensional surface in the 6-dimensional phase 
space and do not cross. Only when these paths are pro­
jected into x-space are caustics formed. In y-space, dif­
ferent caustics are formed. In general, if the caustic is 
parallel to the x-axis or if the Jacobian has a second­
order zero, other transform(s) may be necessary, but 
Liouville's theorem guarantees that there is always a 
domain in_ which a particular point is not a caustic. 

Since $(0l is generally finite, it is sensible to try 

(37) 

as an approximate solution. This is essentially Maslov's 
canonical operator (Maslov, 1965). This solution is still 
asymptotically valid and is generally finite at caustics. 
It reduces to the WKBJ seismogram in laterally homo­
geneous media (Chapman, 1978). In the next section we 
investigate non-asymptotic methods of evaluating 
Eq. (37). 
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Inverse transforms 

In the previous section, we have obtained an asymp­
totic solution, Eq. (27), in a transformed domain. If the 
inverse transform, Eq. (25), is evaluated asymptotically, 
i.e. the AFT, we just obtain ART. We must evaluate 
the integral more accurately. The traditional method is 
to use higher-order asymptotic methods, e.g. the third­
order saddle point method, the incomplete saddle point 
method etc., or to compute the integral numerically. 
These methods are called spectral methods (Chapman, 
1978) as the intermediate result is <f (w, x). The analytic 
techniques lack generality and the numerical methods 
are expensive at high frequencies. An alternative ap­
proach, the slowness methods, is preferable. 

Combining the inverse frequency and slowness inte­
grals, Eqs. (2) and (25), reversing the order of integra­
tion and evaluating the frequency integral first, we ob­
tain 

1 - a:: -
¢(t,x)=-~a,A-(t)* J ¢(t-px,y)dp 

22n -oc 
7[ 

[(iw/2 n)+ = _ __;_ ( - iw)(n/lwl)t e-isgn(w)4J. 
2 2 n 

(38) 

A product in the frequency domain has become a con­
volution in the time domain. The time series, A(t) 
=H(t)t-+, has a spectrum 

7[ 

,,. ( n )t isgn(w)­
,t(w) = - e 4 

lwl 
(39) 

and the Hilbert transform is X(t)=H(-t)(-t)-+. We 
can also take the inverse frequency transform of the 
spatial transform, Eq. (24), and obtain 

- 1 x 

¢(t,y)=2i a,l.(t)* s ¢(t+px,y)dx. 
2 n - Cf_ 

(40) 

These results, Eqs. (38) and (40), can be recognized as a 
Radon transform pair (Chapman, 1978), the latter being 
commonly known as slant stacking. 

Using the zeroth term in the asymptotic series (27), 
we obtain the simple result 

((>< 0l(t, y) =Re {A'2l(y) <1>0 [t - T (y)]} (41) 

analogous to Eq. (5) with n=O. Substitute Eq. (41) in 
Eq. (38) and we have 

1 -
¢(t, x)= -2l <Po(t) * a,A-(t) 

2 1I 

oc 

* Re J A'2l(y) L1 [t - O(p, x)] d p (42) 

where Ll(t)=b(t)-i/nt, the analytic delta function, and 

B(p,x)=T(y)+px. (43) 

Expanding the complex terms and transferring the Hil­
bert transform operator through the convolution opera­
tor, we obtain 

1 
¢(t, x)= - 2 i ¢ 0 (t) 

2 1I 

Evaluating the integral at the singularities of the delta 
function, we have 

(45) 

where the final summation includes all p's that solve 

t=B(p,x). (46) 

Note that evaluation of the inverse integrals is exact, 
provided f(y) is real. No approximation beyond 
Eq. (41) is made. However, for some p's, T(y) is com­
plex and hence the complete integrals in Eqs. (42) and 
(44) should be approximated by a restricted range. In 
the later section on 'Smoothing' [b) attenuation and 
c) Gaussian beam method] we discuss some cases 
when T(y) is complex. 

Expression (45) has become known as the WKBJ 
seismogram (I-dimensional models; Chapman, 1978) or 
the Maslov seismogram (2- or 3-dimensional models; 
Chapman and Drummond, 1982). It is extremely easy 
to evaluate and widely applicable. Only the results of 
kinematic Eq. (13) and dynamic Eq. (20) ray tracing are 
needed. It is a special, limiting case of the Gaussian 
beam method (infinite beam width). In the next section 
we shall use it to investigate the canonical groblems. 

The convolution operator, A(t) = A(t) + iA(t), is easy 
to evaluate as the imaginary part is simply the time 
reversal of the real part. A simple rational approxima­
tion has been given by Chapman and Drummond 
(1982). Alternatively the convolution can be performed 
in the frequency domain. Nevertheless, as we shall see 
in the next section, the construct for some signals, e.g. 
reflections, is strange. Two acausal signals are convol­
ved and give a causal result. Taking the Hilbert trans­
form of both signals would give a more natural con­
struction. An alternative slowness method with com­
plex p values provides this. We must be more careful 
now to consider whether w z 0, which we indicate with 
subscripts ±. The method closely follows Heyman and 
Felsen (1984). We proceed as before and evaluate the 
frequency integral first but consider the positive and 
negative frequencies separately. We obtain 

¢(t, x)=~ ¢ 0 (t) * a,A(t) 22 1I 

{ 
A_(Ol(y) ,4(_'._ll(y) } 

* S _±__o_ dp+ S -e- dp 
C+t-+ c_t-_ 

(47) 

where the contours C + lie infinitesimally above or be­
low the p real axis_(depending on apBzO and wzO, 
Fig. 15) so that Im(B±)zO. We have used 

if. 

J eiw(ii+-t)dw= -i/(t-B+), 
0 

0 

J eiw(ii -t)dw=i/(t-B_). 
-Cf_ 
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a) Direct rays 

The travel-time for typical direct rays is illustrated in 
Fig. 4 b. The slope of the curve is the horizontal slow­
ness p, Eq. (9), and the intercept is the time f, Eq. (30). 
The Legendre transformation is illustrated in Fig. 4c. 
The slope of the curve, f, is - x and the intercept is T. 
For a normal direct ray a; T > 0. 

In evaluating the seismogram (4S) we need 

(S2) 

This function is zero for the ray parameter, Pray' which 
solves the two-point ray tra~ing problem, i.e. x=x(Yray). 
At this point, the function 8 reduces to the travel-time, 
i.e. T(x)=tJ(Pray' x) when X=X(Yray). In constructi~g the 
seismogram (4S), we need to know the form of A(0 >(y) 
and the shape of tJ(p, x), i.e. the sign of a;e= -opx, as 

(S3) 

Now 82 T >0 so the Morse index is zero and ,4_( 0 >(y) 
real and a; {J < 0. The construction of the seismogram 
reduces to (Fig. 4d) 

1 [' 2A.~l(y) ] </>(t, X) ':'.::'. -~ <f>o(t) * 01 A(t) * ~==== 
22 n i/2(opx)(T-t) 

=A~l(x) <f> 0 (t-T) (S4) 

using Eq. (34) and l(t) * l(t) = -nH(t). This agrees with 
ART, Eq. (S), but the exact evaluation of Eq. (4S) will 
include variations in ,4_( 0 l(y) and (cpx) away from the 
stationary point. This is an example where the alter­
native Cagniard form, Eq. (49), is simpler. Then 

which reduces to Eq. (S4). In this case ap{J+ is positive 
imaginary below the saddle point. 

b) Normal turning rays 

The travel time for typical normal turning rays is illus­
trated in Fig. Sb and the Legendre transformation in 
Fig. Sc. For a normal turning ray, a;T<O, so the 
Morse index is unity and A.<0 l(y) imaginary, and a;e>O. 
Thus the construction of the seismogram reduces to 
(Fig. Sd). 

1 (, 2 Im [A~l(y)J ) 
</>(t, x)c:::: -~ <f>o(t) * 01 A(t) * ~===== 

2 2 n i/-2(opx)(t-T) 

=A~l(x)</> 0 (t-T) (SS) 

using Eq. (34) and -1(t) * ),(t) = nH(t). This agrees with 
ART, Eq. (S), but the exact evaluation of Eq. (4S) will 
include variations in ,4_( 0 J(y) and (oPx) away from the 
stationary point. 

For multiple turning rays, e.g. PP, the situation 
changes as typically a caustic exists. If a; {J > 0, i.e. nor­
mal, the Morse index is unity, but so is the KMAH 
index. A.< 0 l(y) is real and opposite in sign to A(0 >(x). 
Hence the seismogram is 

1 (- 2A.<zl(y) ) 
</>(t, x)c:::: -~ ¢ 0 (t) *a, .1(t) *----r===== 

2 2 n i/-2(opx)(t-T) 

= - Im [A<z>(x)] </)0 (t- T) (S6) 

agreeing with Eq. (S). As expected, we obtain the Hil­
bert transform of the direct pulse. As the final result 
contains a Hilbert transform there is not much to 
choose between Eqs. (4S) and (49). 

c) Reversed turning rays 

For a reversed ray, a caustic exists. The KMAH index 
is unity but the Morse index is zero (o; {J < 0) (Fig. 6). 
Thus A_(Ol(y) is imaginary and the seismogram is con­
structed 

1 2 Im [A~l(y)J 
</>(t, x) ':'.::'. -~ <f>o(t) * o,.1(t) * ~==== 

2 2 n i/2(opx)(T-t) 

=-Im [A~l(x)] </)0 (t-T). (S7) 

As expected, we obtain the Hilbert transform. For a 
multiple turning ray on a reversed branch, the KMAH 
index is two and the Morse index zero. Thus we get 

1 - 2A.~l(y) 
</>(t, x) ':'.::'. -~ <f>o(t) * o,-1(t) * ~==== 

2 2 n i/2(opx)(T-t) 

= A~>(x) <f> 0 (t -T). (S8) 

A(Ol(x) and A.< 0 l(y) have the opposite sign to A< 0 l(x 0 ) so 
the pulse is inverted. This is another example where the 
alternative formulation, Eq. (49), may be advantageous. 

d) Reflected and transmitted rays 

Normally, unless caustics are present, the travel-time 
curves for reflections and transmissions are as reversed 
rays, 82 T > 0 (Fig. 7). The amplitude functions, A< 0 l(x) 
and A.< 0 >(y), may be real (partial reflections) or complex 
(total reflections). With these generalities, we obtain 

1 [ 2A_<Ol(y) ] 
</>(t, x) c:::: -~ </> 0 (t) * o, Im A(t) * + 

2 2 n i/2(oPx)(T-t) 

=Re {A~l(x) <P 0 (t-T)} (S9) 

in agreement with Eq. (S). Note that the real part of 
A~l(y) is convolved with X(t), an awkward construction 
with two Hilbert transforms, whereas the imaginary 
part is convolved with .1(t). The alternative construction 
(49) is 

2+ 
</>(t, x)c:::: -~ <f>o(t) * c),(t) 

n 

* + + + { 
Re [A.<0 l(y)] Im [A( 0 l(y)] } 

i/2(opx)(t-T) i/2(opx)(T-t) 
(60) 

and the real part of A~l(y) contributes off the real axis. 

e) Critical rays and head waves 

The head wave is caused by a square root singularity at 
the branch point in a reflection/transmission coefficient 
in A~l(y). Suppose this occurs due to a square root, qh, 
contained in A~l(y) which is zero at p=ph (qh would be 
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a slowness component perpendicular to the interface). 
Then we define 

(61) 

as the length of the head wave (xh=x(ph) is the critical 
range). The arrival time of the head wave is (Fig. 8) 

(62) 

Expanding about the branch point, from Eq. (45) we 
obtain (if lh>O) 

1 -(0) (2ph)t 
</>(t, x) ~ - 2+ n <f>o(t) * o%A + (y) If 

· a, [),(t) * (t-th)+ +X(t) * (th-t)+J 

=~t oq)i'!;.l(y)<f>0 (t-th) * H(t) 
h 

(63) 

(where we ignore the constant part of A:'!;.l(y)) i.e. the 
integral of the direct pulse. Note that in the final time 
series in Eq. (45), points with p < ph contribute to t <th, 
and p>ph to t>th. If lh<O the situation is reversed and 
we obtain 

1 -(0) (2ph)t 
<f>(t,x)~- 2+n<f> 0 (t)*o%A (y) -l~ 

· a, U(t) *(th -t)+ + X(t) * (t -th)+J 

=0. 

Using the alternative formulation (49), the contribution 
comes from the part of the contour C'+ looping around 
the branch cut, i.e. only if lh > 0 and- then only from 
p >Ph· Taking this contribution we obtain 

2+ 
<f>(t, x)= -- <f> 0 (t) 

n 

*a, [ Jc(t) * a%A:'!;.l(y) (2l~h r (t-th)+] (64) 

which reduces to Eq. (63). Note that this construction 
is more convenient as the result is not divided equally 
between two terms, one of which has two Hilbert trans­
forms. Similarly for lh < 0, we do not depend on the 
cancellation of two equal and opposite terms. 

The head wave, Eq. (63), is the integral of the direct 
pulse and can be derived using first-order asymptotic 
theory, i.e. A'll(x), as A'0 l(x) is zero (Cerveny and Rav­
indra, 1971). At the critical point, xh, the head wave 
diverges as lh=O. Both formulations, Eqs. (45) and (49), 
remain valid in the neighbourhood of the critical point: 
the alternative formulation (49) is more direct. The re­
sultant waveform is presumably equal to the inverse 
Fourier transform of the Weber function (Marks and 
Hron, 1977) although this has not been proved directly. 

f) Interference head wave 

The travel times for the multiple refractions and the 
reflection that contribute to the interference head wave 
are illustrated in Fig. 9. The expression (45) can be used 
to describe each ray and includes the phase changes 
due to multiple turning points, etc. The refractions all 
have an end-point at p = ph. The accuracy of summing 
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all these ray contributions to model the interference 
head wave has not been investigated in detail. 

g) Airy caustic 

The travel times for a caustic are illustrated in Fig. 10. 
Essentially, we have a normal and reversed ray in close 
proximity. The function iJ is approximately cubic 

B(p, x) ~ B(p0 , x) + l0 (p - p0 )-io;x(p -p0 ) 3 

where we define the distance from the caustic 

10 = x-x(p0 ) 

and the time 

t0 =B(p0 , x)= T(p 0 )+ l0 p0 • 

The seismogram is constructed from (Fig. lOd) 

1 . Im [A'!/.l(y)] 
</>(t, X)~ -~ <f>o(t) * 01 A(t) * -

2' n 1ape1 
3+2+ 

= --- <f>o(t-t) n a 

* Im [A'!/.l(y)] a c [t 210 ] 

(o;x)+ ' '3t(apx)+ 

if a;x>O. The function C(t, y) is 

dz 
C(t, y) = J ( 3 4 3 )"'-

() > 0 t- yz+ z' 

(65) 

(66) 

(67) 

(68) 

(69) 

and has been investigated in detail by Burridge 
(1963 a, b) and Stickler et al. (1981 ). It can be expressed 
in terms of the complete elliptic integrals. Only three 
distinct cases need be considered, C(t, ± 1) and C(t, 0), 
as others can be obtained by scaling (Fig. lOd). 

h) Fresnel diffraction 

The travel-time curves for a Fresnel shadow are illus­
trated in Fig. 12. It corresponds to a normal turning 
ray with an end-point, p =Pe· Defining the distance 
from the shadow edge 

/e=X -x(pe) 

and the diffraction arrival time 

te = B(pe, x) = T(xe) + P)e 

we obtain the seismogram (Fig. 12) 

1 
</>(t, x)~ - 2i </> 0 (t) 

'n 

a (1 Im[A'!/.l(y)][2-H(t-te)J) * l A(f) * ----;:c======--v -2(opx)(t-T) 

=A'!/.l(xe) [<f> 0 (t-T)-</> 0 (t-te) 

* ),(t)(te -T)+ ] if fe < 0 
2n(t+te-T) 

=A'!/.l(xe) </> 0 (t-te) 

Jc(t) (te - T)± 
* if le>O. 

2n(t+te-T) 

(70) 

(71) 

(72) 
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If le= 0, it reduces to half the geometrical amplitude, 
Eq. (55). 

i) Edge and point diffractions 

j) Interface diffractions 

k) Gradient coupling 

The extension of ART developed in the previous sec­
tions in no way models these signals. They require a 
more complicated solution of the wave equation con­
taining more physics, e.g. the correct boundary con­
ditions. The kinematic properties of the first two signals 
can be simulated by replacing the discontinuities by 
high velocity gradients. As the interaction of the wave 
with this gradient is not modelled, we can not expect 
the amplitude to be accurate. The last signal can be 
simulated by introducing small discontinuities. Pro­
vided the gradient is fairly uniform this will be reason­
ably accurate, but if the curvature is large, zeroth-order 
asymptotics will break down. 

Smoothing 

In the previous section we have discussed the construc­
tion of various signals. The time series involved have 
singularities and for numerical purposes it is necessary 
to smooth them. Chapman and Drummond (1982) have 
discussed a suitable smoothed, rational approximation 
for the convolution operator, c, A*· Various methods 
can be used to smooth the other terms. 

a) Box-car smoothing 

The simplest method is to smooth the time series using 
a simple box-car, 2LI t long (so the spectrum is zero at 
the Nyquist frequency). We denote the box-car by B(t) 
'=!{H(t+ 1)-H(t-1)}. Then the smoothed seismo­
gram [from Eq. (44)] 

</>(t, x) * B(t/ LI t)/ LI t 

1 { Cf) ~ B[(t-8)/Llt] } 
= -~ </> 0 (t) *a, Im A(t) * J A'.2l(y) dp 

2 2 n -Cf) Lit 

1 
= --... -- </> 0 (t)*8,Im[A(t)* J A'.2l(y)dp]. (73) 

2 2 nLlt i~ii±Jr 

The final integral is evaluated over p-bands defined by 
the solutions oft= 8(p, x) ±LI t. As A'.2l(y) normally var­
ies slowly, the integrals are easily approximated. 

The importance of this smoothing for any numerical 
algorithm cannot be overemphasized. To evaluate 
1aPe1- 1 numerically would be unstable. To evaluate 
Eq. (73) numerically is simple and stable. Small features 
in B(p, x) which may be due to numerical errors or ar­
tefacts, e.g. velocity gradient discontinuities in the mod­
el, do not affect the results unduly. Thus no inter­
mediate results need be calculated more accurately 
than the digitization and band-limiting requires. Cruder 
numerical models can be used. 

Expression (49) should be smoothed similarly, i.e. 

</>(t, x) * B(t/ LI t)/ LI t 

b) Attenuation 

The ART ansatz only applies in non-attenuating media. 
In general, attenuation must be included. The zeroth­
order term is then 

(75) 

where we have included the simplest form of attenua­
tion. The function, t*(y), is defined by 

ds 
t*(y)=J--­

so 2Q(s) v(s) 
(76) 

where Q(s) is the quality factor. The result (44) is then 
replaced by 

I 
</>(t, x)= - 2... </> 0 (t) 2n 

[ 
oc 1 A:'.2l(y) t*(y) ] 

*8,Im A(t)* J -· 82 * 2 dp 
_ 00 n (t-) +t 

(77) 

where the integrand is the inverse Fourier transform of 
e- lrolr*. Unfortunately, this integral cannot be evaluated 
analytically. If the attenuation varies little with ray pa­
rameter it can be factored outside the integral and in­
cluded in the previous result (45) as a convolution op­
erator. Otherwise the integral (77) must be evaluated 
numerically. 

The simple form of attenuation, Eq. (75), is acausal. 
More complicated, dispersive, causal attenuation mod­
els can be used but an analytic form for the inverse 
Fourier transform may not be known. 

c) Gaussian beam method 

The Gaussian beam method is another technique for 
smoothing the results and, in as much as it does not 
correspond to any physical process, is more compli­
cated. The ansatz of ART is generalized to include a 
Gaussian weighting about the geometrical ray, i.e. T in 
Eq. (30) is replaced by 

T(y, b) = T(y) +1 N(x, b)[x -x(y)] 2 (78) 

The function, N(x, b), is a complex function. More de­
tails and references can be found in Madariaga ( 1984). 
The parameter b is related to the beam width. Follow­
ing Madariaga (1984), b is imaginary and as b-+O, 
N(x, b)-+0 and we have an infinite beam width. The 
amplitude function is also modified, A:< 0 l(y, b), and de­
pends on the beam parameter. Proceeding as before 
with the inverse transforms, we obtain 

1 -
</>(t, x)= -2... <f>o(t) * a,.A(t) 2n 

en [ A'.2l(y, b) ] * J Im ~ dp. 
-00 t-8(p, x, b) 

(79) 

As B(p, x, b) is complex [derived from Eq. (78) in the 
obvious fashion], we obtain a result not dissimilar to 
Eq. (77) except that the integrand broadens away from 
the geometrical ray parameter, i.e. the broadening is a 
function of the receiver location. The parameter b is a 
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The cross-sections can be connected via the boundary 
element: 

~ dcrs ~ dcr:+i ~ 
dls=~--A- lS=~ A+ ls. 

ls . ms ls . ms+ 1 
(89) 

The formula to connect dps and dps+ 1 is somewhat 
more complicated. From the definition of the ray pa­
rameter we have 

d _dfis.js (ns·is)dvs 
Ps- 2 

vs vs 
(90) 

and similarly for dps+ 1 • From Snell's law, Eq. (88), we 
obtain 

dn,-1s (n,-1s)dvs 

vs v2 
s 

These expressions can be simplified using 

dn=dnm 

and the velocity differential eliminated using 

~ J,- ks 
dvs= Vvs · dls= -~--A- I Vvsl dcrs 

ls. ms 

(91) 

(92) 

(93) 

and similarly for d v:+ 1 . The final expression connecting 
dps and dcrs with dps+l and dcr:+i can be written 

(94) 

where we have defined a vector u=(dcr, dp)r. The 2 x 2 
{llatrices are 

., A+ 
R - 1s+ 1 . ms+ I 

22 - 1 A+ 
s. ms+! 

(95) 

This separation is convenient as Qs is calculated in the 
s-th triangle, Ss at the s-th interface, and Rs in the 
(s+ 1)-th triangle. We write the propagation across the 
s-th triangle as 

<Js =Tsu: 

where 

T - _T_1 _1 _-_1_ 
i2- 21v I' Ps vs 

(96) 

(97) 

Thus the complete transmission through a sequence of 
triangles can be written 

(98) 

This system of equations can be used to find the deriv­
atives required for the Jacobians. 

Conclusions 

The generalization of ART described in this paper, par­
ticularly the result (45), has solved simply some of the 
canonical problems. The result is not significantly more 
complicated to compute than normal ART as the same 
kinematic, Eq. (13), and dynamic, Eq. (20), ray tracing is 
required. In fact, because two-point ray tracing is not 
needed and small, numerical features are automati­
cally smoothed out, Eq. (73), the result is easier to 
compute than normal ART. 

Expression (45) is valid for direct and normal turn­
ing rays with any number of turning points, reversed 
turning rays with any number of turning points, partial 
and total reflections, and transmissions. For these sig­
nals, the result (45) reduces to normal ART [Eq. (5) 
with n=O] if the amplitude function, ,4<0l(y), is constant 
and the phase function, 8(p, x), parabolic. In as much 
as expression (45) includes variations from this, it is 
more accurate. It also remains valid at critical points, 
Airy caustics and Fresnel shadows. In laterally homo­
geneous media, it describes head waves and Fresnel dif­
fractions accurately. They are generated by discon­
tinuities in the amplitude function at critical and end 
points, respectively. In laterally inhomogeneous media 
these signals are described incorrectly both in time and 
amplitude. 'Head wave' arrivals are obtained with con­
stant slowness as if the interface were plane through the 
critical point. Fresnel diffractions extrapolate the dis­
continuous wavefront with constant slowness without 
regard to the inhomogeneous structure through which 
the wave propagates. It remains an unsolved problem 
to model these signals in a general, straightforward fa­
shion. 

It was not expected that the other canonical prob­
lems could be solved by a simple extension of ART. In 
the case of interference head waves, edge, point and in­
terface diffractions the boundary conditions are ob­
viously vital (and complicated). For gradient coupling, 
it is known from I-dimensional experience that an iter­
ative rather than asymptotic solution is needed. Al­
though canonical problems can be solved, and com­
bined with ART, they are sufficiently complicated, par­
ticularly for elastodynamics, that they have not been 
widely used. Seismic modelling has progressed suf­
ficiently that this situation must now be rectified. 
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