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Abstract. Model calculations are carried out for the temper
ature distribution in an aquifer, into which water is injected. 
The models are simplified so that the temperature distribu
tion can be given by an analytical expression. The one
dimensional simulation shows the well-known fact that ef
fects of conduction can generally be neglected. In two-di
mensional models the case of a doublet, in particular, is 
analysed. A new approach is used for solving the heat trans
port equation. The distributions of temperature, streamlines 
and potential, even if a natural uniform flow of groundwater 
exists, can be easily calculated and plotted. The computa
tion of the temperature in the extraction well shows that 
the economical working time of a doublet can be longer 
than the thermal breakthrough time. 
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Introduction 

The geothermal resources and reserves in the Federal Re
public of Germany have been estimated for selected aquifers 
in the Northern German Basin, the Molasse Basin and the 
Upper Rhinegraben. This study indicates that the highest 
reserves are in the Molasse Basin of southern Germany 
(Haenel, 1985). In a current research project the geothermal 
reserves will be assessed more accurately for the Malm 
aquifer (Upper Jurassic) in the Molasse Basin. For that pur
pose and for other planned projects, computer modelling 
is a helpful tool. 

The models treated in this paper are simplified so that 
the hydraulic and the heat transport equation can be solved 
by analytical methods. The one-dimensional models can be 
used for water injection or extraction into an aquifer; simi
lar, but more complicated, models for solving this problem 
can be found in Mehlhorn (1982). The thermal effects in 
an aquifer caused by injection and production wells will 
be analysed by a two-dimensional model. The approach 
of Gringarten and Sauty (1975) for this model will be im
proved. 

The analytical models are very useful for obtaining a 
general view of principal effects. Expenditure of computer 
programming and running time is small compared to nu
merical models. These simplified models are appropriate 
for carrying out model investigations for small selected ar
eas. 

Such a local model was established for two wells in 

the area of Saulgau (Baden-Wiirttemberg, southern Ger
many), which will be published by the European Commun
ity; see also Table l(b). The distance between the two wells 
in Saulgau is only 400 m. For greater distances or for re
gional investigations, the hydraulic and geological situation 
often cannot be modelled in that simplified way which is 
needed for an analytical approach. Then numerical model
ling has to be used (e.g. see Liitkestratkotter, 1977). The 
numerical methods can be tested by the analytical models 
described here; this is intended for a further paper. 

Basic equations 

Fluid and heat transport in porous media are described 
by the three equations of momentum, mass and energy con
servation. The comprehensive derivations of the basic equa
tions are given by Bear (1972, 1979), Carslaw and Jaeger 
(1959) and Myers (1971). 

A 1) First we assume that Darcy's law is valid 

q=-Kgrad<f> (1 a) 

where 

q (m3 s- 1 m - 2 ) specific volume flux, 
K (m s - l) hydraulic conductivity (a tensor), 
</> (m) hydraulic potential. 

Since the dimension of the specific flux is a velocity, q is 
also designated as Darcy velocity vF. For isotropic media 
Eq. (1 a) can be rewritten as 

(1 b) 

value of hydraulic conductivity (a scalar). 

The equation of mass conservation for the fluid in a porous 
medium is given by 

(2a) 

where 

n ( - ) porosity, 
PF (kg m - 3) fluid density, 
Q (m 3 s - 1 m - 3) source rate per volume. 

For the sake of simplicity the following assumptions are 
made: 
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VF= 0 Pscs As vertical T<z. x. Yl 

Zo 

vF(x,y J PA cA AA horizontal T<z0 • x,y) 

Z0 +M 

vF= () Pscs AS vertical T( Z, X, y) 

a z 

z 

b 
(1) (2) (3) 

A2) The flow is steady-state. 

A3) The spatial derivation of the fluid density vanishes. 
This is guaranteed if the density is constant or depends 
on the pressure p only, since in this case 

is valid because of the low isotherm compressibility of water 
(f3F= 5 x 10- 10 m s2 kg- 1). 

Then Eq. (2a) can be reduced to the continuity equation 

div q+Q=O. (2b) 

If the heat production can be neglected, the heat transport 
equation is given by 

iJ 
az(pcT)=div(A.grad T-pcTv) 

where 

c (Jkg- 1 K- 1) 

T (OC) 
A. (Wm- 1 K- 1) 

specific heat capacity, 
temperature, 
thermal conductivity. 

(3a) 

Thermal dispersion and dissipation can be left out of 
Eq. (3a), as Bear (1972, § 10.7.4/5) describes. 

Equation (3 a) is reduced to the heat conduction equa
tion assuming an impermeable solid 

Caprock 

Aquifer 

Basement 

Cap rock 

AS 

Aquifer 

Basement 

AS 

Fig. 1 a, b. Hydrogeothermal model. 
a Geometry and parameters. 
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b Vertical energy balance in the aquifer: (1) 
undisturbed temperature; energy is balanced; 
(2) injection of warm water; energy is extracted 
from the aquifer into the caprock and the 
basement; (3) injection of cold water; energy is 
extracted from the caprock and the basement 
into the aquifer 

iJ . at (p. c. T) = d1v(A.. grad T). (3 b) 

In an aquifer two different portions of media have to be 
considered; therefore, Eq. (3a) can be rewritten as 

(3c) 

where 

(The index m marks the aquifer matrix. Pm·cm=p.·c. is as
sumed for the model calculations.) 

Model assumptions 

In order to calculate the temperature distribution, the heat 
transfer equation, Eq. (3), has to be solved. The unknown 
velocity v must be determined by Darcy's law, Eq. (1), in 
conjunction with the continuity equation, Eq. (2). In order 
to solve this problem for a confined aquifer by analytical 
methods, additional model assumptions are necessary (see 
Fig. la): 
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A4) All parameters of the model are isotropic and con
stant. The parameters of the caprock and the basement are 
identical. 

A 5) The aquifer is infinite in the horizontal direction; its 
vertical thickness M is constant. 

A6) The caprock and the basement are impermeable, i.e. 
v = 0. In the aquifer, the water flows only in the horizontal 
direction, i.e. v = (vx, Vy, 0). 

A 7) The temperature in the aquifer is independent of 
depth. 

T(x, y, z) = T(x, y, z0 ) for z0 ~ z ~ z0 + M. 

z0 is the depth of the aquifer top. 

A8) The horizontal heat conduction in the surrounding 
rock is ignored, i.e. the vertical heat conduction is, as usual, 
dominant. 

Taking these assumptions into account, the temperature T 
in the rock is governed by the heat conduction equation, 
see Eq. (3 b), 

oT a2 

p.c. at=A. p T (4) 

and in the aquifer by the modified heat transfer equation, 
see Eq. (3 c), 

aT 2 aTI 
PA cA ~+pFcFvF grad T=A. M--,,- +AA LIT 

ut uz z=zo 
(5) 

with the two-dimensional Laplace operator 

Because of assumption A 7, this equation is considered only 
at the boundary of the aquifer. Since the influence of the 
whole aquifer has to be taken into account, the conductive 
part of the energy balance in the z direction need not be 
considered in a differential sense (see Fig. 1 b). The term 

must be replaced by (Myers, 1971; Landel and Sauty, 1978) 

2 aTI A--
• M OZ z=zo. 

The unknown velocity Vp in Eq. (5) is determined by Darcy's 
law, Eq. (1 b); the hydraulic potential <P is governed by the 
two-dimensional potential equation 

(6) 

where 

Qi (m3 s- 1 m - 3 ) source term for each well, 
T,. (m2 s- 1) transmissivity 

z0 +M 

T,.= f k1 dz=k1 M. 
zo 

Equation (6) is a combination of Eqs. (1 b) and (2b). This 
approach is based on the assumption that the source term 
vanishes except at the location of injection or extraction 
wells. 

It is further assumed that the initial temperature T0 of 
the aquifer at time t = 0 is constant. At that time water 
of temperature T; is pumped into the aquifer at the injection 
wells. The flow rate and the temperature of the injected 
water need not be constant in time. 

One-dimensional models 

In a one-dimensional model the flow of the groundwater 
can be considered only in one cartesian direction or in a 
radial direction. Flow in one horizontal direction can be 
caused by a number of injection wells lying in a straight 
line. The temperature field is characterized in the rock by 
Eq. (4) and in the aquifer by, see Eq. (5), 

The velocity of the water is given by 

where 

v0 (m s- 1) 

Q (m3s-1) 
a (m) 

natural Darcy velocity, 
injection rate of each well, 
distance between two wells. 

(7) 

If the conductive heat transfer is considered (),_A> 0), the 
relative temperature differences are given by Avdonin (1964) 

T(x, z, t)- T0 

T;-To 

=~ S exp{-[ys0-x/(Ms0)] 2 } 

nM0o s 
00 

f exp ( - u2 ) erfc 
w(s2) 

where 

T =(4},_At)/(pA CA M 2), 

y =(vpM Cp pp)/(4}..A), 

e = i/(),_. c. p.)/(),_A c A PA), 

w(s)=(es· 0)/(2~), 
z {O for z0 ~z~z0 +M 

= 21z-z0 -M/21/M-1 otherwise, 

T0 initial temperature at t = 0, 

T; temperature of injected water, 
s, u dummy integration parameters, 
erfc complementary error function. 

(8) 

duds 

Taking z = 0, the relative temperature differences within the 
aquifer are given by 
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Fig. 2. One-dimensional temperature distribution for 
a line source after t = 2 years. The upper curves 
represent an increase of the injection temperature 
from I; to ( T0 + 2 7;)/3 after 1 year. 
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v = 1.7 x 10- 6 m s- 1, AA horizontal thermal 
conductivity of the aquifer. Other parameters: see 
Table l(b) 
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T(x, z0 , t)-T0 

1;-To 

1121121 

=~ S exp{-[ystA-x/(MstA)]2) 

M~o s 

( es2 0 ) · erfc , ;,-::z ds. 
2v 1-s2 

2121121 

2121121 

(9) 

If the conductive heat transfer can be neglected (AA= 0), 
the temperature is described by Lauwerier (1955) 

T(x, z, t)- T0 _ [ ~ + z ] 
T T, U('r-~)erfc ,~ 
;- a 2v 8(-r-~) 

where 

'T =(4Ast)/(PA CA M 2), 

~ =(4Asx)/(PF CF M 2 vF), 
8 = (p AC A)/(Ps Cs), 
z =as in Eq. (8), 
U =unit step function. 

(10) 

Both cited papers give full details about the mathematical 
derivations ofEqs. (8H10). The solution without conductive 

X [m) 25121 

r [m) 25121 

Fig. 3. One-dimensional temperature distribution for 
a point source (one injection well) after t = 2 years. 
The upper curves represent an increase of the 
injection temperature from T; to (T0 + 2 T;)/3 after 
1 year. AA horizontal thermal conductivity of the 
aquifer. Other parameters: see Table 1 (b) 

heat transfer [AA =0, Eq.(10)] cannot be treated a& a special 
case (AA-+ 0) of Eq. (8); both solutions need their own ap
proach. 

The temperature, depending on the distance to the line 
source, is plotted for three different values of the thermal 
conductivity of the aquifer in Fig. 2. The parameters used 
are given in Table 1. Figure 2 shows the well-known fact 
that conduction can be neglected if the velocity of the 
groundwater is high enough; that means, in this case, that 
the "Peclet number" y in Eq. (8) should be greater than 
4. If a horizontal thermal conductivity in the aquifer is as
sumed, deviations are observable only at the temperature 
front. 

The solutions given above are less important for practi
cal applications as line sources seldom exist. Therefore, the 
flow of groundwater in a radial direction, caused by a point 
source (one well), is analysed. Again the temperature field 
in the rock is characterized by Eq. (4) and in the aquifer, 
analogously to Eq. (7), by 

(11) 
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Table 1. Parameters used in model calculations 

Parameters Dimension (a) (b) 

Specific heat capacity c, J kg-1 K-1 1000 850 
of the rock 

Density of the rock p, kg m- 3 2600 2670 
Thermal conductivity Jc, Wm- 1 K- 1 2.8 2.9 

of the rock 
Depth of the aquifer Zo m :2'::100 586 
Thickness of the aquifer M m 30 35 
Porosity n •;. 1.0 2.7 
Distance of the wells 2a m 400 400 
Undisturbed temperature To oc 40 40 
Injection temperature T; oc 25 25 
Injected volume flow rate Q m3 s-1 0.03 0.03 

(a) Principal model (Fig. 5) 
(b) Parameters for the area of Saulgau (Baden-Wiirttemberg, south
ern Germany) 

where r is the distance to the well. The solution of Eq. (11) 
is given by Avdonin (1964) 

T(r, z, t)- T0 

7;-To 
2 ( r2 )v 1 exp[ -r2 /(M2 rs)] 

,,c w:: s v V nI'(v) T o s 

<Xl 

J exp ( - u2 ) erfc 
w(s) 

where 

v = (QcF PF)/(4nM A.A), 
z, e, rand was in Eq. (8), 
I' Gamma function. 

duds 

If the thermal conductivity is neglected (A.A= 0), the solution 
of Eq. (11) is a special case (one well, v0 =0) of Eq. (19) 
below. Both solutions are compared in Fig. 3. It is shown, 
as in Fig. 2, that heat conduction is negligible. 

Two-dimensional model 

If the effect of two or more wells and of an additional natu
ral flow of groundwater is taken into account, a two-dimen
sional approach of the heat transfer within the aquifer is 
necessary. The flow of the groundwater is described by 
Darcy's law, Eq. (1), where the hydraulic potential <P has 
to satisfy the potential equation, Eq. (6). This hydraulic 
problem can by solved by the theory of conformal mapping 
and by superposition of the effects of each well (Dacosta 
and Bennett, 1960; Bear, 1972). 

The case of a doublet will be considered in particular. 
A doublet consists of two wells (Fig. 4); in the well I water 
is injected into the aquifer, in the other well E water is 
extracted; the filter length is identical to the thickness M 
of the aquifer. The number of wells has been limited to 
two only for practical reasons; a generalization to an arbi
trary number of wells is possible. If the same injection and 
extraction rate is assumed (Q 1 = -Q2 = Q), the solution of 
the hydraulic problem is given by the velocity potential 

Vo Q (x+a)2+y2 
<p(x, y)= - kf (x cos ex+ ysin ex)- 4 n7; In (x-a)2 + y2, (13) 

I 

E 

Fig. 4. Principle of a doublet: I injection well at (-a, O); E extrac
tion well at (a, O); v0 natural flow field; ex azimuth of the natural 
flow field 

the stream function 

~ . Q 2ay 
l{l(x, y)= --k (y cos ex-x sm ex)--2 T arctan 2 2 2 

f n r a -x -y 

and the velocity 

x-a ] 
(x-a)2+y2 

. Q [ y 
vy=v0 sm ex+ 2 nM (x+a)2 + yz (x-~2+y2] 
where 

2a the distance between the two wells, 
v0 velocity of the natural flow field, 
ex azimuth of the natural flow field (see Fig. 4). 

(14) 

(15) 

The temperature field in the rock is characterized by 
the heat conduction equation, Eq. (4), and in the aquifer 
by the heat transfer equation, see Eq. (5), 

(16) 

As shown above, the conductive heat transfer can be neg
lected for sufficiently great injection rates. 

If the velocity v, Eq. (15), is described as a function of 
<p and I{!, it is well-known that v depends on the potential 
<p but does not depend on the stream function If!. Therefore, 
the dependency on the two spatial coordinates x and y 
can be reduced to one coordinate. The following equation 
is valid in the new <p -1/1 coordinate system: 

v2 ar 
v grad T= --~. 

k1 a<p (17) 

Opposed to this approach, Gringarten and Sauty (1975) 
have used the area element Sas parameter 

(18) 

This approach has often been cited (e.g. Mercer et al., 1982), 
but has the disadvantage of using a relatively long comput-
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Fig. Sa--c. Two-dimensional distribution of temperature, streamlines and potential. a after t = 3 years, v0 = 1.0 x 10- 6 m s- 1

; b after 
t = 5 years, v0 = 1.0 x 10- 6 m s - 1 ; c after t = 3 years, v0 = 2.5 x 10 - 6 m s - 1

. ex= 90° azimuth. Other model parameters: see Table I (a) 

ing time. The new approach, Eq. ( 17), seems to be clearer 
from the mathematical point of view and the computing 
time can be reduced to one-tenth. The derivation of the 
solution with the new approach is given in the Appendix. 
The temperature distribution at time t and point 
(/Jo=cp(x0 , y0 ) is given by 

T(t,<p0 ,z)-T 0=U[t-pAcA /(<po)] 
T;-To PF CF 

(19) 

where 

(20) 

z as in Eq. (8). 

The integration contour in Eq. (20) is the streamline 
I/I 0 = tjJ (x0 , y0 ). If we assume that the natural groundwater 
flow vanishes (v0 =0), the integral, Eq. (20), can be given 
in a completely analytical way. Following the approach of 
Muskat (cited by Bear, 1979) the two parameters C and 
9 are defined as 

(x-a)2 + y2 
( = t In -(x_+_a_)2~+-y~2 

2ay 
.9 = arctan 2 2 2 . a - x - y 

The integral /, Eq. (20), can be rewritten as 

(21) 

(22) 

2nM a2 00 

/(Co)= Q J(coshC+cos9) - 2 dC. 
~o 

(23) 

Using integration formulas, e.g. Gradshteyn and Ryzhik 
(1965), the following result is yielded 

a) \cos 91 ~d 

I(C) 2nM a
2 

{ [ ( C 9) Q 1 + 2 cot 9·arctan tanh 2 tan 2 
sinh C ] . _ 2 0 } sm 17 

cosh C + cos 9 

b) !cos 91=1, 1.e. y=O 

(24a) 

2 n M a
2 

{ sinh ( ( cos 9 )} 
1 ( ( ) = 3 Q 1 - cosh C + cos 9 1 + cosh ( + cos 9 · 

(24b) 

If the natural flow of groundwater does not vanish (v0 =I= 0), 
the approach of Muskat cannot be used. The integral, 
Eq. (20), has to be treated numerically. For a given point 
(x0 , y0 ) the stream function I/I 0 =I/I (x0 , y0 ), Eq. ( 14), the po
tential <p0 = <p(x0 , y0), Eq. (13), and the velocity v(x0 , y0), 

Eq. (15), have to be calculated. Then the potential <p0 is 
increased by a small value LI <p to <p0 +LI <p; this is a new 
point on the integration contour. The corresponding carte
sian x - y coordinates are given by an implicit system of 
equations 

I/lo =t/l(x, y) 

<p0 +LI <p = <p (x, y). 
(25) 

Since I/I and <p are nonlinear function, a direct inversion 
of the system (25) is not possible. In order to solve the 
system, the Newton-Raphson method can be used (e.g. 
Stoer, 1972): 
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Using the relationship of cp, t/J and v, Eqs. (13H15), the 
two-dimensional system can be rewritten 

Since the convergence of the Newton-Raphson method is 
very fast, only a small number of iterations is needed to 
determine the x 1 and y 1 values belonging to cp 0 +LI cp; the 
corresponding value v2 (x1 , yi) is calculated from Eq. (15). 
The procedure is continued for cp0 +2LI cp, starting the new 
iteration, Eq. (26), with the old x1 - y 1 values. 

For sufficiently great N, cp = cp 0 + N LI cp, the point 
(xN, YN) should lie in the neighbourhood of the injection 
well: (xN, YN)~(-a, 0). Then the integral, Eq. (20), is numer-
ically calculated by · 

N 

l(cpo)=k1 L 
i=O 

Otherwise the point (x0 , y0 ) is situated at a streamline t/1 0 

which does not lead to the injection well; in this case we 
set 

and therefore, see Eq. (19), 

T(t, cp0 , z) = T0 for all t. 

The Newton-Raphson method is also used for the repre
sentation of stream and potential lines. These lines, together 
with the isotherms, are plotted in Fig. 5; the parameters 
used are given in Table l(a). In Fig. 5a and b the velocity 
of the natural groundwater flow is v0 = 1 x 1o- 6 m s - 1 and 
its azimuth (see Fig. 4) is 90°. In Fig. 5a the temperature 
distribution is shown after a working time for the doublet 
of 3 years. The course of the temperature front is given 
by the isotherm of 40° C. This front will arrive at the extrac
tion well after less than 5 years, see Fig. 5 b. If the velocity 
is slightly raised to 2.5 x 10- 6 m s- 1, there is no single 
streamline connecting both wells, as shown in Fig. 5c. As 
a steady-state flow is assumed, a thermal connection be
tween both wells can be excluded for this model; see also 
Fig. 6. 

Temperature in the extraction well 

In geothermal energy applications, the behaviour of the 
temperature in the extraction well at (a, 0) is decisive. One 
problem is whether, and when, the temperature front of 
the injected water will arrive at the extraction well. As we 
have seen in Eq. (19) the argument of the unit step function 
is important. If this argument is greater than zero, the tem
perature front has arrived at the extraction well. This data 
is called the thermal breakthrough time: 

t=PACAJ() 
B PF CF <Pa (27) 

Table 2. Thermal breakthrough times for a doublet 

Natural flow of groundwater Thermal breakthrough time 

Velocity 
Vo 

v0 >0 

Azimuth 
IX 

Q/(anM)>v0 >0 180° 

v0 "?.Q/(anM) 180° 

PA cA 4nM a2 

PFCF~ 

--- 1- ln--PACA 2a( Q c+a) 
ppcp v0 2nMv0 c c-a 

PACA 2a( Q a) --- -1+---arctan
PFCF v0 nMv0 c c 

00 

Q (m3 s- 1) injection and extraction rate; 2a (m) distance between 
both wells; M (m) thickness of the aquifer; 
c= la2 +aQ/(nM v0 cos1X)l 112 

8 

6 

4 

2 

0..___.__.__._._ ...... ..___._._~ ......... u.o....-'--'-'-....... ......., _ _._.._.._ ............... 

iilB ui-6 

Fig. 6. Thermal breakthrough time tB for a doublet: v0 natural 
flow field; IX azimuth. Other model parameters: see Table l(b) 

where I(cpa) is the lowest value of the integral, Eq. (20), relat
ing to all streamlines t/I connecting both wells. If there is 
no natural flow field (v 0 = 0), the straight line IE (see Fig. 4) 
is the streamline that has been searched for. In this case 
the integral can be calculated by using Eq. (24b) with 
cos 9 = -1 and Eq. (21) 

nM 3 2 3 
l(xo)= JQa (2a +3a x0 -x0 ) 

where the point (x0 , 0) is situated on IE (I x0 I~ a). This result 
is well known (e.g. Lippmann and Tsang, 1980). The straight 
line IE is also the streamline we have been looking for, 
if the direction of the velocity is parallel to IE (cx=0° or 
ex= 180°). Using Eqs. (13H15) the integral is given by 
(lxol~a) 

Xo 

l(x0 )=nM J (a 2 -x2)/[aQ+nM v0 (a 2 -x2) cos ex] dx. 
-a 

Setting x0 =a, the thermal breakthrough time can be calcu
lated by simple formulas which are summarized in Table 2. 
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Fig. 7. Extraction temperature TE for a doublet: t working time 
of the doublet; t8 thermal breakthrough time; Q injection-extrac
tion rate; v0 = 1.0 x 10- 7 m s - 1 (natural flow field); 0( = 90° (azi
muth). Other model parameters: see Table 1 (b) 

The breakthrough times for all other cases can be nu
merically determined as described above. The breakthrough 
times, depending on the velocity v0 and the azimuth, are 
plotted in Fig. 6. They are identical for vanishing and low 
velocities. For higher velocities, higher than 10- 7 m s - 1 for 
the given parameters, the azimuth is important. 

The breakthrough time is the date of the first connection 
of the injected water with the extraction well. After this 
time there is not necessarily an important change in the 
extraction temperature TE. This temperature is a mixed tem
perature integrated over all streamlines connected with the 
extraction well. It is given by, see Eq. (19), 

(28) 

with 

where the integration contour is the streamline lft. 
The extraction temperature for different injection-ex

traction rates, depending on the working time of a doublet, 
is plotted in Fig. 7. For example, the breakthrough time 
for an extraction rate of 0.03 m 3 s - 1 (30 1 s - 1) in the given 
case is about 3 years and 2.5 months, but a marked reduc
tion of the temperature by 33% will occur after about 
15 years. This shows that the economical working time of 
a doublet can be considerably longer than the thermal 
breakthrough time. 
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Remarks 

The formulas given in this paper can also be used for the 
temperature. distribution in the caprock and in the base
ment. But in this case the aquifer must be situated at greater 
depth, since the solutions are given for a full space without 
boundary conditions at the earth's surface. For this case 
Kasamyer et al. (1984) give a solution for the one-dimen
sional model. Chen (1980) shows that the temperature distri
bution in the aquifer is independent of the caprock thickness 
z0 for a time period t after injection starts, if 

t~0.1 z~p.cJJc •. 

This relation is always valid for aquifers deeper than 100 m 
and a working time of a doublet of 30 years. 

Appendix 

Solution of the differential equations 

We have to find the solution of the heat conduction equa
tion, Eq. (4), in the basement 

ar air 
p.c.Tt=Asazr; z>z0 +M. (29) 

The temperature T has to satisfy the boundary condition, 
Eqs. (16) and (17), at z=z0 +M 

a T vi ar 2 arl 
PA CA Tt-pFcrk a-;;;=As M az - . 

J 't' z-zo+M 
(30) 

An analogous formulation is valid for the caprock (z < z0 ). 

The initial condition is 

T=O for t=O 
T=T; at (x,y)=(-a,O); i.e. <p=oo 

(31) 

As the problem is linear, the effects of other wells and of 
a change of the injection temperature can be considered 
by superposition. 

The differential equations, Eqs. (29) and (30), are trans
formed by 

t =(Mi PA CAT)j(4Jc.) 

cp=(Mi PF CF~)/(4Jc.) 
M 

z =2(11+2)+z0 

into the equations 

ar air 
a:r=C1 arr 17>0 

aT aT vi aT 
ar-=81]+ kf a[ 17=0 

with 

(32) 

(33) 

(34) 

The Laplace transform (e.g. Abramowitz and Stegun, 1964) 

'1J 

L(s, ~' 17)= J e-srT(T, ~' 17)dT 
0 
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yields an ordinary differential equation instead of the partial 
differential equation (33) 

()2 

sL=ci Or/2 L. 

The solution of Eq. (35) is 

L(s, e, r/) =bi (e, s) exp( -~ r/) + 

b2(e, s)·exp(~ri). 

(35) 

(36) 

Since the second term becomes infinite if ri-+ oo, i.e. z-+ oo, 
the coefficient b2 must vanish. The coefficient bi is governed 
by the equation 

v2 obi 
(s+ ~)bi= kl oe (37) 

which is a combination of the Laplace-transformed Eq. (34) 
and Eq. (36). Its solution is 

(38) 

with 

(39) 

Using the initial condition, Eq. (31), the coefficient b3 is 
determined. The Laplace transform yields for ri = 0 and 
e=oo 

L(s, oo, O)=TJs 

and Eqs. (36) and (38) yield 

L(s, oo, 0) = b3 (s). 

Therefore, the solution of Eq. (35) is given by 

L(s, e, ri)= Ti exp{ -J(e) s+ [J(e)+riJ ~}/s 

and the inverse Laplace transform yields the solutions of 
Eqs. (33) and (34). 

T(r, e, ri)= Ti U[r-I(e}] 

·erfc ri+IW . 
2~Vr-1(() 

(40) 

Using the inverse transform of Eq. (32), the solution of the 
original problem is obtained [see Eq. (19)]. 
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