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Abstract. The propagation of plane waves through statisti­
cally layered media is investigated both numerically and 
with single-scattering theory in the one-dimensional case. 
Exact apparent or stratigraphic Q, Q,, is determined from 
synthetic seismograms with the spectral-ratio method. Max­
imum velocity (impedance) fluctuations up to 30% (-40%) 
are studied; the fluctuations are uniformly distributed with 
zero mean. In all cases the trend of Qs as a function of 
frequency is well described by the analytical Q,, as deter­
mined from single-scattering theory under the assumption 
of an exponential autocorrelation function of the impedance 
fluctuations. The frequency dependence of the analytical 
Q.- 1 follows a Debye-peak function, its maximum is ';2/2 
and corresponds to the wavelength 4na(y2 =variance of re­
lative impedance fluctuation, a= correlation distance). In 
further numerical calculations intrinsic or anelastic Q, Qa, 
is introduced, and it is shown that total attenuation Q- 1 

agrees very well with the sum of apparent and anelastic 
attenuation, Qs- 1 + Qa- 1 • Finally, a simple, minimum-phase 
stratigraphic attenuation operator is derived which de­
scribes the amplitude decay and the dispersion in a one­
dimensional random medium with good accuracy. Strati­
graphic attenuation is similar to the anelastic attenuation 
of a standard linear solid. 

Key words: Quality factor - Stratigraphic attenuation - Sin­
gle-scattering theory 

Introduction 

The amplitudes of seismic waves are influenced by factors 
depending on the source, the propagation path and the re­
ceiver. O'Doherty and Anstey (1971) have given an often­
quoted survey of these factors, in particular as they are 
of importance in seismic prospecting. Among the many in­
fluential factors on the propagation path are attenuation 
due to scattering, i.e. deviation of energy from the general 
propagation direction, and attenuation due to intrinsic 
losses or anelasticity, i.e. conversion of energy into heat. 
These two effects, and their relation, will be discussed in 
this paper in the context of a simple 1 D model. 

Anelasticity is conveniently described by the quality fac­
tor Qa of the rock. Qa depends, among others, on viscous 
processes between the rock matrix and liquid inclusions 
such as pore fluids or melt fractions, and on movements 
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of dislocations through the mineral grains; Qa can be fre­
quency dependent. An accurate and frequently chosen way 
to introduce anelasticity into numerical codes for wave 
propagation is to use a complex wave velocity as a conse­
quence of a complex (and minimum-phase) viscoelastic 
modulus. For instance, in the case of frequency-independent 
Qa this velocity is 

(1) 

where w is the (circular) frequency, w, a reference frequency, 
v0 the real phase velocity at the reference frequency and 
j the imaginary unit. As is well known, the imaginary part 
of Va describes the absorption, whereas the frequency-depen­
dent real part gives the associated dispersion. 

Since scattering has the same effect as anelasticity, name­
ly a reduction of amplitudes, it is also described by a quality 
factor: the apparent or scattering quality factor Q8 • Qs de­
pends on the spatial structure of the scattering heterogenei­
ties in the medium, on the size of the velocity and density 
fluctuations and on frequency or wavelength. Only recently 
has Qs been determined successfully from these quantities 
with the aid of single-scattering theory in the 3 D case (Wu, 
1982; Sato, 1982a, b, 1984) and in the 20 case (Frankel 
and Clayton, 1986). The limits of this theory are not yet 
clear (Hudson and Heritage, 1981). Investigations of the 
1 D case can help to clarify them. 

A 1 D model, having variations only in one direction, 
say the depth (z) direction, has been studied several times 
for plane waves propagating perpendicularly to the inter­
faces (Schoenberger and Levin, 1974, 1978; Spencer et al., 
1977; Sato, 1979, 1981; Menke, 1983; Richards and Menke, 
1983). This model is of practical importance for seismic pro­
specting where seismic waves often propagate more or less 
vertically through horizontally layered sediments; Qs in this 
case is sometimes called stratigraphic Q. This special model, 
which produces only strict forward scattering and strict 
backward scattering, is also studied here. Its advantage is 
that exact (numerical) results are easily obtained with matrix 
methods for complicated layering with arbitrary parameter 
fluctuations. Hence, Qs can be determined exactly and com­
pared with the result of single-scattering theory. First results 
of such comparisons in the 2 D case are due to Frankel 
and Clayton (1986); they used finite-difference calculations 
to produce the seismograms for a random medium. 

Our particular configuration consists of two identical 
half-spaces with an arbitrary number of homogeneous 
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layers of total thickness D in between. Velocity, density and 
thickness of the layers are determined with the aid of uni­
formly distributed pseudo-random numbers and fluctuate 
about mean values which for velocity and density agree 
with the values outside the layer stack. The incident wave 
in the upper half-space, a P wave, is specified through its 
time function, u(z = 0, t), the transmissivity of the layer stack 
is determined with a matrix method (e.g. Temme and 
Miiller, 1982), and the complete seismogram u(D, t) in the 
lower half-space is calculated. The spectra at z=O and z=D, 
ii(O, w) and ii(D, w), are related by the complex, frequency­
dependent wave velocity v(w) of the random medium: 

D 
ii(D, w) = ii(O, w) e-jw v(w). (2) 

From this equation, v(w) can be determined by spectral 
division: 

. ii(D, w) 
v(w) = -1wD/ln ii(O, w). (3) 

If the exponential term in Eq. (2) is written in the form 

which implies a propagation term and a decay term, with 
the real phase velocity c(w) and the real quality factor Q(w) 
of the random medium, these quantities can be determined 
with the aid of Eq. (3): 

c(w) = 1/Re l v(~)J 
Q(w) = 1/{ 2c(w)Im l v(~)rr. (4) 

The quality factor so determined is an apparent or strati­
graphic Q alone, if the medium is elastic. If anelasticity in 
the layers is assumed, e.g. by making the layer velocities 
complex according to Eq. (1), Q contains contributions both 
from anelasticity and from scattering. Calculations for elas­
tic layers thus give Q, and its dependence on velocity and 
density fluctuations and on frequency. Calculations for an­
elastic layers then allow us to compare Q, and Qa and, 
in particular, to see whether the total amplitude losses due 
to scattering and anelasticity follow the simple law 

(5) 

that is often assumed (e.g. Spencer et al., 1982; Richards 
and Menke, 1983; Menke and Dubendorff, 1985). In princi­
ple, this law holds only if these losses do not occur concur­
rently, but separately, e.g. when a zone with stratigraphic 
attenuation is followed by a homogeneous anelastic medium. 
Lerche and Menke (1986) have given a theoretical argument 
for the validity of Eq. (5) in the case of weak anelastic attenu­
ation (see also Wenzel, 1982). 

The purpose of this paper is three-fold. After a few exam­
ples of stratigraphic-Q calculations we first derive Q, from 
single-scattering theory for the 1 D case and compare it 
with the numerical results; quite good agreement is found 
for maximum velocity fluctuations from 5% to 30%. Sec­
ond, we illustrate with a few examples that the superposition 
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law (5) holds with very good approximation for the whole 
frequency range studied here; similar results have already 
been obtained by Richards and Menke (1983) who, how­
ever, have not considered the frequency dependence. Final­
ly, a stratigraphic attenuation operator is derived which 
simulates the attenuation and dispersion effects of a random 
stratification. 

Numerical results for stratigraphic Q 

The numerical calculations have been performed for the 
mean values of P velocity and density, a0 = 4000 m/s and 
p0 =2.39 g/cm3 , and for N layers with total thickness D 
= 1600 m; N varies from 100--1600. The relative velocity 
fluctuation 

Ja(z) 
~(z)=-

ao 
(6) 

has zero mean, a uniform distribution between - p and 
+ p and hence a mean squared value or variance of p 2/3 
(standard deviation p/i/3); p varies from 5% to 30%. The 
relative density fluctuation 

Jp(z) 
X(z)=--=K~(z) 

Po 
(7) 

is assumed to be proportional to the velocity fluctuation, 
which is true if density and velocity are linearly related. 
We have used the relation p=0.000173 a+l.695 (a in m/s, 
p in g/cm 3 ) which is suitable for sedimentary rocks (Grant 
and West, 1965, Fig. 7-7); this implies K=0.290. The density 
fluctuations vary from - K p to + K p. The layer thickness 
fluctuates by a somewhat larger amount, 3 p, around the 
mean value D/N. 

Figure 1 shows synthetic seismograms for N =400 and 
variable p. The incident wave (lowest trace) has an almost 
flat spectrum between 0 and 300 Hz. The layer-stack thick­
ness D corresponds to 60 wavelengths at the central fre­
quency 150 Hz. Thus, in terms of wavelengths the propaga­
tion distance in the random medium is rather long. With 
increasing p, pronounced low-pass filtering develops and 
seismogram duration increases strongly. For the largest p 
values, the effective duration is 1-2 s. For analysis we have 
taken the time interval 0.125 s, shown in Fig. 1, which is 
not longer than a few times the duration of the main part 
of the transmitted pulse; a similar restriction would be ap­
plied in the analysis of observed data. 

The spectral-ratio method described in the introduction 
[Eqs. (3) and (4)] has been applied to seismograms of the 
kind shown in Fig. 1. Results for apparent Q are given in 
Figs. 2 and 3. The solid curves in these figures have quite 
an oscillatory character which masks to some extent the 
general trend. A minimum of Q, is indicated in Fig. 2 at 
about 30--60 Hz and appears to be independent of p, where­
as according to Fig. 3 it depends on N: it is shifted to higher 
frequencies for decreasing average layer thickness. The gen­
eral decrease of Q, with increasing p (Fig. 2) is an expected 
result. The dashed curves in Figs. 2 and 3 are discussed 
below. 

Stratigraphic Q from single-scattering theory 

In the following we give a simple derivation of Q, in the 
10 case; the results is identical with a result of Sato (1982b) 
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which was derived by the more complicated mean-wave 
formalism with travel-time corrections (see also Banik et al., 
1985a, b). The basic idea is, as in the 3D case (Wu, 1982; 
Sato, 1982a, b, 1984), to calculate the energy of singly scat­
tered waves, to identify this energy with the energy loss 
of the transmitted wave, and to relate this energy loss to 
Q •. 

We consider a particular frequency w or wavenumber 
k = w/rx.0 of a plane P wave incident upon the random struc­
ture of total thickness D (Fig. 4). This wave has unit ampli­
tude and unit intensity E = 1. The impedance of the struc­
ture is 

J(z)=J0 +cH(z) 

with the mean value I 0 = p0 rx. 0 and the fluctuation cH (z). 
The reflected wave from the whole layer in the single back­
scattering (or primary reflection) approximation bas the 
complex amplitude 

- D{c5J'(z)dz -jw2z} 
u,- J 21 e °'o ' 

0 0 
(8) 

where the first term in the curly brackets is the reflection 
coefficient at coordinate z, and the exponential factor takes 
account of the phase shift due to the two-way travel time 
2z/rx.0 • Partial integration of Eq. (8), together with the as­
sumption cH (0) = cH (D) = 0, yields 

D 

u,=jk J 1f(z)e- 2 jkzdz=jki;(2k), (9) 
0 

where 1/(z) is the relative impedance fluctuation cH(z)/10 and 
i;(k) its Fourier transform. 1/(z) is related to the relative 
velocity and density fluctuation, defined in Eqs. (6) and (7), 
by 

1/(z) = ~(z) + K(z) =(1 + K) ~(z). (10) 

Equation (9) could also have been found by the Born ap­
proximation. 

The intensity of the reflected wave and hence the intensi­
ty loss of the transmitted wave is LlE = u, u~, where u~ is 
the complex conjugate of u,. From (9) one obtains LlE 

Fig. 1. Synthetic P-wave seismograms, illustrating the 
low-pass effect of transmission through a random 
sequence of N =400 layers. The frequency band of the 
input pulse is 0-300 Hz, the thickness of the layer stack 
is 60 wavelengths at 150 Hz, and the maximum relative 
velocity fluctuation p varies from 5% to 30%. 
Seismograms are normalized, with peak amplitudes given 
on the left 

0.125 

=k2 DR(2k), with the Fourier transform 

+ 00 

R(k)= J R(z)e-ikzdz 
- 00 

of the autocorrelation function of 1/(z), 

1 D 
R(z) = D J 1/(z') 1/(z' + z) dz'. 

0 

(11) 

R(z) is dimensionless, and R(O) is the variance of the relative 
impedance fluctuations. 

Apparent or stratigraphic Q is then found by noting 
that Q; 1 is defined as 1/2 n times the relative intensity loss 
per wavelength. The relative intensity loss here is LlE/ 
E=LlE, and corresponds to Dk/2n wavelengths. One ob­
tains therefore, using Eq. (11) and the evenness of R(z), 

LlE _ 00 

Q,- 1 = Dk=kR(2k)=2k J R(z)cos2kzdz. 
0 

(12) 

This result is in agreement with Eq. (38) of Sato (1982b); 
in the case of constant density there is also agreement with 
Eq. (45) of Wenzel (1982). 

Our derivation of Eq. (12) has not used any statistical 
argument, since we have considered one particular imped­
ance structure. Since Q. depends only on the autocorrelation 
function of the impedance fluctuation, Eq. (12) represents 
also a whole ensemble of random media, provided that all 
have the same autocorrelation function. 

In the following, we use an exponential autocorrelation 
function 

(13) 

with the variance y2 of the relative impedance fluctuation 
and the correlation distance a. This form is a good approxi­
mation to the autocorrelation functions or our numerical 
models, as the examples in Fig. 5 show. Inserting Eq. (13) 
into Eq. (12) yields: 

_ 1 2 2ak 
Q. =y 1+4a2 k2" (14) 
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Fig. 2. Stratigraphic or apparent Q (solid curves) as a function of frequency for different values of maximum relative velocity fluctuation 
p in a stack of N = 200 layers. The maximum relative fluctuation of layer thickness is 3 p, and the total thickness is 60 wavelengths 
at 150 Hz. Density fluctuation is K=0.29 times the velocity fluctuation. The dashed curves are results from single-scattering theory 
and follow from Eq. (14) 

This is a classical Debye-peak function which also plays 
an important role in the phenomenological description of 
anelasticity; for instance, Q; 1 of a standard linear solid 
follows this law. The relaxation time r of the Debye peak 
(14) is defined by wr=2ak and is r=2a/rx.0 ; this is the 
two-way travel time related to the typical scatterer dimen­
sion a. The frequency dependence of stratigraphic attenua-

tion is quite pronounced: the half-width of Q.- 1 is only 
about one decade. For quick estimates of stratigraphic Q 
one may use 

(15) 
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Fig. 3. Stratigraphic or apparent Q (solid curves) as a function of frequency for different values of layer number N and for maximum 
relative velocity fluctuation p=20%. The dashed curves follow from Eq. (14). See also Fig. 2 caption 

The minimum corresponds to the wavelength 4na, which 
is about one order of magnitude larger than the correlation 
distance. 

Theoretical Q. curves are included in Figs. 2 and 3 as 
dashed lines. The variance of the impedance fluctuation in 
these applications is related by 

p2 
y2 =(1+K)2 3=0.555 p2 (16) 

to the maximum relative velocity fluctuation p [see Eq. 
(10)], and the correlation distance a is identified with the 
average layer thickness D/N. 

In general, the trend of the numerical Q. is well repre­
sented by the theoretical curves. The agreement is no worse 
for the larger p values than for the lower p values (Fig. 2). 
The frequency shift of the minimum of the numerical Q. 
with increasing N follows the theoretical prediction (Fig. 3). 
Therefore, stratigraphic Q is represented by Eq. (14) with 
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Fig. 4. Illustration of Q. determination from the intensity loss LIE 
due to single back-scattering at a 1 D random structure 
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Fig. 5. Autocorrelation functions of the impedance fluctuations of 
two random structures having N = 200 and N = 400 layers, respec­
tively, and a maximum velocity fluctuation p=20% (solid curves). 
The theoretical curves (dashed) are exponential functions, Eq. (13), 
with the variance y2 = 0.0222 of the impedance fluctuation accord­
ing to Eq. (16). The correlation distance a agrees with the average 
layer thickness 
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good accuracy over the whole frequency range of seismic 
prospecting and for a rather broad range of impedance fluc­
tuations. · 

Superposition of stratigraphic and intrinsic Q 

The numerical calculations for Figs. 2 and 3 have been per­
formed for purely elastic layers, and the resulting Q is purely 
stratigraphic. Allowing for anelasticity in the layers leads 
to an intrinsic contribution to the total Q. The numerical 
method for seismogram calculation allows incorporation 
of anelasticity via complex P-wave velocities according to 
the simple law (1), i.e. the intrinsic Q factor Qa is assumed 
to be frequency independent. The reference circular fre­
quency w, corresponds to the upper frequency limit 300 Hz, 
and v0 fluctuates around the mean value oc0 = 4000 m/s. 
Varying the value of Qa for a particular random structure 
yields seismograms with different amounts of anelasticity­
related low-pass filtering, in addition to the common low­
pass filtering due to scattering (Fig. 6). 

Seismogram analysis by the spectral-ratio method gives 
total Q (Fig. 7, left part); in the case Qa = oo, it represents 
the stratigraphic Q of the structure: Q = Q.. Then, a test 
of the superposition hypothesis (5) for the attenuation is 
possible for the cases Qa < oo. A typical example is shown 
in the right part of Fig. 7 for Qa= 100. The solid curve la­
belled 1/Q follows from the total-Q curve for Qa= 100 
(Fig. 7, left part); the solid curve labelled 1/Q. corresponds 
to the elastic case. The dashed curve is the sum l/Q. + l/Qa 
and represents Eq. (5) exactly. The agreement with the 1/Q 
curve is very good; similar results were found in all other 
cases studied. 

Therefore, the superposition hypothesis (5) has a solid 
basis as already stated, e.g., by Richards and Menke (1983); 
certainly, it applies also in cases where Qa is frequency de­
pendent and where the frequency dependence of Q. is more 
pronounced than in Fig. 7. 

Stratigraphic attenuation operator 

Anelastic attenuation can be described by a complex wave 
velocity va or, alternatively, by an anelastic attenuation op­
erator (usually called a dissipation operator). Equation (1) 
is an example of va, and the corresponding dissipation oper-

N= 400. p- 20 ll 

Fig. 6. Synthetic seismograms for a random structure 
with N =400 layers and maximum velocity fluctuation 
p=20%. Anelasticity in the layers with frequency­
independent Q factor Q. is assumed; Q. is the same for 
all layers. The seismogram for Q. = oc; displays only 
stratigraphic attenuation 
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ator in the frequency domain follows from Eq. (2) through 
v=v.: 

[ 
Tw ( 2j w)] A(w, T)=exp - 2Q. 1-nln w, . (17) 

T= D/v0 is the travel time. The elastic response of the medi­
um is multiplied by A(w, T), and the result is the anelastic 
response. Equation (17) represents a minimum-phase opera­
tor in the time domain, apart from a time shift which de­
pends on the value of the reference frequency w,. 

Likewise, stratigraphic attenuation can approximately 
be represented by a complex velocity vs or a stratigraphic 
attenuation operator. To find these we start from the fact 
that the transmission operator of a layer stack, corrected 
for the phase shift due to the one-way travel time through 
the stack, is minimum phase (Sherwood and Trorey, 1965). 
Therefore, as in the case of anelastic attenuation, the phase 
velocity c, which is very close to the real part of v,, follows 
from Q;; 1 by a dispersion relation: 

1 1 { 1 + "' Q5-
1 

( w') '} 
- (- ) = - 1+ 2 P J , dw . c w a0 n: _ 

00 
w - w 

An alternative in the present case, where Q5-
1 is given by 

Eq. (14), is to use directly the dispersion result for a standard 
linear solid (e.g. Kanamori and Anderson, 1977) to obtain 
c. In either case 

( 18) 

is found ; y2 and -r have been defined earlier, and a0 is the 
(real) high-frequency limit of vs. Then Eq. (2) can be used, 
now with v= v,, to derive the stratigraphic attenuation oper­
ator: 

[ 
0.5 y

2 
Tw ] 

S(w, T) =exp 1 +-r2w2 (-rw+j) , (19) 

where T=D/a0 is the travel time at the mean velocity a0 . 

The meaning of the operator ( 19) is as follows: the homoge­
neous-medium response u(O, w) e- iwT, which is the incident 
wave at z = 0 delayed by T, has to be multiplied by S(w, 
T), and the result is approximately the transmission re­
sponse of the random structure. The dashed seismograms 

in Fig. 8 have been determined in this way. The agreement 
with the exact seismograms is remarkably good, both in 
the amplitudes and in the long-period trend. Thus, the com­
plex velocity (18) and the operator (19) appear to be well 
suited to describe the absorptive and dispersive nature of 
stratigraphic attenuation. 

If both anelastic and stratigraphic attenuation is present, 
the resulting complex wave velocity is obtained from an 
obvious combination of the velocities (1) and (18), under 
the assumption v0 = a0 . The resulting attenuation operator 
is the product of Eqs. (17) and (19). 

At this point a comparison with the work of Banik et al. 
(1985a, b) is in order. Our 1 D random model, characterized 
by the exponential autocorrelation function (13) of the im­
pedance fluctuations, the inverse quality factor (14) and the 
attenuation operator (19), is identical with the so-called tele­
graph model of these authors. In particular, our operator 
(19) agrees in essence with their attenuation operator [Banik 
et al., 1985 b, Eq. ( 19)]. This is quite satisfactory in view 
of the grossly different derivations; namely, from a stochas­
tic wave equation and mean-field theory in the Banik et al. 
approach and from simple energy considerations and an 
absorption-dispersion pair here. 

Discussion and conclusions 

The main result of this study is that stratigraphic attenua­
tion is well described by single-scattering theory, leading 
to Eq. (14) for apparent Q. More empirical Qs formulas, 
given by Menke ( 1983) and Richards and Menke ( 1983), 
are less well suited; in general, they do not reproduce the 
level of Qs and its frequency dependence. 

Equation (14) for Qs is valid under the assumption of 
an exponential autocorrelation function of the relative im­
pedance fluctuations of stratigraphy. This form is a good 
approximation in the case of uniformly distributed imped­
ance fluctuations with mean value zero. In more general 
cases Eq. (12) has to be applied. 

Under the validity of Eq. (14), stratigraphic attenuation 
is similar to the anelastic attenuation of a standard linear 
solid. Thus, its frequency dependence is rather pronounced: 
the main effects are concentrated in a frequency decade 
around the frequency (2 n:-r) - 1, where Tis the two-way travel 
time related to the correlation distance. 

From the success of Eq. (14) in the 1 D case we conclude 
that the corresponding 3 D results for Q. (Sato, 1984) have 
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a similar range of applicability and that multiple scattering 
plays no major role for attenuation due to scattering. With 
results for Qs available in the 3 D case, it should be possible 
to derive the corresponding complex velocity and scattering 
attenuation operator as generalizations of Eqs. (18) and (19), 
respectively. 

The parameters that enter Eq. (14) are the variance of 
the impedance fluctuation and the correlation distance. If 
these parameters are available, e.g. from sonic logs, the stra­
tigraphic component Qs of Q can be estimated and the in­
trinsic component Q0 determined; the latter is considered 
as an important lithological parameter. Of course, this re­
quires reliable inferences on total Q from seismic data. Since 
Q5 of a particular realization of a random structure can 
have pronounced oscillations around the statistical average 
represented by Eq. (14) (Figs. 2 and 3), smoothing of total 
Q over frequency is required for a reliable estimate of Q0 • 

Q should be available for at least 1-2 frequency decades. 
Besides the sediments of the upper crust, the rocks of 

the lower crust may possess a stratigraphic Q. Recent seis­
mic investigations (e.g. DEKORP Research Group, 1985; 
Sandmeier and Wenzel, 1986) give some evidence of more 
or less horizontal laminae in much of the lower crust down 
to the crust-mantle boundary. Lamina thicknesses of 100-

N ~ZOO 

0.1Z5 

N 2 400 

0.125 
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Fig. 8. Exact synthetic seismograms (solid lines) 
and approximations (dashed lines), calculated 
with the stratigraphic attenuation operator (19) 
for N = 200 (top), N =400 (bottom), and in each 
case for variable maximum velocity fluctuation p 

150 m and maximum velocity fluctuations of ± 10% have 
been suggested by Sandmeier and Wenzel. From Eqs. (15) 
and (16), with K-;::;;0.7 for rocks of the lower crust, a mini­
mum Q5 value of about 200 is estimated. It corresponds 
to frequencies of 3- 5 Hz and applies only to steeply propa­
gating waves. This rather low Qs value indicates that strati­
graphy and scattering contribute quite essentially to wave 
attenuation in the lower crust, at least in the frequency 
band of explosion seismology. For frequencies from 3-
15 Hz, Qs is in the range from 200 to about 400. 

We have concentrated in this paper on those features 
of stratigraphic attenuation which are successfully explained 
by single-scattering theory. There are also, however, unex­
plained characteristics; for instance, differences between the 
exact (numerical) Qs and the analytical Qs in Figs. 2 and 
3 which sometimes can exceed 50%. Moreover, the strati­
graphic attenuation operator (19) does not explain the high­
frequency seismogram reverberations in Fig. 8. These fea­
tures are influenced or even dominated by multiple scatter­
ing, possibly up to high orders. These unexplained features 
are not always negligible, but their analytical description 
is more difficult. Single-scattering theory gives a good de­
scription of a few basic features of stratigraphic attenuation. 
This is sufficient for quite a number of applications. 



|00000060||

54 

Acknowledgements. The computations for this paper were per­
formed at the computing centre of the University of Frankfurt. 
We are grateful to Wolfgang Kampfmann, Michael Korn, William 
Menke and Haruo Sato for helpful comments, and to Ingrid 
Hornchen for typing the manuscript. 

References 

Banik, N.C., Lerche, I., Shuey, R.T.: Stratigraphic filtering, part 
1: derivation of the O'Doherty-Anstey formula. Geophysics 50, 
2768-2774, 1985 a 

Banik, N.C., Lerche, I., Resnick, J., Shuey, R.T.: Stratigraphic filter­
ing, part 2: model spectra. Geophysics 50, 2775-2783, 1985b 

DEKORP-Research Group: First results and preliminary interpre­
tation of deep-reflection seismic recordings along profile DE­
KORP 2-South. J. Geophys. 57, 137-163, 1985 

Frankel, A., Clayton, R.W.: Finite difference simulations of seismic 
scattering: implication for the propagation of short-period seis­
mic waves in the crust and models of crustal heterogeneity. 
J. Geophys. Res. 91, 6465-6489, 1986 

Grant, F.W., West, G.F.: Interpretation theory in applied geophys­
ics. New York: McGraw-Hill Book Co., 1965 

Hudson, J.A., Heritage, J.R.: The use of the Born approximation 
in seismic scattering problems. Geophys. J.R. Astron. Soc. 66, 
221-240, 1981 

Kanamori, H., Anderson, D.L.: Importance of physical dispersion 
in surface wave and free oscillation problems: review. Rev. Geo­
phys. Space Phys. 15, 105-112, 1977 

Lerche, I., Menke, W.: An inversion method for separating appar­
ent and intrinsic attenuation in layered media. Geophys. J.R. 
Astron. Soc. 87, 333-347, 1986 

Menke, W.: A formula for the apparent attenuation of acoustic 
waves in randomly layered media. Geophys. J.R. Astron. Soc. 
75, 541-544, 1983 

Menke, W., Dubendorff, B.: Discriminating intrinsic and apparent 
attenuation in layered rock. Geophys. Res. Lett. 12, 721-724, 
1985 

O'Doherty, R.F., Anstey, N.A.: Reflections on amplitudes. Geo­
phys. Prospecting 19, 430-458, 1971 

Richards, P.G., Menke, W.: The apparent attenuation of a scatter­
ing medium. Bull. Seism. Soc. Am. 73, 1005-1021, 1983 

Sandmeier, K.-J., Wenzel, F.: Synthetic seismograms for a complex 
crustal model. Geophys. Res. Lett. 13, 22-25, 1986 

Sato, H.: Wave propagation in one dimensional inhomogeneous 
elastic media. J. Phys. Earth 27, 455-466, 1979 

Sato, H.: Attenuation of elastic waves in one-dimensional inhomo­
geneous elastic media. Phys. Earth Planet. Inter. 26, 244-245, 
1981 

Sato, H.: Attenuation of S waves in the lithosphere due to scattering 
by its random velocity structure. J. Geophys. Res. 87, 7779-
7785, 1982a 

Sato, H.: Amplitude attenuation of impulsive waves in random 
media based on travel time corrected mean wave formalism. 
J. Acoust. Soc. Am. 71, 559-564, 1982b 

Sato, H.: Attenuation and envelope formation of three-component 
seismograms of small local earthquakes in randomly inhomoge­
neous lithosphere. J. Geophys. Res. 89, 1221-1241, 1984 

Schoenberger, M., Levin, F.K.: Apparent attenuation due to in­
trabed multiples. Geophysics 39, 278-291, 1974 

Schoenberger, M., Levin, F.K.: Apparent attenuation due to in­
trabed multiples II. Geophysics 43, 730-737, 1978 

Sherwood, J.W.C., Trorey, A.W.: Minimum-phase and related 
properties of the response of a horizontally stratified absorptive 
earth to plane acoustic waves. Geophysics 30, 191-197, 1965 

Spencer, T.W., Edwards, C.M., Sonnad, J.R.: Seismic wave attenua­
tion in nonresolvable cyclic stratification. Geophysics 42, 939-
949, 1977 

Spencer, T.W., Sonnad, J.R., Butler, T.M.: Seismic Q-stratigraphy 
or dissipation. Geophysics 47, 16-24, 1982 

Temme, P., Miiller, G.: Numerical simulation of vertical seismic 
profiling. J. Geophys. 50, 177-189, 1982 

Wenzel, A.R.: Radiation and attenuation of waves in a random 
medium. J. Acoust. Soc. Am. 71, 26-35, 1982 

Wu, R.S.: Attenuation of short period seismic waves due to scatter­
ing. Geophys. Res. Lett. 9, 9-12, 1982 

Received May 20, 1986/Revised August 8 and October 27, 1986 
Accepted December 2, 1986 


