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Abstract. A simple convective model that can maintain observed plate 
motions consists of a viscous upper mantle of uniform density overlain by 
denser rigid plates. In the absence of density differences within the upper 
mantle the viscous stresses exerted by the flow are easily obtained and 
demonstrate that the buoyancy forces associated with plate creation and 
destruction can maintain plate motions. A model having a uniform viscosity 
upper mantle is, however, unsatisfactory because it predicts gravity and 
residual depth anomalies two orders of magnitude larger than those ob
served. This problem can be overcome by introducing a thin low viscosity 
layer beneath the plates. The resulting model is then similar to that proposed 
by Forsyth and Uyeda and by Chapple and Tullis despite a very different 
approach. This agreement suggests that the energetics of plate motion are 
now understood in outline. The model cannot, however, account for the 
existence of the longwavelength gravity anomalies which are not associated 
with plate motions. 
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1. Introduction 

Though the kinetic description of the earth's surface motion has been generally 
accepted, there is much less agreement about how the motions are maintained. 
The dynamic problem consists of two separate but related questions: How does 
the mantle convert heat into mechanical work to maintain the observed plate 
motions, and why is the large-scale flow of which the plate motions form part 
stable to smaller scale motions? The first of these two questions is the simpler, 
and it is with it that this paper will be principally concerned. All the forces 
which we will consider arise from thermal convection: Heat is transported 
upward by hot, less dense, material rising to replace denser, colder material. 
However, the form the motion takes does not resemble Rayleigh-Benard con-
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vection. The dimensions and relative velocities of the plates are known by direct 
observation, and simple models for the thermal structure of ridges and sinking 
slabs account for a considerable variety of geophysical observations. If all other 
buoyancy forces are ignored it is straightforward to use this information to 
calculate the work supplied by the rigid plate motions themselves. This is the 
simple model we consider below. Though it is likely that the buoyancy forces 
near ridges and trenches provide an important part of the energy required to 
maintain the flow, exactly how important a part is not yet clear. It seems 
unlikely that the only buoyancy forces in the mantle are those which result from 
the temperature contrast between the sinking slabs and the surrounding mantle, 
and the corresponding forces at ridges. For a variety of reasons (Richter, 1973 b; 
McKenzie et al., 1974; McKenzie and Weiss, 1975; Richter and Parsons, 1975) 
some form of flow in the mantle with a length scale of 700 km or less seems 
difficult to avoid, though as yet we have no observations about the form such 
flow takes. But if it occurs it must be driven by buoyancy forces which are not 
the direct result of plate production or destruction. Here we will assume that the 
only effect of the small scale on the large occurs through the mean temperature 
gradient. The small-scale flow must maintain a temperature gradient close to 
the adiabatic in most parts of the mantle and hence a reasonable approximation 
is to ignore all buoyancy effects outside the plates when considering the 
energetics of the large-scale flow. This approximation enormously simplifies the 
discussion because the equations governing the flow of material beneath the 
plates no longer explicitly involve the convection of heat. Whether such an 
approximation is justified is uncertain. Both scales of convection are strongly 
non-linear and can interact, but until more knowledge is forthcoming from 
laboratory or numerical experiments it seems sensible to ignore such possible 
complications. 

Perhaps a more important difficulty is the probable existence of large-scale 
vertical motions unrelated to that associated with ridges and trenches. That such 
flows exist is strongly suggested by the long wavelength gravity anomalies 
determined from satellite motions. Many major anomalies are not obviously 
related to any present day plate boundaries, and the implied mantle flow may 
well be partly responsible for maintaining plate motions (see Section 5). 

We will assume that the deformation of mantle materials can be described by 
a Newtonian viscosity, and allow the viscosity to be only a function of position. 
The equations are then linear and easily solved numerically. Such an approach 
is still basically kinematic, since the mantle motions are driven by motions of 
the boundaries. It does, however, allow a discussion of the forces which resist 
plate motion in terms of a possible fluid mechanical model, and in this respect is 
superior to the models used by Forsyth and Uyeda (1975) and by Chapple and 
Tullis (1977). They attempted to use the observed plate motions to determine the 
force balance on the major plates but did not explicitly consider the fluid 
dynamical forces resulting from the surface motions. 

A most important feature of our model is that the motions are confined to 
the upper 700 km of the earth's mantle. Recently various authors (O'Connell, 
1977; Davies, 1977a and b) have argued that convection associated with plate 
motions extends throughout the mantle. However, they have not put forward a 
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detailed model to account for the focal mechanisms within sinking slabs (Fig. 11 ). 
The state of stress indicated by the focal mechanisms is most easily explained by 
the inability of the slabs to penetrate deeper than 700 km. The observed 
mechanisms have always been and still are most difficult to account for by 
convection throughout the mantle, and none of the authors who favor such a 
flow have done so. No corresponding difficulty arises with the model used here. 

In Section 4 the model is required to satisfy four observational constraints 
that are not in dispute. Three of these provide upper limits and one provides a 
lower limit on the mantle viscosity. These limits do not overlap for models 
having uniform viscosity, but it appears possible to construct a self-consistent 
model in which the mantle viscosity increases with depth. 

2. The Model 

In the absence of buoyancy forces the equations governing the motion of an 
incompressible fluid may be written: 

YJ V2 u= -p VU+ Vp 

V·u=O 

(1) 

(2) 

where YJ is the viscosity, p the density, u the fluid velocity, U the gravitational 
potential and p the pressure. Both the density and the viscosity ate taken to be 
constant. If the flow is two-dimensional in the x, z plane, u can be written in 
terms of a stream function 

u=(~~,O, -~~) 
and the curl of (1) becomes 

It is convenient to rewrite (4) as 

(3) 

(4) 

(5) 

(6) 

where ( is the vortic1ty, because fast subroutines are available for solving 
Poisson's and Laplace's equations. Though conversion of (1) and (2) into (5) and 
(6) is a convenient method of solving Stokes flow problems, it somewhat 
obscures the nature of the driving force. (1) shows that the flow is driven by the 
difference between the gravitational and pressure forces. In many fluid mechani
cal problems it is not necessary to determine the pressure, and a solution to (5) 
and (6) is sufficient. This is not the case here because we need to know the work 
done by rigid boundaries moving into the fluid. In the absence of flow (1) 
reduces to 
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(7) 

where U0 and p0 are the hydrostatic values for the gravitational potential and 
the pressure. When u =!= 0 

U=U0 +U1 

p=po+P1 

and (1) becomes 

11 v2 u= -p vu1 + Vp 1 

(8) 

(9) 

The term - p VU1 describes the influence of the gravity perturbation result
ing from the flow on the fluid motions themselves, and is somewhat complicated 
to evaluate. Provided p VU1 ~ Vp 1 we may neglect the contribution of p VU1 to 
u, even though we later need to obtain VU1 for comparison with the obser
vations. The resulting error may be estimated from the expressions obtained by 
McKenzie (1968, Appendix D) and by Pekeris (1935) for the surface deformation 
and gravity field produced by low Rayleigh number thermal convection in a 
uniform viscous sphere. These expressions show that, when the wavelength of 
the circulation is 104 km, the gravity anomaly is underestimated by about 30 %, 
if p vul is neglected in (9), and the surface deformation by about 10 %, 
decreasing to 15 % and 5 %, respectively, when the wavelength is 4000 km. Since 
we are only concerned with the order of magnitude of these two quantities, we 
may therefore neglect p vul in (9), which may be then written as 

11 (::, o, -;~) =(aJx1, o, 8;21) (10) 

and hence p1 is easily obtained. Since only Vp 1 enters (9), any arbitrary constant 
may be added to p 1 . This indeterminancy allows us to choose an arbitrary origin 
for P1. 

In all cases we will consider, the motion will be driven by a rigid plate of 
thickness t moving with a velocity V and the layer in which the motion is 
occurring will have a depth d (Fig. 1). It is therefore convenient to write 

v 
u=Vu', (=dC x=dx' 

p1 = 11: p~, i/J=Vd1f/, z=dz' (11) 

F=-Jp 1 dx, =-11VJp~dx' 

where the primed quantities are dimensionless, and F is the force/unit length. 
(10) then reduces to 

(12) 
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Fig. I. Typical model for the large-scale flow, driven by dimensionless velocities imposed on the 
boundaries. Both components of the velocity vanish on a, j, and k. The normal component vanishes, 
but the tangential component is set to -1 on d, e, f, and g. On b and i the normal component of the 
velocity and the tangential stress vanish. On h the tangential velocity is zero and the normal 
component is -1. On c the normal velocity is given by (20). This model imposes reflection symmetry 
across both left and right hand edges, and was used to calculate the forces in Figures 4-6, and 8. 
Those in Figure 7 were obtained from a model with a more realistic boundary condition on the left 

It is clear from the dimensionless forms of (5) and (6) that the solutions do not 
depend on V Similarly the dimensionless values of the forces/unit length are 
independent of V, and the true forces F can be obtained simply by multiplying 
by 17 V This simplicity and generality is a consequence of the neglect of 
buoyancy forces in the fluid, and the assumption that 17 is constant. 

It is convenient to divide the circulation into three regions shown in 
Figure 1: The trench, the interior, and the ridge. This division resembles that 
made by Schubert and Turcotte (1972), who were concerned with the flow in the 
interior region. Sufficiently far from both ridge and trench regions, the stream 
lines must be horizontal and expressions for t//, C and dp~/dx' may be obtained 
analytically 

t// = ( 3 t' + 1) z' 2 - ( 2 t' + 1) z'3 

('=2{(3t'+l)-3(2t'+l)z'} 

op~= -6(2t'+l) 
ox' 

(13) 

where t' = t/d is the dimensionless plate thickness, the surface velocity is unity, 
and the total mass flux across any vertical plane is zero. The principal test we 
use to discover how far we need to be from the ridge and trench regions before 
(13) applies depends on the independence of dp~/dx' on z' in the interior. The 
interior solution for t// is imposed as a boundary condition on the dashed line of 
either the ridge or the trench region (Fig. 1). For (' and p' given by (13) to apply 
on the boundary, dp~/dx' and hence p~, must be found to be independent of z'. 
Various cases are given in Figure 4, and show that the greatest variation of p~ 
with depth is less than 1 %. 

We will also need the corresponding expressions when the shear stress 
vanishes on the upper surface of the viscous layer; 
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t' 1// =-(3 z' 2 -z' 3) 
2 

C=3t'(l-z') 

d' 
_EJ_ = - 3 t' (see also Appendix). 
dx' 
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(14) 

Since the lateral extent of large plates is much greater than their thickness, 
the horizontal variation in p; cannot be maintained by elastic forces within the 
plate but must be compensated isostatically. Therefore the appropriate bound
ary condition to apply at the surface is that the normal stress vanishes, and that 
dp;/dx' is maintained by a surface slope de'/dx' where e' d is the change in 
elevation above a level surface due to the flow. 

de 

dx 
Y/ v dp; 

(Pm - Pw) d2 g dx' 
(15) 

where Pm is the density of the mantle, Pw that of sea water. The gradient of the 
gravity anomaly corresponding to the surface slope is 

dLlg ::::o0.42 Y/ v dp; 
dx gd2 dx' 

(16) 

when L1 g is measured in mms - 2 • Since p is affected by the thermal structure of 
the plate, whereas the long wavelength components of L1 g are not, (16) is 
generally a more useful result than (15). This argument assumes that the lower 
boundary of the convecting region near 700 km is not deformed by the horizon
tal variation in p;. If deformation is possible (15) remains unchanged but the 
long wavelength components of the gravity field are removed by compensation 
(McKenzie, 1977). Under these conditions (15) is more useful. An additional 
complication occurs if the lower boundary results from a phase change. It may 
then be shown (McKenzie, in preparation) that (16) underestimates the size of 
dLl g/dx. Since it is not yet clear what is the nature of the boundary at a depth of 
700 km, we use both (15) and (16) to estimate ry. 

The interior flow produces a viscous stress on the base of the plate, and the 
surface tilting causes a sliding force to act in the same direction. Both these 
forces therefore oppose the motion. The first of these gives a force/unit length 

(17) 

whereas the sliding force/unit length fs 

(18) 

In the trench region the boundary conditions used are indicated in the 
captions to Figures 1 and 2. In some models a velocity of - 2 was used on g to 
discover whether a rapidly sinking slab could drag the surface plate towards the 
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Fig. 2. The corner region at the trench. Because the velocity gradient is singular at the corner the 
stress is infinite. This region was excluded from the force balance calculations by neglecting the 
forces on x 1 and z 1, where x 1 =0.125, z 1 =0.185. The force Fon the oblique boundary was obtained 
from both the finite difference calculation and from a (singular) similarity solution 

Fig. 3. Sketch to illustrate how the biharmonic equation was solved in the region beneath the slab 
tip. The equation was first solved in b with If/=('= 0 on the dotted boundary, then this solution used 
to provide boundary conditions on the dashed boundary of a, and the process repeated by b. This 
iterative method converged rapidly 

trench. The least realistic of the boundary conditions is that imposed on i. This 
boundary is only stress free if the flow has reflection symmetry about the left 
edge of the figure, and clearly this is a poor approxiamtion: Real trenches are 
strongly asymmetric. We therefore also carried out calculations on a more 
realistic asymmetric model. 

The basic numerical method used to solve (5) and (6) in the presence of rigid 
boundaries was described by Richter (1973a). All the calculations described 
below used 32 vertical mesh points and square elements. However, certain 
difficulties arise in applying finite difference shemes to the trench region. Because 
the position of the boundary A in Figure 1 is arbitrary, the value of L1 should 
not affect the solution. If, however, (13) is imposed as a boundary condition on 
A and L 1 is small, the flow will be strongly affected by the value chosen, whereas 
if L 1 is made large, computer time will be wasted since a large part of the 
solution will be indistinguishable from (13). It is undesirable to increase the 
mesh spacing since in places the vorticity varies rapidly. A convenient test was 
the constancy of p~ on A. Since the pressure in the interior flow should only be a 
function of x', too small a value of L 1 produced some variation with z'. This and 
other simple tests showed that a value of 1.5 was a good compromise. 

The most obvious objection to the boundary conditions imposed in Figure 1 
in the trench region is that they require a singularity in the vorticity in the upper 
left hand corner. The singularity occurs because the velocity is not continuous, 
and it is not obvious that the numerical scheme will model this region ac
curately. Furthermore, the similarity solution for the fl ow in this corner (Hewitt 
et al., 1975) shows that the shear forces acting on the horizontal and vertical 
boundaries are infinite. The mathematical cause of this singularity is that the 
velocity is not continuous and hence the stress, which depends on the gradient of 
the velocity, is infinite. Such singularities commonly arise in fluid mechanics 



|00000460||

448 F. Richter and D. McKenzie 

when the equations used to describe the physical behavior of the system locally 
no longer do so. In this example the relationship between stress and strain rate 
ceases to be linear when the stress exceeds a particular value. Unless solutions to 
the non-linear equations are obtained we must exclude the corner region from 
the calculations of force balance. We did this by cutting off the region with an 
oblique surface at an angle <P to the horizontal (Fig. 2). and calculating the force 
F' which the flow exerted on this surface. When <P = n/4, the value of F' is easily 
obtained from the similarity solution: 

F'=2V2 /(1+~)~uo (19) 

It must be independent of the position of the surface because there are no length 
scales in the similarity solution. The corresponding value from the numerical 
solution was 1.07 when the surface intersected 4 grid points from the corner. 
Such good agreement is somewhat surprising, and shows that the singularity in 
the vorticity does not produce undesirable numerical effects. 

The last difficulty in the trench region results from the geometry of the fluid. 
The numerical schemes we used can only solve the equations in rectangular 
regions. We overcame this problem by using two overlapping regions shown in 
Figure 3, and iterating between the two. The first step consisted in solving for i// 
and (' in region b with (' = i// = 0 on the dotted part of the boundary. The 
resulting solution was then used as a boundary condition on the dashed part of 
the boundary of region a. This solution was in turn used for boundary 
conditions for region b. Ten such iterations were used, and the maximum 
difference in i// in the overlapping region was 1 part in 104 . The accuracy of this 
numerical procedure was tested by carrying out a simple experiment, described 
in detail elsewhere (Richter, 1977). A buoyant rectangular rod was allowed to 
rise through a layer of glycerine. Since the buoyancy force depends only on the 
cross sectional area of the rod and the density contrast between the rod and the 
glycerine, the driving force is known. The calculated and observed velocities 
showed excellent agreement, and therefore confirm the accuracy of the iterative 
scheme. 

The ridge region contains no features not present in the trench region. A 
simpler model would not possess the boundary c, and d would continue to meet 
b. However, such a model would possess a vorticity singularity and would also 
have no boundary where material could flow out of the region. Both difficulties 
may be avoided by introducing a free boundary c of width a= da' on which the 
normal velocity is specified: 

(20) 

Such a boundary seems reasonable beneath a ridge, where the partial melting 
and the elevated temperature are likely to decouple the surface plate motions 
from those of the mantle below. Since d is a rigid boundary and c is not, there is 
a discontinuity in vorticity where they meet. The same arguments as before 
apply to the choice of L 2 , which was taken to be 2. 
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Though the model outlined above is obviously an approximation to the full 
mantle circulation problem it is nonetheless a self-consistent convective model 
(except in the corner region near the trench where the singularity is present). 
Hence within the limitations of our model we take full account of all fluid 
dynamical forces. The unusual form which some of these forces take arises 
because of mass transfer across boundaries h and c in Figure 1 and the work 
done by other moving boundaries. It is important to emphasize that these forces 
are not artifacts of our particular model and that exactly the same forces are 
found in a continuously deforming material if one isolates particular parts of the 
system. 

3. Forces 

Resistive Forces 

The results of the calculations using the model in Figure 1 are shown in 
Figures 4-8. The ridge models in Figure 4 have a variable width of boundary on 
which the vertical velocity is non-zero and given by (20). Since the plate 
thickness is small compared to the thickness of the layer, flow which is driven by 
the mass flux across the boundary is weak compared with that driven by the 

Fig. 4a-f. Ridge models with a plate 
moving to the left with u~ = -1 for 
various values of a'. The width of the 
region is twice the depth. J r~z dx' is the 
dimensionless force/unit width which 
resists the motion of the plate. L1p~ is 
the dimensionless pressure difference 
between points at depths of i, t, and ;i, 
and the ridge axis at the top right. (t) 
shows the resistive force and pressure 
drop of the corresponding interior 
solution. The vertical velocity imposed 
on the dotted boundary is given by (20). 
The contour interval for 1// in (a) is 
0.022 and t' =4.5/32 

(a) 

(b) 

Mj 
3053~ 
30.511 
30.521 

(d) 
Mj 
13.0H 
13.0li 
13.01; 

a'= I/a 
(c) 

a'= \14 tiP.' 
1, 

fr;2 dx' = 9 96 18.78~ fT;zdX' = 8.88 
18.78i 
18.781 

a'= 1/2 (e) a'= 1 
tiP{ -f r;2 dx' = 7.5S········ 
8.5o.J 

f r;2 dx' ~·5_·3·3 ........ 
8.53~ 
8.551 

(t) 
tiP{ 

I f Txz dx' = 8.84 
13.68: 

I 



450 

(a) 

(b) (c) 
t 'fr:zdX'=5.20 : 

fr;zdz'=l.61 : 
/P:dx'=2.35 I 

t r;zdx'=5.23 : 

f r;zdx'=337 : 
f P/ dx' =5.05 I 

(d) 

1 
'j._r;1 dx1=5.23: 

' f r;zdz'=5.48 : 
~ f P;dx'=ll.44 I 
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Fig. Sa-d. Trench models, symmetric about the left 
hand boundary, with a sinking slab moving verti
cally with u; = - 1 and the plate moving horizon
tally with u: = - I. The region extends a distance of 
1.5. The mass flux through the tip of the slab and 
through the right hand boundary is Vt/2. Jr~= dx' 
is the force/unit width resisting the plate motion, 
excluding the part to the left of the dotted line 
within 9/64 of the corner singularity. Jr~, dz' is the 
force/ unit width acting on one side of the sinking 
slab, excluding the part above the dotted line. 
J p; dx' is the force/unit width due to the pressure 
difference between the right hand edge of the 
region and the tip of the slab. The force/unit width 
acting on the dotted line is 1.10 and is a driving, 
not a resistive, force. It is not included in the force 
balance calculations. The contour intervals for 
stream lines in (I) is 0.022, and the slab extends to 
a depth oft in (b), ~ in (c), and ii in (d) 

horizontal plate motion. Hence the major upwelling does not occur beneath the 
ridge axis but where the boundary condition changes to fixed horizontal 
velocity. The various models for a ridge in Figure 4 should be compared with 
the corresponding interior solution (Fig. 41). Only those models with a total 
width of prescribed upwelling smaller than t have significantly greater resistive 
forces than those of the corresponding interior solution. There is at present no 
information about the half width of the region below the ridge axis where the 
viscosity is strongly reduced. It is not even known whether this region is limited 
to the ridge axis or extends beneath all plates and decouples their motion from 
that of the mantle below (see section 4). This ignorance suggests that it is at 
present unnecessary to use anything more sophisticated than the interior so
lution when calculating the resistive forces near ridges. 

The forces near trenches are considerably more complicated. The simplest 
model consists of a slab sinking vertically with velocity -1 (Fig. 5). The resistive 
force Jr;, dx' which acts on the horizontal plate is infinite if evaluated from the 
point in contact with the sinking slab. As explained in the last section, this 
corner region was excluded from the calculations (Fig. 2). The remaining force is 
slightly less than the corresponding interior solution for a plate of width 1.5. The 
force acting on the dotted line in Figure 5 is a driving force of small magnitude 
(1.10). It was not included in the force balances because it is not a true source of 
work, but results from the exclusion of the singularity. The force acting on the 
side of the sinking slab J -c~xdz' also is infinite if integrated from the corner, but 
once again this region is excluded. Since large velocity gradients occur when the 
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tip of the sinking slab approaches the lower boundary of the layer, the 
magnitude of this force depends strongly on the length of the sinking slab. 

The most important force F; acts on the tip of the sinking slab and involves 
the perturbed pressure p~. 

t' 

F;= J p~dx' 
0 

The origin of p'1 was chosen to be the ridge axis. It is convenient to divide p~ 
into three contributions: the first due to the flow in Figure 4, the second due to 
the interior flow and the third due to the flow near the trench. Only the third 
contribution is shown in Figure 5. If the plate width is greater than 1.5, a term 
due to the interior flow must be added. F; represents the work that must be done 
to transfer mass from the tip of the slab to the ridge axis. It is not present if the 
slab and plate have no thickness. It is clear from the numbers in Figure 5 that, even 
without the contribution from the interior, F; is greater than the shear force on 
the vertical boundary of the sinking slab. Within a convecting fluid the same 
result holds: the pressure considerably exceeds the shear stress (McKenzie, 
1977). This result is only apparent if p~ is calculated, which it rarely is. 

Besides the fluid dynamical forces acting on the bases and edges of plates, 
forces act on the faults which form plate boundaries. These forces can be divided 
into two components, one in the plane of the fault and one normal to it. The 
first component is involved in the generation of earthquakes, and most of the 
information about its magnitude has been obtained from detailed investigations 
of the radiated seismic waves. Studies of a number of large earthquakes (Ka
namori, 1970a, 1971; Wu and Kanamori, 1973; Fukao, 1973) have shown that 
the difference between the initial and final stress is between 2 x 106 and 5 x 106 

newtons m - 2 • There is at present no evidence that either the stress or the stress 
drop depend on the type of plate boundary involved. On ridges the earthquakes 
produced by motion on both normal and strike slip faults are shallower than 
lOkm (Weidner and Aki, 1973; Prothero et al., 1976). Also on rapidly spreading 
ridges, with plate separation rates of 60 mm yr- 1 or more, earthquakes are rare 
and small, and large normal faults are also absent. We will therefore ignore 
frictional resistance between separating plates. 

The importance of transform faults is less clear. They are generally almost 
vertical, and those that have been studied in detail release little seismic energy 
below 12 km. If the resistive forces were zero below this depth their contribution 
to the force balance could be ignored. Since, however, plates are more than 
80 km thick the absence of earthquakes is unlikely to result from the absence of 
stresses, but is more likely to be due to a change in the behaviour of deforming 
rocks. If the stress on transform faults is 10 7 newtons m - 2 and extends to a 
depth of 100 km it could strongly influence plate motions. Chapple and Tullis 
(1977) included a resistive force due to transform faults in their analysis of the 
forces controlling plate motions, but found that its magnitude was too small to 
be determined. We chose to ignore this contribution to the plate motions 
principally because it can only be introduced into a two-dimensional force 
balance model in an arbitrary way. 
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In contrast to the forces from ridges and transform faults, those acting on the 
thrusts beneath island arcs are probably an order of magnitude greater because 
the dip on the faults is small. If a shear stress a acts on the fault whose dip is 0, 
the resulting horizontal force F on the plate of thickness t is at/tan 0 in a 
direction normal to the strike of the fault. Taking t = 85 km and a= 107 newtons 
m -- 2 gives F = 4.8 x 10 12 newtons m - 1 when 0 = 10° and F = 2.3 x 10 12 newtons 
m - 1 when 0 = 20°. The magnitude of this force is independent of the plate 
velocity and should be included in any force balance. This is easily done because 
the density variations near ridges produce a driving force FR of 2 x 1012 newtons 
m 1 (see below) which balances the resistive force at trenches within the 
uncertainty of both calculations. Hence neither need be explicitly included. This 
convenient equality may, however, conceal the importance of these forces, since 
both are large compared with those in the two layer model considered in 
section 4, and the uncertainty in the value of F - FR is large. Since FR acts near 
ridges and F on the thrust plane beneath island arcs together they keep plates in 
compression. For the same reason plates surrounded by ridges must also be in 
compression. Such a stress state agrees with the limited observations available 
concerning the stress state within plates (Sbar and Sykes, 1973; Rayleigh et al., 
1972). 

No information about the normal component of the force acting on faults 
can be obtained from earthquakes, and nothing is yet known about its magni
tude and importance, or even whether this component acts as a driving or 
resistive force. Despite this ignorance there is some evidence (see Molnar and 
Tapponnicr, 1975) that normal forces acting in some continental regions do 
control the motion of some large plates. Despite this evidence we chose to ignore 
such forces everywhere, partly because their magnitude is unknown, and partly 
because their importance depends on the shape of individual plates. 

In Figure 5 the plate and the slab move with the same velocity. This is a 
sensible model to use if the slab and plate arc connected and stress can be 
transmitted from one to the other. However, recent work on earthquakes 
produced by normal faulting within the plate and slab strongly suggests that the 
faults extend through the plate (sec McKenzie and Weiss, 1975). If all plates are 
broken in this way, any stress transmission that occurs must do so either by 
frictional forces within the plate and slab or by viscous forces acting on their 
boundaries. In the absence of the sinking slab the resistive force on the plate of 
length 1.5 would be 6.63 (Fig. 41) and it is clear from Figure 5 that a slab sinking 
with velocity - I has little effect on this force. If viscous forces arc to transmit 
the force, the slab must sink faster than - I. Since the mass llux is fixed, the slab 
can only sink faster if its thickness is less than I. Figure 6 shows the forces acting 
when the slab sinks at - 2 and is half the thickness of the surface plate. The 
force resisting the plate motion is reduced but it not negative, even though the 
width or the plate in Figure 6 is only I 000 km. Clearly considerably larger 
sinking velocities arc needed if plaks the size of the Pacific arc lo be moved by 
viscous forces. Because mass must be conserved, larger velocities require thinner 
slabs, and it is not obvious how a plate can become a thin rapidly moving slab 
at shallow depths beneath a trench. 
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Fig.6a c. As for Figure 5 hut with the slah sinking 
with 11; = - 2. The driving forc,;e/ unit width on the,; 
dolled line is 1.36 and is omitted in the force,; balance,; 
cakulations. The mass llux through the tip of the slab 
and the righ t hand boundary is VI 

Fig. 711 d. Model for a n asymmetric 
trench with the slab s inking with 11; = 
- I. plate I moving lo the left with 
velocity - I and plat e 2 stationary. The 
integrals arc taken over the same boun

da ries as in l'igure 5. The li>rces on the 
base o f plate 2 act to the ri1d11. The 
mass llux through the right ha nd 
boundary is Vt. tha t through the left 
hand 1.e ro. The con tour intervals for 1f/ 
in (11) a rc 0.02866, the slab cxtc.:nds to a 
depth of~ in (h). :; in (l' ) and ~ in (d ). 
The pert urhed pressure on l he righ l 
hand boundary is taken to he 1.ero 
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Since !he oceanic crus( is produced by partial melting of the mantl e. large scale 
differences in density can only be produced by differences in temperature. I lcncc 
all the dri ving forces arc convective in origin . I lori1.ontal temperature variations 
beneath ridges produce both the shallow bathymctry and a driving fo rce /·~1 • 

whose magnitude may be obtained from any thermal model of a spreading 
ridge. !\ s imple model consists of isothermal hot material of density p111 upwell
ing al the ridge axis, then cooling as it moves away until the tempera ture 
gradient is consta nt across th e plate of thick ness I. The density at the base of lhc 
plate is everywhere 11111 • If the elevation difference between the ridge axis and the 
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F. Richter and D. McKenzie 

Fig. Sa-ii. As for Figure 5, but with a piece of 
slab detached, and sinking with various dif
ferent velocities. The contour interval for 1// in 
(a) is 0.0308, and the flow corresponds to (c). A 
negative pressure integral corresponds to a 
resistive force on the upper boundary of the 
sinking block. The length of both the slab and 
the block is ! 

cooled plate is e, the density of sea water is Pw' then the pressure Pi beneath the 
ridge axis at a distance z above the base of the plate is 

(21) 

When the plate has cooled and a linear temperature gradient has become 
established between the mantle and the sea floor, the density within the plate pP 
increases linearly with z: 

(22) 

where {J depends on the thermal expansion coefficient. Integration gives Pi , the 
pressure beneath old sea floor 

(23) 

Since the ridge is taken to be in hydrostatic equilibrium Pi =Pi when z = 0. Thus 

(24) 

We can now obtain the driving force due to ridge pushing by integration 
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t+e t 

FR= J Pi dz - J Pi dz 
0 0 

=ge(pm-Pw)G+~)· 
(25) 

Only a small part of this force arises from the tendency of the plate to slide 
down the sides of the ridge. If the uplift of the upper surface is prevented by 
applying normal forces, the pressure still exerts a force F2 where 

(26) 

F2 originates from ridge pushing and FR - F2 from plate sliding. Substitution from 
table 1 gives FR= 2 x 1012 nm- 1 and FR -F2 =10 11 nm - 1, and therefore most of 
the force is due to ridge pushing. The estimate of FR is probably accurate to 
within a factor of 2, and corresponds to a shear stress of 1.2 x 107 nm - 2 • Except 
in rare cases oceanic plates do not fail under this stress, which therefore places a 
lower limit on the shear strength of the oceanic lithosphere. 

Tablet 

=85km 
e =3km 
Pm =3.3 Mgm- 3 

Pw =l.OMgm- 3 

g =9.8ms- 2 

T, =1200°C 
a =3xl0- 50c- 1 

c p = 1.2 x 103 J kg- 1 oc- 1 

k =3.l wm- 20c- 1 

d =615km 

The other source of convective energy results from density contrasts as
sociated with trenches. The most important is undoubtedly the density contrast 
between the sinking slab and the surrounding mantle, and its magnitude may be 
estimated from the thermal structure (McKenzie, 1969). 

8 gcxpm T1 t 2 
{ ( n2 z) ( n d)} F(z)= R exp --- -exp ---

1 n 4 2R t 2R t 
(27) 

where 

(28) 

ex is the coefficient of thermal expansion, T1 the temperature difference between 
the bottom of the ocean and the mantle, z the depth below the base of the plate, 
k the thermal conductivity and CP the specific heat. Substitution gives R = 1.7 V 
where Vis in mm yr- 1 . Assuming that the slab sinks vertically, the total driving 
force F1(0) is plotted as a function of V in Figure 9. When V is small 
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Fig. 9. Available driving force from 
subducted slab as a function of the 
consumption velocity V, obtained from 
(27). The horizontal dashed line shows 
the asymptotic limit as V-+ oo 

( < 10 mm yr- 1) the last term in (27) may be neglected, and F;(O) increases 
linearly with V. Under such conditions the temperature of the slab's interior has 
become approximately T1 when it reaches the base of the upper mantle. If, 
however, V is large then (27) may be written 

(29) 

and is independent of V. The expression is appropriate when V > 40 mm yr- 1 

and the slab sinks with little increase in temperature. Figure 9 shows the 
maximum force available from a sinking slab. When the slab reaches the base of 
the upper mantle at a depth of 700 km, we are assuming that the cold material 
must flow horizontally and does not contribute to F;. The force actually exerted 
will be less because the slab does not remain intact as it descends, but breaks up 
into blocks. The motion between these blocks produces intermediate and deep 
focus earthquakes. Studies of the stress involved in such shocks (Wyss, 1970; 
Wyss and Molnar, 1972; Fukao, 1972; Mikumo, 1972) have found some 
evidence that intermediate shocks may involve somewhat larger stress drops 
than either shallow or deep earthquakes. However, we are only concerned with 
the force which can be transmitted to the plates, and hence with the stress within 
the shallow part of the slab beneath the front of the island arc. We will therefore 
impose an upper limit of 2 x 107 newtons m - 2 on the stress within this part of 
the slab. In the absence of resistive forces. it is clear from Figure 9 that this stress 
will be exceeded in slabs sinking faster than about 3 mm yr- 1 . The consumption 
rate in all major trench systems is greater than this limit, and therefore failure of 
the sinking slabs may occur. Whether or not it does so depends on how the 
buoyancy forces are balanced by resistive forces. 

These two contributions to the driving forces are generally recognized and 
easily calculated. Two others are not. Probably the most important of these 
results from large-scale flow which is not driven by plate motions. At present the 
only evidence for the existence of such flow comes from long-wavelength 
gravity anomalies determined from satellite motions (Gaposchkin, 1974; Lerch 
et al., 1974). As explained above, flow associated with these anomalies may 
make a large contribution to the perturbed pressure field and the viscous 
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stresses. The other driving force which could help maintain the motions results 
from the topography of trenches. A driving force may arise in the same way as 
that at ridges. Because mantle rock is replaced by water the lithostatic pressure 
at all depths is reduced by (Pm - Pw) g H where H is the depth of the trench. 
However, unlike ridges, trenches are not isostatically compensated and must be 
maintained by elastic forces. Unfortunately, very little is yet known about the 
distribution of these stresses. It is not even clear whether any of the pressure 
reduction is available to drive the plates. Therefore this possible energy source 
or sink is also neglected. 

4. Observational Constraints and Force Balance 

Gravity 

If the model discussed in section 2 is to provide a useful description of the large
scale flow it must be compatiable with relevant geophysical observations. Since 
the only major uncertainties are the value of the viscosity and its variation with 
depth we use the observational constraints to impose constraints on the vis
cosity. 

The simplest constraint to apply depends on the absence of large long 
wavelength gravity anomalies. The gravity anomaly produced by the flow in 
Figure 1 is complicated and difficult to calculate near the ridge and trench 
regions where large horizontal density contrasts must exist and elastic forces 
are important. In the interior region, however, the gravity anomaly should 
increase linearly towards the trench, and is produced by the horizontal pressure 
gradient (see Eq. (16)). Hence we can impose a bound on the viscosity by 
considering the horizontal gradient of the gravity field across interior regions of 
plates remote from their boundaries. The long wavelength pressure gradient will 
"tilt" the sea floor because the plates are thin and flexible. The observed 
difference in gravity between trenches and ridges is less than about 0.3 mm s - 2 

and is positive over trenches. Since the return flow should produce an anomaly 
which varies linearly between trenches and ridges, whereas the observed field 
consists of a positive anomaly centered on the trenches whose extent is only a 
fraction of that of the plate (Gaposchkin, 1974; Lerch et al., 1974), this value is 
probably an upper limit. To obtain the magnitude of the gravity anomaly from 
the expression in section 2 we need the horizontal extent and velocity of the 
plate. In the discussion below we will consider two plates. The first, plate A, 
moves at 100 mm yr- 1 and has a lateral extent of 104 km. These values 
are comparable to those of the Pacific plate. The second, plate B, moves at 
50 mm ye 1 and has an extent 6000 km. These values resemble those for the 
Indian-Australian plate. If the viscosity of the mantle below the plates is 
constant, then the upper limit on the viscosity and stress on the base for the two 
plates is 

IJ A< 1019 kg S - 1 m - 1, 

IJn< 3.3x1019 kg s- 1 m- 1, 

C5 A< 2.6 x 105 newtons m- 2 

C5n < 5.2 x 105 newtons m - 2 • 
(30) 
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If, however, there is a thin layer of very low viscosity material beneath the 
plates (Appendix) then the horizontal pressure gradient required to drive the 
return flow is much reduced and the corresponding expressions are 

(31) 

from (14) and (16). The shear stress on the base of the plates is also greatly 
reduced in both cases. 

There are several objections to using the gravity field from our simple model 
to obtain an upper limit on the allowable viscosity. The most obvious is that the 
sign of the gravity anomaly obtained in section 2 is opposite to that obtained by 
McKenzie et al. (1974). Since the model we use here contains no buoyancy 
forces within the fluid whereas the numerical models used by McKenzie et al. do, 
the disagreement in sign could be due to such forces. If this were the case no 
limits such as (30) and (31) could be obtained. Fortunately this is not true. 
Recent convective calculations by McKenzie (1977), using a temperature de
pendent viscosity, have shown that the sign of gravity anomaly over a rising 
region changes from positive to negative when the viscosity variation is suf
ficiently large. This change in sign results from a change in sign of the horizontal 
gradient of p1. The model used here contains a plate at the surface, rather than a 
high viscosity region, but is otherwise similar to the convective models. There is 
therefore no reason to suppose that buoyancy forces and density variations in 
the mantle invalidate the limits (30) and (31 ). 

The argument above depends on the mechanical behavior of the lower 
boundary of the convecting region. This question has been discussed above in 
section 2. If the lower boundary cannot be deformed vertically or is a phase 
change, then (31) applies. If, however, the lower boundary is deformable, then 
the long wavelength gravity anomalies are compensated (McKenzie, 1977) and 
only the elevation differences limit 17. Unfortunately most of the variations in 
bathymetry are produced by variations in the temperature of the plates and thus 
a large and uncertain correction must be applied to obtain the dynamic 
variation produced by dpifdx (Parsons and Sclater, 1977). Though the thermal 
models fit the observed variation of age with depth to within the observational 
errors, the models were constructed to do so. Since Parsons and Sclater could fit 
the observations from all major ocean basins with a single curve of depth as a 
function of age, it seems unlikely that the return flow can produce more than 
about 1 km variations in depth not associated with gravity anomalies. If this 
rather uncertain limit is used to obtain estimates of the viscosities from (15) we 
obtain 

ryA<'.3.5x1019 kgs- 1 m- 1, 
11B < 1.2 x 1020 kg s-1 m-1, 

if there is a single layer, and 

(J A< 8.7 x 105 nm- 2 

(JB< 1.5x106 nm- 2 

1/ A< 6.1 X 1020, 1JB <'. 2.1 X 1021 kg S - l m - 1 

if there is a low viscosity layer beneath the plates. 

(32) 

(33) 
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150 
F 

Fig. lOA and B. Force balance diagrams for plate A, 10,000km long (A), and plate B, 6000 km Jong 
(B) in units of 17 V, all for the asymmetric models in Figure 7 and constant viscosity. The vertical scale 
on the left shows the dimensionless depth to which the slab reaches beneath the trench. The 
horizontal line extending to the right from the tip shows the resistive force due to the local pressure 
field within a distance of 1.5 from the trench, marked T, and that due to the interior pressure, 
marked I. The curved line drawn from the tip of the slab to the surface indicates the shear force 
exerted on the sides of the sinking slab integrated upwards from their base. Their magnitude is 
correct but the depth dependence is sketched. The horizontal lines at z' = 0 show the total horizontal 
resistive force acting on the base of the plates due to both the region near the trench and the interior. 
The interior force includes both fv and f, (Eqs. (17) and (18)). For the two cases where the tip 
extends to z' = 0.5 these two contributions are marked T and I. The gravity force due to the slope of 
the surface has been included in I. The oblique straight lines show the integrated buoyancy and must 
close the diagrams. The reciprocal of their slopes correspond to the buoyancy force in units of 17 V 
exerted by a constant density contrast between the sinking slab and the surrounding mantle which 
are necessary to maintain the plate motions. The slab will be subject to extensional stress at those 
depths where the integrated buoyancy 1s greater than the cummulative resistive force up to that 
depth. When the integrated buoyancy is less than the cummulative resistive forces, the slab will be in 
downdip compression. The continuous line shows the forces for z'=0.5, dashed for z'=0.75 and 
dotted for z' = 0.875 

Force Balances 

All other constraints we impose depend on the balance between res1st1ve and 
driving forces, and are most easily understood using a force balance diagram 
(Fig. 10). Since forces due to the inertia of the mantle material are extremely 
small compared with the viscous forces, the forces driving the plate and slab 
must exactly balance the resistive forces. Figure 10 shows the cummulative 
resistive forces and the integrated driving force (buoyancy force) starting from 
the bottom of the downgoing slab. Since the total resistive and driving forces 
must be equal in magnitude, the two curves for each case must form a figure 
closing at z' =I. Furthermore, where the cummulative resistance exceeds the in
tegrated buoyancy, (near the bottom of downgoing slab) the slab will be in 
compression. Where the opposite is true (nearer the surface) the slab is in 
tension. These terms are somewhat misleading. Since all principal stresses are 
everywhere negative the failure is always a shear failure. When the slab is in 
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Fig. II. Summary of the stress state within sinking slabs (!sacks and Molnar, 1971). Open (closed) 
circles represent zones where the P(T) axis of the fau lt plane solutions is approximately coincident 
with the dip of the sinking slab, described as compression (tension). Crosses mark solutions which 
showed no simple relationship between the stress state and the slab geometry. Continuous curved 
lines represent the shape of the seismic zone. The upper horizontal dashed line at a depth of 350 km 
marks the approximate depth below which the slabs are in compression; no earthquakes have been 
recorded at a depth greater than that of the lower dashed line 

tension shear failure permits it to lengthen, whereas when it is in compression it 
must shorten if a shear failure occurs. Most models of island arcs assume that 
the slabs move with the same velocity as that of the plate being consumed, 
despite the existence of intermediate and deep focus shocks. It is, however, hard 
to exclude major variations in velocity associated with slab deformation, and we 
have therefore considered models in which part or all of the sinking slab sinks 
with greater velocity. 

The pressure forces acting on the slab tip consists of two parts. The first, 
marked T in Figure 10, results from the local flow near the trench. The second, 
marked I , is due to the interior flow. Since the second contribution is inde
pendent of the depth to which the slab extends, and depends only on the 
distance between the trench and the ridge, the lower part of the slab must 
always be in compression. When the slab approaches the base of the layer the 
local contribution becomes very large and may exceed the buoyancy force of the 
entire slab. Under these conditions the plate will be in compression at all depths. 

Fortunately it is possible to use fault plane solutions of earthquakes within 
the sinking slabs to discover whether they are in tension or compression. 
Figure 11, from !sacks and Molnar (1971), shows the extent and the stress state 
of most known slabs. It shows that slabs whose tips do not reach below a depth 
of 350 km are in tension throughout most of their length. Though few mecha
nisms are available from close to the tips of these slabs (Fig. 11 ), they must 
always be in compression. If the tip of the slab extends deeper than 350 km, but 
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less than 600 km, then the part above 350 km is in tension, that below in com
pression, whereas if the tip extends below 600 km the slab is in compression 
throughout is length. The force balance diagram must satisfy these constraints. 
The observations from the Kermadec and Kurile Arcs (Fig. 11) suggest that the 
lower 150 km of the slab are in compression. This value will be used for plate A, 
since the return flow from these two arcs must extend to great distances. Other 
arcs, such as Middle America where all the solutions are tensional, have 
correspondingly shorter return paths. Other arcs with slabs, such as those 
beneath the Aleutian and Ryukyu Islands, extending to a similar depth to that 
beneath Middle America have longer portions of the slab in compression, 
suggesting that the difference is not due to depth of penetration alone. One 
further condition we impose is that pieces of the slab should be able to fall 
through 600 km driven by their own buoyancy. In all but one case the existence 
of detached blocks gives little information because the consumption rate in the 
past is unknown. The sole exception is New Zealand, where the consumption 
rate is known from the magnetic anomalies on the Pacific-Antarctic and 
Southeast Indian Rises. The mean rate over the last 10 My is about 10 % less 
than the present rate (Molnar et al., 1975). Beneath the North Island of New 
Zealand the sinking slab is continuous to a depth of about 300 km, then there is 
a gap, followed by a few shocks spread over 50 km at a depth of about 600 km 
(Fig. 11). It is only possible to form such a structure with little variation in 
consumption rate if small blocks can sink through the mantle below a depth of 
300 km at velocities greater than the rate of 30 mm/yr at which the slab has been 
sinking (Christoffel and Calhaem, 1973). 

A One-Layer Mantle 

If the sinking slab extends to a depth of 630 km and the buoyancy forces (from 
Fig. 9) are balanced by viscous forces, then the viscosity can be obtained from 
the force balance diagrams in Figure 10. That for plate A gives 

and plate B 

11 B c:=: 1. 6 X 102 O kg S - 1 m - 1 

The mean stress (J acting on the sides of the sinking slabs is 

(J Ac:=: 2.8 x 106 newtons m - 2 

(JB c:=:4.4 x 106 newtons m- 2 

and that on the base of the plates is 

(J Ac:=: 1.3 x 106 newtons m - 2 

(J 8 c:=:2.0x106 newtons m- 2 
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Fig. 12. Estimates of viscosity (kg s - 1 m - 1 ) of 
and stress (newtons m - 2) within a one layer 
mantle of constant viscosity (see text). 
Crosses mark estimated values, horizontal lines 
with arrows mark bounds; upper bounds if 
the arrow points downwards, lower if it 
points upward. A and B refer to the two 
plate models 

It is, however, improbable that these values are sensible. The model requires 
large forces to be transmitted through the lithosphere beneath the trench. The 
stress involved is easily obtained from Figure 10, and is about 1.8 x 108 

newtons m - 2 • Since the lithosphere appears to be broken by normal faults in the 
region where it bends beneath the island arcs, this stress must be transmitted by 
friction. Since there is little evidence in favour of such large stresses being 
involved in earthquakes (see section 3) it seems more sensible to limit the stress 
to some value, and we choose 2 x 107 newtons m - 2 and then use the scaled 
dimensionless forces in Figures 4a and 7 to obtain the value of the viscosity 
which will allow the plate to move. This balance gives 

1JA ~5.5x10 18 kg s- 1 m- 1 

1JB~ 1.8 x 1019 kg s- 1 m- 1 

r:r A~ 1.4 x 105 newtons m - 2 

r:rB~2.4x10 5 newtons m- 2 

which are shown in Figure 12. Since the total force on the plates must be zero 
these are estimates, not upper or lower bounds. Since the slab is broken and 
does not move with a uniform velocity we can no longer use the simple models 
to examine the total force balance. Under these conditions the buoyancy of the 
sinking slabs must be balanced locally by the pressure and shearing forces but 
these resistive forces cannot be estimated unless the velocity variation is known. 

Figure 11 shows that the bottom 150 km of the slabs beneath the Kermadec 
and the Kurile arcs is in compression. The consumption rates are both around 
80 mm ye 1, and their bases are at 550 km and 620 km respectively. If we 
assume that the sinking rate is equal to the consumption rate we can use 
Figure 10 to obtain 

1J > 1.1 x 102 0 kg s - 1 m - 1, 

for the Kermadec Arc and 

r:r > 8 x 106 newtons m - 2 

r:r > 6 x 106 newtons m - 2 

for the Kurile Arc, where the stresses refer to the mean shear stress on the sides 
of the lower 150 km of the plate. 
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The last limits come from the existence of detached blocks. If we use the u~ = 

- 2 case with V = 15 mm yr- 1 and require a block 150 km long to fall with a 
velocity of at least 30 mm yr- 1 (see above and Fig. 8), we require: 

17 < 4 x 102 0 kg s - 1 m - 1, er< 1.1 x 10 7 newtons m - 2 

This value of the viscosity is considerably greater than that obtained by 
Christoffel and Calhaem (1973) for New Zealand because they required the 
block to sink at 100 mm yr- 1 and be only 60 km in length. 

The limits shown in Figure 12 are quite obviously incompatible. The vis
cosity required varies by two orders of magnitude. If the creep rate is a non
linear function of stress when the stress exceeds a certain value, estimated to be 
about 10 newtons m- 2 (Stocker and Ashby, 1973; Weertman, 1970) the problem 
becomes worse, since the effective viscosity is a decreasing function of shear 
stress, whereas Figure 12 requires the opposite. The only reasonable explanation 
for the failure of the model is that the viscosity of the mantle is not constant but 
increases with depth. The simplest model is then one which contains two layers, 
an upper layer with low viscosity which allows the plates to slide and a lower one 
of higher viscosity. Unfortunately two parameters are required to describe such 
a model, and for this reason it is no longer possible to obtain dimensionless 
forces valid for all viscosities as was done for the one layer model. Instead of 
carrying out extensive calculations with a wide variety of two layer models we 
chose to obtain approximate expressions for the forces on sinking slabs from 
the one layer calculations and only carry out a complete two layer calculation 
for the interior flow, where analytic expressions can be obtained. The estimates of 
the forces acting on the sinking slabs are little affected by the presence of a thin 
low viscosity layer. 

Two-Layer Models 

We consider two models, model Chas an upper layer 85 km thick, and in model 
D it is 8.5 km thick. Both can satisfy the observational constraints, though a 
model similar to C seems to us more plausible. We first estimate the viscosity 17 2 

of the lower layer assuming that no stress is transmitted through its upper 
surface, and then discuss the likely range of the viscosity of the upper layer. 

Models of this type with thin low viscosity zones beneath the plates have 
been suggested by several authors (Anderson, 1962; Green, 1972; Wyllie, 1971) 
who believe the uppermost mantle to be partly molten. The existence of a fluid 
phase insufficient by itself to lower the viscosity. If, however, the liquid phase is 
in equilibrium with the solid, mass transfer may occur through the fluid and in 
this way dramatically lower the viscosity. 

If the resistive forces are required to balance a total buoyancy of order 2 
x 1013 newtons m - 1 (Fig. 9), then 

1J > 5 x 102 0 kg s - 1 m - 1 

for the Kermadec slab and 

er> 1.1 x 107 newtons m - 2 
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Fig. 13. Estimates of viscosity (kg s- 1 m - 1) of 
and stress (newtons m - 2 ) within the lower 
layer of a two layer model, C for the 
mantle. The symbols have the same meanings 
as in Figure 12. The estimates marked A 
and B are uncertain, and could be increased 
or decreased by at least a factor of 3 

O" > 6.6 x 106 newtons m - 2 

for the Kurile slab. The values of 1J are somewhat larger than the one layer 
values principally because of the stress free condition which causes the contri
bution of the interior flow to p1 to be small. The falling block gives values which 
are little affected by the free upper surface. These values are plotted in Figure 13 
and are in substantial agreement with the value obtained from post-glacial 
uplift. It is not at once obvious why these values should agree. Clearly if the 
viscosity of the upper layer is sufficiently small the ice load will be compensated 
by movement of material within the upper layer (see Appendix) and produce a 
periferal bulge around the load. If this is not to occur then 1J 2/17 1 < 104 for model 
C and < 106 for model D. If, however, the above conditions are satisfied the low 
viscosity layer may become extremely hard to detect, especially when it is overlain 
by an elastic plate (Peltier, personal communication). The only effect of the upper 
layer is to alter the boundary condition on the upper surface of the lower layer. 
In the absence of a low viscosity layer the tangential velocity due to the ice load 
must vanish at the base of the plate, whereas when a low viscosity layer is 
present the shear stress vanishes instead. However, if the lower layer is a half 
space, both boundary conditions are satisfied by a stream function 

I/I= c(kz -1) ekz sink x 

where c is a constant, and k is the wavenumber, and therefore post-glacial uplift 
cannot distinguish between the two boundary conditions, and in both cases 
determines the viscosity of the lower layer. 

The other apparent difficulty involves the rigid boundary imposed at a depth 
of 700 km. Peltier and Andrews (1976) could not account for the post-glacial 
uplift without permitting flow to occur below this depth. If, however, the rigid 
region is as thin as McKenzie and Weiss (1975) believed, it would not influence 
the surface motion but would still prevent the return flow penetrating the lower 
mantle. 

The Upper Layer 

We wish the upper layer to decouple the plate motions from the motions below, 
but it must not channel the horizontal flow. If it did so this would be apparent 
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in the post-glacial uplift observations. Another observation which excludes this 
possibility is the observed correlation between the depth of the ocean and 
gravity anomalies (Sclater et al., 1975). If normal stresses could not be transmit
ted to the base of the plate then its upper surface would be an equipotential after 
the age corrections had been made. Since the ocean surface is an equipotential, 
the corrected depth would be constant (McKenzie, 1977). This is not the case. 
Therefore the viscosity of the upper layer must be sufficiently small to decouple 
the plate motions from the lower layer, but large enough to prevent large 
horizontal mass fluxes within it. These conditions cannot be satisfied if the layer 
is much thicker than 85 km. The limits for model C are 

2x102<112frl1<103 

and for D 

103 < 1121111<105 • 

If we take 11 2 to be 2.5 x 1020 kg m- 1 s- 1 and 11 1=5x1017, 2.5 x 1017 for models 
C and D, respectively, we satisfy these two constraints. Using the expressions in 
the Appendix, and including the sliding force we find that the force required to 
maintain the surface plate motions corresponds to stresses within the plates at 
island arcs of 

u A""' 2.6 x 107 newtons m- 2 

u B""' 7.9 x 106 newtons m - 2 

in model C for the two plates and 

u A""' 3.2 x 107 newtons m- 2 

uB""'9.1x106 newtons m- 2 

for model D. It is therefore possible to maintain the plate motions by frictional 
forces transmitted across faults, and also to provide enough resistance to permit 
the upper part of some sinking slabs to be in tension. One further condition 
must be satisfied. There is no evidence that the heat flow through old parts of 
plates depends on the spreading rate, and therefore shear stress heating should 
not make an important contribution to the surface heat flux. The total contri
bution from this source for plate A using model C is about 8 x 10- 4 Watts m - 2 , 

and for model D is about 7 x 10- 4 Watts m - 2 • Both are less than 2 % of the 
surface heat flux. It is clear from this discussion that the difficulties faced by a 
one-layer model are removed if a thin low viscosity layer is present beneath the 
plates. 

5. The Driving Force for Plate Motions 

In the last section we have argued that geophysical observations require a large 
contrast in viscosity within the mantle. A high viscosity lower layer is required 
to account for the post-glacial uplift data and for the fault plane solutions for 
deep earthquakes. However, unless the surface motions are decoupled from this 
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lower layer by a low viscosity region, long wavelength gravity anomalies or 
residual depth variations are produced whose magnitude is about two orders of 
magnitude larger than those observed. We argued that a model with a thin low 
viscosity layer beneath the plates could reconcile the differences between the 
different estimates of viscosity, but it is also important to discuss whether the 
model is compatible with the extensive knowledge of plate motions. 

The two plate models considered above both contain sinking slabs, and 
therefore buoyancy forces from density contrasts beneath trenches are available 
to maintain the motions. For this reason these models closely resemble that of 
Elsasser (1969), who suggested that this buoyancy force could drive all observed 
motions. One of the principal objections to this idea was that many large plates, 
such as Eurasia, America, Africa and Antarctica are in relative motion 
(McKenzie, 1969). At first sight this objection is overcome by the convective 
forces available from ridge pushing. Unfortunately such forces are available only 
if spreading is already taking place, and therefore they cannot break an existing 
plate. Since it seems likely that the separation of both North America and 
Eurasia and of South America and Africa started when no large sinking slabs 
were attached to any of these plates, another source of work is required. One 
possibility is that the decoupling layer is absent beneath shield regions, and 
hence that continents are strongly coupled to flows in the mantle. Another is the 
sliding force discussed in section 2, given by Eq. (18). This force exists because 
convection in the lower layer lifts the plate on top. Sclater et al. (1975) showed 
that parts of the North Atlantic were up to 1 km shallower than expected from 
their age. Even when shear stresses do not act on the base of the plates, such an 
elevation produces a stress of about 2.3 x 107 newtons m- 2 which is comparable 
to that expected from a sinking slab. Large positive elevations exist in the North 
Atlantic and South West Indian Ocean which could maintain the relative 
motions of North America, Eurasia, Africa and Antarctica, but it is less easy to 
understand why the South Atlantic is spreading faster than any of the other 
ridges between non-subducting plates. Either mechanism can account for the 
formation of new plate boundaries, since the stress involved is comparable to 
that involved in earthquakes. 

It is encouraging that there do not appear to be any major conflicts between 
the simple models considered above and the geophysical observations. One of 
the few obvious problems is in the Eastern Pacific, with the Cocos plate. The 
distance between the two ridges and the Middle America trench is only about 
1000 km, and therefore the pressure difference required to drive the return flow 
is much less than that for large plates such as the Pacific. Probably for this 
reason the sinking slab beneath Central America is in tension. Despite the lack 
of resistive forces the Cocos plate does not appear to be accelerating as the 
length of the sinking slab increases. Any such acceleration would show clearly 
on the magnetic profiles across the Galapagos Rift. Perhaps the explanation is 
that the buoyancy of the sinking slab is smaller than elsewhere because the plate 
now being consumed is relatively young and warm. 

The two-layer model implies that the velocities of plate motion are consider
ably greater than those within the lower layer. If melting spots are the surface 
expression of structures in the lower layer then their relative motion should be 
slow compared to the plate velocities, as Minster et al. (1974) have demon-
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strated. Therefore this model is consistent with the observations that Morgan 
(1971, 1972) has argued require the existence of plumes of hot rising material 
extending to greater depths. 

Our models have various important shortcomings which prevent them from 
being used for detailed calculations using the observed plate geometries. We 
have assumed that all the motions are two dimensional, and obviously the 
observed motions are strongly three dimensional. We have taken all slabs to be 
vertical and to be stationary with respect to the lower boundary of the fluid 
layer. Since the buoyancy force normal to a dipping slab must be balanced by a 
pressure difference across the slab, non-vertical slabs make a large contribution 
to the pressure field. Relative motion between the slab and the lower boundary 
must also make an important contribution to the pressure field. Perhaps realistic 
calculations will be possible, though they will not be straightforward because of 
resolution problems. Hager and O'Connell (1977) have recently calculated the 
three-dimensional flow in the earth's interior which is consistent with the ob
served surface velocities, but they take no account of the contribution that the 
sinking slabs make to the flow through their rigidity and their buoyancy. It 
seems likely that both effects are important. 

Conclusions 

The most important result we have obtained is that several uncontroversial 
geophysical observations combined with an idealized model of plate dynamics, 
impose important constraints on the form of mantle convection. In particular a 
constant viscosity mantle is ruled out by the magnitude of the long wavelength 
gravity and residual depth anomalies and the stress state within the sinking 
slabs. However, a model with two layers of widely different viscosity can satisfy 
these and other observations, but only if the viscosity of the upper layer is a 
factor of about 500 less than that of the lower. Furthermore, the thickness of the 
upper layer cannot be greater than about 100 km, and may be thinner. Despite 
the decoupling which such a low viscosity region produces, mantle convection 
can maintain plate motions and form new plate boundaries. Provided the upper 
layer is thin, such a two-layer model does not appear to be in conflict with other 
observations such as post-glacial uplift, and has been in fact already proposed to 
account for isostasy (Fisher, 1881) and the attenuation of seismic waves (Ander
son, 1962). The low viscosity may be produced by a very small fraction of partial 
melt believed to be present in the low velocity layer beneath the plates (Green, 
1972). 

Our investigation has demonstrated the importance of the pressure per
turbation due to the flow. The pressure contribution controls the stress state 
within the sinking slabs, the surface deformation and the gravity anomaly 
associated with the return flow from trenches to ridges. More information can 
be obtained about this pressure field from focal mechanisms of earthquakes 
within slabs which extend to depths of 400 km or less (McKenzie, 1976). 

Our model is consistent with the existence of two scales of flow within the 
mantle. Because the plate motions are decoupled from most of the mantle 
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below, the small-scale flow is more likely to consist of three-dimensional time 
dependent motions than two-dimensional rolls. We have principally discussed 
that part of the large-scale flow which is associated with plate motions, but it is 
not possible to maintain the observed long wavelength gravity anomalies by 
such flow. A large-scale circulation not directly associated with the mass fluxes 
generated by plate motions must also exist. The energetics and stability of this 
flow are not yet understood, and can only be investigated by a model which 
takes account of buoyancy forces within the fliud. 

Our model is also consistent with the results of Forsyth and Uyeda (1975) 
and of Chapple and Tullis (1977) who used the observed plate motions to 
estimate the importance of a variety of forces driving and resisting plate 
motions. Both pairs of authors found similar results: The large driving forces 
due to the sinking slabs are resisted locally and are not communicated to the 
plate which is being consumed. The form that this resistance takes differs in the 
two models because the authors formulate the problem in slightly different ways. 
Forsyth and Uyeda find that most of the buoyancy force is balanced by stresses 
on sides and ends of the slabs. Chapple and Tullis do not allow for such forces 
and find that the buoyancy force is balanced by forces between the converging 
plates, and they then balance the reaction on the island arc by a local driving 
force. All the other forces in both models are considerably smaller, a result 
which requires decoupling of the plate motions from those of the mantle below. 
However, neither model was concerned with the physical processes which 
produced the resistive forces. The agreement between our results and the two 
models is very encouraging, especially because our approach is so different. 
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Appendix 

The interior solution to the two-layer model shown in Figure 14 is easily obtained, though the 
algebra is tedious. If d2 and 17 2 are used to reduce the equations to dimensionless form and 

then 

dp~ 

dx' 

6 {2t'(l +Mr)+(l +2r+Mr2 )} 

1 +4Mr+6Mr2 +4Mr3 +M2 r4 · 

When M--. oo (A.1) becomes 

dp'1 6(2 t' + r) 
dx' Mr 3 • 

Hence 

(A.1) 

(A.2) 
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Fig.14. Two-layer model with different viscosity 11 
in each layer 

469 

~ 
x 

Thus dp 1/dx is independent of both 71 2 and d2 and hence the properties of the lower layer. This 
behaviour occurs because the return flow occurs entirely within the upper layer, as can be seen either 
by examining the mass flux or by comparing (A.2) with (13). Hence this is not the limit correspond
ing to (14) which allows the motion of the plate to decouple from that of the lower layer. To obtain 
this limit we require M--+ w and r-+ 0, while Mr-+ w and M r 2 --+ 0 giving 

d' J!.2. --+ - 3 t' 
dx' 

(A.3) 

In this limit no stress is transmitted across the upper layer, but the return flow is restricted to the 
lower layer. 

The expression for the dimensionless shear stress r/ on the base of the plate may be obtained 
from (A.l) 

{ ldp', }/ a'= l---(Mr2 +2r+l) (l+Mr) 
2 dx' 

The fraction f of the return flow taking place in the upper layer is 

f 2+Mr+- -Mr(3+4r+Mr2) 
r { 1 dp'1 } 

2 t(l +Mr) 6 dx' 

The average dimensionless viscous dissipation <P; in the upper layer is 

<P' =M {B 3 -(B-dp;)3
} 13 r dp', 

1 dx' dx' 

and in the lower layer 

<P' ={(B+ dp;)
3 -B3}/3 dp; 

2 dx' dx' 

where 

B= l-·--1 (l-Mr2) (l+Mr) { 1 dp' }/ 
2 dx' 

The dimensionless velocity u~ at the interface is 

u>{l+~ dp; Mr(l+r)}/(l+Mr) 
2 dx' 
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