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Abstract. Angular variations of seismic velocities have been ob
served in the Earth and attributed to some form of anisotropy 
caused by aligned crystals, orientated cracks and inclusions, and 
laminated strata. The exact analytical expressions for the velocities 
in each particular symmetry-system, derived from the Kelvin
Christoffel equations, are complicated functions of the elastic con
stants and cannot be easily manipulated. This paper examines 
the form of the velocity variations for the several systems of elastic 
symmetry; five of these seven symmetry-systems have been sug
gested for possible Earth structures. We shall demonstrate that 
the approximate equations of Backus (1965) and Crampin (1977 a) 
are good estimates for the velocity variations in symmetry planes 
of all symmetry systems, but not in general for off-symmetry 
planes. These equations are linear in the elastic constants, and 
provide a convenient link between velocity variations and elastic 
constants, if used judiciously. The behaviour of shear waves in 
off-symmetry directions is complicated by pinches, caused by the 
proximity of shear-wave singularities, where the two shear-waves 
exchange polarizations. Despite the restrictions to their use, the 
equations are the fundamental relationship for a number of model
ling studies. 

Key words: Anisotropic symmetry - Velocity variations - Approxi
mate anisotropic velocities - Shear-wave singularities: Kisses, 
Intersections and Point singularities. 

Introduction 

Azimuthal velocity variations of Pn waves have now been observed 
in a variety of tectonic regimes: in lithosphere formed at oceanic 
ridges (Hess 1964; Raitt et al. 1969; and many others); beneath 
the Rhinegraben (Bamford 1977); and beneath the Western USA 
(Bamford et al. 1979). Upper-mantle velocity-anisotropy beneath 
much of Eurasia is also implied by the polarization of higher-mode 
surface-waves (Crampin and King 1977), and beneath much of 
the Pacific Ocean by the polarization of fundamental-mode sur
face-waves (Kirkwood and Crampin in press 1980b). Azimuthal 
anisotropy throughout the whole of the oceanic lithosphere be
neath the NAZCA plate is suggested by the velocity variations 
of fundamental-mode surface-waves (Forsyth 1975). Most of these 
observations are equivalent to measuring the velocity variations 
in a single plane-section of the anisotropic material, and place 
little constraint on the choice of symmetry-system or the three 
dimensional nature of the velocity variations in the upper mantle. 

This system is usually taken to be some orthorhombic orientation, 
since crystalline olivine, the supposed major anisotropic constitu
ent, has orthorhombic symmetry. 

In the crust, exploration seismologists have long recognised 
that regular sequences of thin sedimentary beds may simulate 
a homogeneous transversely-isotropic material, and hence have 
hexagonal symmetry (Postma 1955; Backus 1962; Levin 1978). 
However, it appears that very little direct evidence for transverse 
isotropy has yet been found. Crack anisotropy (Crampin 1978) 
also suggests a number of potential sources of anisotropy in the 
crust, with a variety of possible symmetry-systems, although only 
one has yet been observed (monoclinic symmetry. Crampin et al. 
1980). 

We see that anisotropy in the Earth is still in a largely descrip
tive stage of investigation, although the theoretical and numerical 
development is now quite advanced. Clearly, inversion of in situ 
anisotropy is important for the information it may contain on 
material composition, lithology, three-dimensional velocity-struc
ture, and tectonics (by identifying the stress field) (Cram pin 1977 b; 
Cram pin and Bamford 1977; Crampin et al. 1980; Kirk
wood and Crampin in press 1980a and b). However, the larger 
number of elastic constants to be specified make it more difficult 
to invert anisotropic than isotropic structures (Crampin 1976; 
Cram pin 1977 a; Kirkwood 1978). 

One further complication in anisotropic media is that the direc
tion of the ray-, wave-, or group-velocity vector deviates from 
the phase-propagation vector for both body and surface waves. 
It is the phase-velocity which appears explicitly in most analytical 
expressions, whereas it is the group-velocity arrival which is usually 
observed on seismograms. 

The phase-velocities of the three orthogonally-polarized body
waves that propagate in anisotropic media (a quasi P-wave, qP, and 
two quasi shear-waves, qSJ and qS2, or qSH and qSVwhere appro
priate) are solutions of the Kelvin-Christoffel equations (Musgrave 
1970; Auld 1973). These solutions are rational functions of the 
elastic constants and direction cosines, depend on the particular 
symmetry-system, and are sufficiently complicated to make it diffi
cult to estimate the constants from observations of velocity, even 
when the particular symmetry-system can be identified. Conse
quently, we make use of the approximate equations of Backus 
(1965) and Crampin (1977 a), which are much easier to manipulate. 

There are many references to anisotropic symmetry in crystallo
graphic literature (Nye 1957; Musgrave 1970; Auld 1973). Perhaps 
the major reference in geophysics is Backus (1970), which gives 
a strictly mathematical background to symmetry-systems. The nu
merical techniques used in the present paper are applicable general
ly and do not depend on the particular symmetry-system. The 
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paper discusses the velocity variations in six of the seven systems 
of anisotropic symmetry, five of which are possible configurations 
within the Earth (Table 1), and focuses attention on several aspects 
of particular importance to seismologists, which are not adequately 
treated elsewhere: 

1. The relevance of the approximate equations of Backus (1965) 
and Crampin (1977a) to particular symmetry-systems, 

2. the importance of the 28 and 48 variations with direction 
for understanding the behaviour of body-waves, 

3. the significance of the singularities of shear-wave slowness
sheets for the propagation and polarization of shear-waves (see 
also Crampin and Yedlin 1980). 

Approximate Equations for Variation 
of Phase-Velocity 

Backus (1965) determined approximate equations for the varia
tions of qP velocity over a plane in a weakly anisotropic solid 
in terms oflinear combinations of the elastic constants, and cosines 
and sines of the angle of azimuth. We shall demonstrate in subse
quent sections that these equations are strictly applicable only 
to velocity variations in planes of mirror symmetry, and, although 
they may be good approximations in some off-symmetry planes, 
they are not good in all such planes. Cram pin (1977 a) derived 
similar expressions for shear-waves propagating in symmetry 
planes. These equations of Backus and Crampin provide a simple 
direct link between the velocities and the elastic constants, and 
have proved very convenient for estimating anisotropic elastic 
constants from velocity variations (Crampin and Bamford 1977; 
Cram pin 1978; Crampin et al. 1980). 

The azimuthal variations in the velocities of body-waves propa
gating in the x 3 =0 plane of mirror symmetry of a weakly an
isotropic material can be written (Backus 1965; Crampin 1977 a): 

pV~p=A+B,cos 28+Bssin 28+Ccos 48+Cssin 48, 
p v:sH = D +£,cos 48 + Essin 48, and 
pV;sv=F+G,cos 28+Gssin 28, 
where A={3(c1111 +c2222) +2 (c1122 +2c1212)}/8, 

B,=(c11 11 -c2222)/2, 
Bs=(C2111 +c1222), 
C, = {c1111 +c2222 -2 (c1122 + 2c1212)}/8, 
Cs=(C2111-C1222)/2, 
D= {c1111 + c2222 -2 (c1122 -2c1212)}/8 
E,= -C" 
Es= -C,, 
F= (c1313 + Cz323)/2, 
G, = (C1313 -C2323)/2, 
Gs=Cz313, 

(1) 

p is the density, VqP is the velocity of the qP wave, VqsH and 
Vqsv are the velocities of the quasi shear-waves with polarizations 
parallel (qSH), and perpendicular (qSV) to the plane of variation, 
cikmn are the moduli of the elastic tensor rotated so that the x3-axis 
is normal to the plane of variation, and 8 is the azimuth of propa
gation measured from the x1-axis. The x1, x 2 , and x 3 axes are 
not necessarily principal axes. If 8 is measured from a direction 
of sagittal symmetry (x 2 =0, a plane of mirror symmetry), the 
coefficients of the sine terms are identically zero in Eq. (!) leaving 
the reduced equations in cos 28 and cos 48. 

The shear-waves have polarizations strictly parallel and perpen
dicular to the plane of variation only if the plane possesses mirror 
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symmetry (this restriction, although obvious, has not been stated 
explicitly in previous publications). The polarizations of the shear
waves (qSJ and qS2) are not parallel or perpendicular to generally 
orientated planes of variation, and the coefficients of the expan
sions in these cases are not simple combinations of elastic 
constants. The expansion for qSJ and qS2, even in solids with 
weak anisotropy, cannot generally be expressed in terms of trigo
nometric functions of 28 and 48, but also require 68 and higher 
terms for their description. The approximations are the first five 
terms of the Fourier Series expansion of the velocity variations 
- the complete expansions for general orientations contain an 
infinite number of terms. We find that the various restrictions 
on the application of these approximations to modelling studies 
present few problems in practice, because most symmetry-systems 
have sufficient symmetry planes for the equations to be easily 
applied. 

Equations (1) are correct, with the restrictions given above, 
to the first order of the differences between anisotropic and iso
tropic elastic constants; the following figures demonstrate that 
the equations are good approximations even for strong anisotropy. 
It should be noted that the goodness of fit of the equations to 
any anisotropic velocity variation depends on the particular sym
metries and the particular elastic constants and cannot be general
ized in terms of, say, the fit being good to a certain percentage 
of velocity anisotropy. 

Velocity Surfaces, Wave Surfaces, 
and Shear-Wave Singularities 

We display the variations of phase-velocity with direction in var
ious structures for the several systems of anisotropic symmetry. 
These curves are sections of what is sometimes called the velocity 
surface. However, this velocity surface is not what is usually ob
served in field or laboratory experiments. In anisotropic media, 
energy propagates with a component (usually small) parallel to 
the wave front. Thus the energy travels along a ray at an angle 
to the propagation vector and propagates with the group-velocity. 
The surface traced by this energy radiating along rays from a 
point source in a given time is known as the wave surface, or 
ray surface (Postma 1955; Musgrave 1970). This surface is the 
envelope of the wave fronts (Synge 1957). Sections of the wave 
surface cut by symmetry planes take a particularly simple form: 
the wave or group-velocity is 

Vw =(V2 +(dV/d8)2 ) 112 , 

in a direction 
cf>=tan - i [(Vsin8+(dV/d8)cos8)/(Vcos8-(dV/d8)sin8)], 

(2) 

where V(8) is the velocity in a direction 8 in a symmetry plane 
(Postma 1955, first applied these equations to transversely-isotrop
ic symmetry, but they are applicable generally, to symmetry planes 
in any system of anisotropic symmetry). The wave surface is very 
close to the velocity surface when the anisotropy is weak, and 
near symmetry directions in stronger anisotropy. In geophysics, 
where anisotropy is likely to weak (observed to be less than 8% 
in the upper-mantle although possibly stronger in some crustal 
rocks), velocity surfaces will generally be good approximations 
to wave surfaces. 

Sections of the wave surfaces and velocity surfaces for struc
tures with hexagonal symmetry are compared in Fig. 3 below. 
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These hexagonal examples have much weaker velocity-anisotropies 
(a maximum of 10% for qSH in zinc oxide, and 20% for qP 
in the cracked structure) than those in the remaining figures, and 
the wave surfaces and velocity surfaces are very close together. 
The structures with large anisotropies in the other figures have 
wave surfaces (not shown) which are substantially different from 
the velocity surfaces and frequently display cusps. However, we 
are using the structures to demonstrate the form of the velocity 
variations and the fit of the approximate equations for particular 
symmetry conditions, and these forms will be retained in weaker 
concentrations, where the wave and velocity surfaces do not differ 
significantly. 

Crampin and Yedlin (1980) draw attention to the singularities 
of shear-wave velocities, where there are coincident roots. These 
are most easily considered in the slowness surfaces; there are three 
types of singularity; kiss singularities, where the two sheets touch 
tangentially, either convexly or concavely, but do not intersect; 
intersection singularities, where the two sheets intersect each other 
(possible only with hexagonal symmetry); and point singularities, 
where the two sheets have a common point at the vertex of two 
cones on their surfaces. Intersections are comparatively straight
forward and do not cause any particular complications in either 
propagation or interpretation. Point singularities are places where 
the inner and outer surfaces exchange polarizations at a point. 
For variations in planes which pass near, but not through, such a 
point the waves exchange polarities at a pinch without coming 
into contact. When the pinch is tight, the approximations (I) for 
shear-waves are particular inappropriate. Pinches may cause con
siderable complications in some types of shear-wave propagation 
Cram pin and Y edlin (1980). 

Table 1. Symmetry systems (referred to principal axes) 

Velocity Variations in Symmetry-Systems 

The classes of elastic symmetry are usually divided into the seven 
named symmetry-systems listed in Table 1, which are described 
by the fourth-rank elastic-tensors of Fig. 1 (Nye 1957, noting the 
errors in Nye's specification for trigonal symmetry). These named 
systems encompass the full range of symmetry structures possible 
in homogeneous anisotropic elastic solids, and possible applica
tions in the Earth are listed for five of the seven systems in Table 1. 
The triclinic system is omitted from the discussion: its description 
requires 21 independent elastic constants (Nye 1957), and the ve
locity variations are too general to be usefully summarized (con
veniently, triclinic symmetry has not yet been suggested for any 
Earth structures). 

The following figures show the velocity variations in symmetry 
planes and the orthogonal corner x=O, y=O, and z=O (which 
we specify as x-cut, y-cut, and z-cut) for a range of anisotropic 
symmetry-structures. Since the amplitude and sign of each varia
tion depends on the sum and difference of various combinations 
of elastic constants, these amplitudes and signs can vary widely 
from material to material even within the same symmetry system. 
The materials illustrated were chosen to display particular varia
tions; further examples of crack systems relevant to the Earth 
can be found in Crampin (1978). The figures should be examined 
in relation to the other parameters of symmetry systems given 
in Tables 1 and 2, and in Fig. I. 

The velocity variations show a variety of different forms. The 
only general constraint is the near equality, but opposite sign, 
of the amplitudes of the 48 variations of the squared qP and 
qSH velocities in symmetry planes, as expected from (1). 

Symmetry 
system 

Number of Number and specification of symmetry planes Possible symmetry structures in the Earth 
independent 
elastic 
constants 

Cubic 3 

Hexagonal• 5 

Trigonal 6(7)b 

Tetragonal 6(7) • 

Orthorhombic 9 

Monoclinic 13 

T riclinic 21 

(
3 identical: x-. y-. and z-cuts (Fig. 2a) 

9 6 identical: planes joining opposite sides 
of cube (diagonal-cuts) (Fig. 2 b) 

( 
z-cut (Figs. 3 b, and 3 d) 
All planes through axis of cylindrical 
symmetry: z-axis (Figs. 3 a and c) 

3{ 3 identical: sides of triangular prism; 
x-, ((I, 13,0))-, and ((I, j/3,0))-cuts (Fig. 4a) 

) 
) 
} 

1
2 identical: sides of square prism; x-, and l 

y-cuts (Fig. 5a) 
5 z-cut (Fig. 5 b) 

2 identical: planes joining edges _of prism; 
((1, I, 0))-, and ((I, 1, 0))-cuts (Fig. 5c) 

(
x-cut (Fig. 6a) 

3 y-cut (Fig. 6b) 
z-cut (Fig. 6c) 

1 {z-cut (Fig. 7 c) 

None 

) 

Orthogonal triplanar-systems of cracks with 
equal crack-densities (Fig. 5, Crampin 1978) 

Lithologic alignments (Oil shale, Kaarsberg 
1968); thin sedimentary sequences (Postma 1955; 
Backus 1962; Levin 1978); orientations of 
olivine in upper mantle (Francis 1969) 

None known 

Orthogonal biplanar systems of cracks with 
equal crack-densities (Fig. 4, Crampin 1978) 

Aligned olivine-crystals in the upper mantle 
(Hess 1964; Ave Lallemant and Carter 1970; 
Crampin and Bamford 1977) 

Biplanar cracks with unequal crack-densities 
(Crampin et al. 1980) 

None known 

Systems with hexagonal symmetry are transversely isotropic when the symmetry axis is vertical 
The name of the system refers to two possible configurations of constants. The identification of symmetry planes and possible Earth structures 

refer to the configuration with fewer constants 
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ISOTROPIC CUBIC HEXAGONAL 

a c c a c c a c d 

c a c c a c c a d 

c c a c c a d d b 

x e e 

x e e 

x e 

where where 

x = (a - c) /2 x = (a - c) /2 

TRIGONAL ( I) * TRIGONAL ( 2) TETRAGONAL (I) 

a c d f 

c a d -f 

d d b 

f -f e 

where 

e 

y 

x=(a-c)/2, 

and y = f 

* TETRAGONAL ( 2) 

y 

x 

a c d g 

c a d -g 

d d b 

e 

e 

g -g f 

a c d f g 

c a d -f -g 

d d b 

f -f e z 

g -g e y 

z y x 

where 

x (a - c)/2, 

y f, and z = -g 

ORTHORHOMBIC 

a d e 

d b f 

e f c 

g 

h 

i 

a c d 

c a d 

d d b 

e 

MONOCLINIC 

a d e 

d b f 

e f c 

g 

k 

m 

Fig. I. The form of the elastic tensors for the various systems 
of elastic symmetry, with the conventional choice of axes. The 
letters a-m represent independent quantities in each tensor, unless 
otherwise specified. The tensor for the triclinic system is not 
shown. The starred tensors are more complicated varieties of the 
unstarred tensors and will not be discussed in this paper 

e 

j 

k 

h 

x 

f 

m 

i 

In order to make the results more easily intelligible to those 
unfamiliar with crystallographic notation, we specifiy, where nec
essary, the direction of wave propagation and orientation of 
planes, not in terms of Miller indices, but in terms of the direction 
cosines of the normal referred to the conventional Cartesian coor
dinate system of the elastic tensor. Thus, the plane specified, within 
double parentheses, as the ((a. b, c))-cut is the plane normal to 
the line with direction cosines proportional to a, b, and c. 

The velocity variations are drawn in rectangular rather than 
polar coordinates, which would have preserved the direction of 
propagation, because rectangular coordinates show details of the 
variations more clearly. The solid lines in the figures are the exact 
velocities calculated by the eigenvalue techniques of Crampin 
(1977 a), and the dashed lines are the approximate velocity varia
tions obtained by substituting the appropriate elastic constants 
into (1). 

Cubic 

The velocity vanat10ns in the two types of symmetry plane of 
cubic silicon, shown in Fig. 2, are typical of cubic structures. 
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Fig. 2a and b. Cubic symmetry. Comparison of velocity variations of 
the approximate equations with the exact phase-velocities of silicon ( elas
tic constants from McSkimin 1953), as a function of angle from a coordi
nate axis, in the symmetry planes: a x-, y-, and z-cuts; and b the diagonal 
cuts. In this and all following figures, the solid lines are the exact velocity 
variations, and the dashed lines are from the approximate Eq. (!) 

Table 2. Singularities of the shear-wave slowness-sheets. The figures in 
brackets represent alternative but less-common configurations. The fig
ures with asterisks represent point singularities on axes where symmetry 
planes intersect (Crampin and Yedlin 1980) 

Symmetry Kiss Intersection Point 
system singularities singularities singularities 

Cubic 6 0 8 
Hexagonal 2 2, (0) 0 
Trigonal 0 0 2 * + 6, (2 * + 18), etc. 
Tetragonal 2 0 8 
Orthorhombic 0 0 4, (12, as in 

Fig. 6), etc. 
Monoclinic 0 0 8, etc. 

The velocity variations in the symmetry planes are very simple 
and the approximations(!) are very close. The simplicity is decep
tive. The shear-wave slowness-sheets have more singularities than 
most other symmetry-systems (Table 2: there are six kisses, two 
on each of the principal axes, and eight point singularities, one 
in each solid quadrant at the intersection of the three diagonal 
symmetry-planes. The shear-wave approximate equations (!) are 
not good for off-symmetry directions, when there are so many 
point singularities. The equations for P-waves are also not good 
approximations in many off-symmetry directions: the ((1, 1, 1))-cut 
has small 68 variations which clearly cannot be modelled by 
the 28 and 48 variations of(!). 
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Fig. 3a-d. Hexagonal symmetry. Comparison of approximate velocities, with phase and wave velocities of zinc oxide (Bateman 1962), in the 
symmetry planes: a through the axis of symmetry; and b perpendicular to the axis of symmetry. Velocity variations of a structure GKFFl 
with small dry parallel-cracks (Cram pin 1978), in the symmetry planes: c through the axis of symmetry (the normal to the cracks); and d perpendicular 
to the axis of symmetry. The fine-dashed lines are sections of the wave velocity-surface calculated by Postma's (1955) equations 

Hexagonal 

Figure 3 shows the velocity variations m crystalline zinc-oxide, 
where the P-wave variation has a largely 48 variation, and in 
dry parallel cracks (GKFFl, Crampin 1978), where the P-wave 
has a largely 28 variation. Most hexagonal structures have shear
wave slowness-sheets intersecting as they do in both structures 
in Fig. 3. However, this is not always the case; randomly oriented 
cracks with co-planar normals may have shear-wave slowness
sheets with only two kiss singularities. 

The reduced equations are good appro!limations to the phase
velocities, and the variations of qP and qSV in any plane through 
the axis determine all five elastic constants. Figure 3 also compares 
the wave-and velocity-surfaces. As discussed previously, there is 
very little difference between the two velocities for these compara
tively weak anisotropies. 

Earth structures in which the velocities of body-waves are in
varient in horizontal directions are called transversely isotropic 
by seismologists. Structures with hexagonal symmetry are trans
versely isotropic perpendicular to the symmetry axis, and the term 
"transverse isotropy" is sometimes used as if it were synonymous 
with hexagonal symmetry. Strictly speaking, however, transverse 
isotropic refers only to cylindrical symmetry, and structures will 
possess hexagonal symmetry only if the average properties are 
constant over depth intervals greater than a seismic wavelength. 
Postma (1955) and Backus (1962) present techniques for deriving 
the hexagonal elastic constants of structures made up of regular 
laminations of thin isotropic beds. 

Trigonal 

Apart from the constraints on the 48 variations of qP and qSH 
in the symmetry planes, wide variations of sign and amplitude 
are possible for different trigonal structures. 

The approximate Eq. (1) model the velocity variations of alpha
quartz reasonably well in the symmetry planes (Fig. 4a), although 
they cannot model the rapid changes in direction of qP and qSH 
at some 75° from the z axis. The y- and z-cuts are not planes 
of symmetry, and the shear-waves display pinches due to the prox
imity of point intersections on the planes of symmetry. Conse
quently, the shear-wave Eq. (1) are poor approximations in these 
and other off-symmetry planes. The z-cut demonstrates the lack 
of generality of the Backus (1965) P-wave approximations. 

Tetragonal 

The approximate Eq. (1) follow the main trends of the velocity 
variations in the three types of symmetry plane of tetragonal rutile 
(Fig. 5) but are not particularly close estimates, because rutile 
has large velocity-anisotropy (50% for qSH wave in the z-cut) 
with a marked 88 contribution. Apart from the constraints on 
the 48 variations, the signs and amplitudes of the variations may 
vary widely between different tetragonal structures. The shear-wave 
equations are often poor approximations in the off-symmetry 
directions due to the proximity of point singularities. 

Orthorhombic 

A comparison of the approximate velocities and the phase-veloci
ties in the three symmetry planes of orthopyroxene-bronzite are 
shown in Fig. 6. Except for the constraints on the 48 variations 
of qP and qSH, all combinations of sign and amplitude variation 
are possible for structures with orthorhombic symmetry. The re
duced equations are good approximations in all three symmetry 
planes. A variety of possible configurations of shear-wave singular-
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1t1es in other orthorhombic materials make the equations poor 
approximations in many off-symmetry planes. 

Olivine and many of the possible upper-mantle pyroxenes take 
orthorhombic symmetry with comparatively minor differences of 
sign and amplitude of the velocity variations. We note here that 
the sign of the 48 variation of the P-wave in z-cut olivine is positive 
(Crampin 1976), whereas the corresponding sign in orthopyroxene 
is negative in Fig. 6c. Crampin and Bamford (1977) suggested 
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that the sign and amplitude of the 48 variations in observed qP 
velocity-anisotropy may be important as a structural discriminant. 
Crampin and Bamford could fit observed oceanic velocity-an
isotropy very well with mixtures of olivine and isotropic media, 
whereas the velocity-anisotropy beneath the continental Rhinegra
ben displayed negative 48 variations, and could not be directly 
fitted by olivine mixtures. It is possible that the negative sign 
of the observed velocity-anisotropy may be due to a higher pyrox-



|00000047||

w 
z 
er: 
_J 

a.. 
>: 
)
Cf) 

>-
::> 
u 
I 

x 
u 
w 

9. 5 

9. a 

6. 5 

a.a 

7 .5 

1 .a 

w 
z 
w 
x 
D 
a: 
)-

0.. 
D 

(/) 6.5 

' >: 

"' z 6.0 

)

>-en r 
z >-
0 a: 
-o 
>-

- 5.5 
u 
0 
_J 

w er: u 
::i -
(3 co 

> s.o 
w >: w 

> 
er: 

0 
or 
w a: 
uo 
::i r 
0 >
w a: 
a: 0 

3: q. 5 
)-

0 
0 
co 4.. 0 

a 

w 
z 
a: 

7. 0 

6.5 

6.0 

5.5 

_J 5.0 
a.. 
>: 
)-
(/) q. 5 

I 
z 
\!:) u 
3 w "'q.a 
>-- ' ::> >: 
u "' I 
x z3.S 

)
<fl (3 >
z a.. -3.0 
DI U 
- a.. 0 
>-- - _J cr:m w 
::i > 2.5 
(3 u 
w - w z > 
0 - er: 
LL.1_J ::x2.CI 
uu 
::i 0 >-
0 Z D 
w 0 0 
a:x: ml.5 

v I---

v 

' /~ 

~~ v '<. 
_,/ 

a 3a Ba 
ANGLE FROM I 

/ 
I' 
I 

l 
r--... lJ' 

~ ,f - -

/ I\ 

a 3a 60 
a ANGLE FROM I 

QP 

QSH 
QSV 

90 

QP 

QSl 

QS2 

90 

w 
z 
a: 
_J 

a.. 
:i: 
)
Cf) 

>
::i 
u 
I 

w 
z 
w 
x 
0 
a: 
)-

0.. 
0 

Cf) :c 
z >-
0 a: 
- 0 >-
a: u 
::i
CTJ"' 
w :>:: 

0 
D :C 
w a: 
uo 
::> :c 
D >
W a: 
a: 0 

b 

u 
w 

9.5 

9. a 

6.5 

a. a 

7 .5 

7. 0 

Cf) B.5 

' >: 

"' z B.O 

)

>-
- 5.5 
u 
0 
_J 
w 
> 5.a 
w 
> 
a: 
3 ILS 

>-
0 
0 "'q. a 

~ 
/ 

~ 

--- -
a 30 Ba 
ANGLE FROM l 

7. a 

6. 5 

6.0 

~ 
5.5 

w "' 

QP 

QSV 
QSH 

90 

z 
a: 
_J 5.0 

--....__ 
QP 

a.. 
>: 
>-
Cf) q.5 

I 
z 
0 u 

~ ~ll.fl 
>-- ' ::> :>:: 
u "' I 
}- z 3. 5 

w 
z 
a: 
_J 
a.. 
:E 
)-

~ 
>--
::i 
u 

I 

"' 
w 
z 
w 
x 
0 
a: 
)-

a.. 
0 

en r 
z >--
0 a: 
- 0 >--
er: u 
::i-
CTJ"' 
w >: 

0 
D :C 
w a: 
u 0 
::i :c 
D >--
w a: 
a: 0 

c 

>
Cf) CTJ >
z a... -3.0 
0 :c u 

- ---
~/ 

---v 
QSI 
QS2 

- a.. 0 
>-- - _J a: m w 
::> > 2.5 
CTJ u 
w- w 

z > 
D - a: w _J 3 2.0 
uu 
::> 0 >-
0 Z D 
w 0 0 
CC ~ CD 1.5 

a 30 so 
b ANGLE FROM l 

90 

u 
w 

9. 5 

9. a 

6.5 

a.a 

7 .5 

7 .a 

en 6.5 

' :i: 
"' z s. a 

)

>-
- 5.5 
u 
0 
_J 

w 
> 5.a 
w 
> 
a: 
"' q.5 
)-
0 
0 
"'q.a 

i-----. 
~ 

\ 
!>. 

\ 
'-

K 
~ 

// 
I~ 

a 3a sa 
ANGLE FROM X 

7.0 

B.5 

6.0 

5.5 

Qp 

QSV 
QSH 

Fig. 6a-c. Orthorhombic symmetry. 
Comparison of approximate velicities with 
phase velocities of orthopyroxene-bronzite 

90 (Kumazawa 1969), in the symmetry planes: 
a x-cut; b y-cut; and c z-cut 

5.0 / " _,,.r-......_ QP w 
z 
a: 
_J 

a.. 
:>:: 

q.s 

>- u 
~ w ,,., q.o 
>-- ' ::> :>:: 
u "' I 
...., z3.5 

CTJ 
a.. 
r 

Cf) a.. 
z
om 

>-- u 
a: -::> z 
ow _J 

u 
_J 0 
_J z 
::> 0 
.... :>:: 

>
>-
-3.0 
u 
0 
_J 

w 
> 2.5 
w 
> 
a: 
3: 2.0 

>-
0 
0 
m 1.5 

~ 

~ ~ 

I\ 0 If' 
['._ ,,__,. 

_o 3a 60 

c ANGLE FROM X 

v 

I'\ 
~~ /j 
"~ 

90 120 

£::::. 
.""--.._../ 

150 

QSV 
QSH 

tea 

Fig. 7a-c. Monoclinic symmetry. Comparison of approximate velocities with phase velocities of BIPHQP, a structure with a biplanar system 
of cracks (Crampin et al. 1980), in the planes: a x-cut, not a symmetry plane; b y-cut, not a symmetry plane; and c z-cut symmetry 
plane 

ene content in the upper-mantle beneath continents, although, 
as the velocities of pyroxene are generally lower than the usual 
sub-Moho velocities, the pyroxene would have to be mixed with 
higher-velocity isotropic media to produce typical upper-mantle 
velocities. 

Monoclinic 

The approximate velocities and phase-velocities for the monoclinic 
structure BIPHPQ observed by Crampin et al. (1980) are 
shown in Figure 7. The shear-waves in off-symmetry planes 
do not in general have polarizations parallel or perpendicular 
to the planes, however, by chance, the shear wave polarizations 

in the y-cut for this particular system are nearly parallel and 
perpendicular to the plane. Except for the constraints on the 48 
variations of qP and qSH in the symmetry plane, there are wide 
variations of velocity and shear-wave singularity configurations 
possible in monoclinic structures. The approximate equations are 
very good approximations in the symmetry plane (z-cut) and the 
y-cut in Fig. 7, but not in the x-cut, which demonstrates shear
wave pinching: the qSJ wave has nearly SV polarization, except 
between the pinches at 20° and 60°, where the polarization is 
nearly SH; similarly, qS2 has SH motion except for SV polariza
tion between 20° and 60°. 

BIPHPQ is derived from an observed P-wave velocity an-
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isotropy in Carboniferous limestone (Bamford and Nunn 1979) 
due to a biplanar system of joints and fractures. The assumption 
of cracks enables the P-wave anisotropy to be inverted to give 
the full parameters of the cracks and the equivalent anisotropic 
structure BIPHQP (Crampin et al. 1980). 

Conclusions 

The velocities in Figs. 2-7 display wide vanat10ns in amplitude 
and phase for different symmetry-systems. Wide variations are 
possible for different materials within the same symmetry-system, 
particularly in the behaviour of shear-waves for variations in off
symmetry planes, where the two shear-waves may pinch together 
and exchange polarization characteristics due to the proximity 
of singularities in nearby planes. 

The approximate expressions of Backus (1965) for P-waves, 
and Crampin (1977 a) for shear-waves, are good estimates for 
the velocity variations in symmetry planes, and provide a direct 
link between velocities and constants in these planes. In off-sym
metry planes, the approximate equations may be very poor esti
mates of both P and shear-wave velocities. However, despite these 
limitations to the use of approximate equations, they are very 
valuable in practice for transforming from velocities to constants 
(Crampin 1978; Crampin and Bamford 1977; Crampin et al. 
1980). Systems of symmetry have a number of symmetry 
planes (Table 1), and the equations may be used by judicious 
choice of origin and plane of variation. 

It is interesting to note that it is difficult to place the systems 
of anisotropic symmetry in any sequential order. It seems that 
any particular parameter used for ordering - number of elastic 
constants, number of planes of symmetry, number of shear-wave 
singularities - leads to a different order. Each symmetry system 
is unique and has unique features. 

Anisotropic velocity variations take a number of significantly 
different forms, which are difficult to classify in any simple way. 
The percentage of velocity variation ((Vmax-Vmin)/Vmax), usually 
of the P-wave, in any given plane is sometimes called the coefficient 
of anisotropy. It is clearly a very uninformative description: it 
contains no information about the symmetry, the velocities of 
the other body-waves in the given plane, or the velocities of any 
waves in other planes, and we suggest it is not used in future. 
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