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Abstract. Angular variations of seismic velocities have been ob-
served in the Earth and attributed to some form of anisotropy
caused by aligned crystals, orientated cracks and inclusions, and
laminated strata. The exact analytical expressions for the velocities
in each particular symmetry-system, derived from the Kelvin-
Christoffel equations, are complicated functions of the elastic con-
stants and cannot be easily manipulated. This paper examines
the form of the velocity variations for the several systems of elastic
symmetry; five of these seven symmetry-systems have been sug-
gested for possible Earth structures. We shall demonstrate that
the approximate equations of Backus (1965) and Crampin (1977a)
are good estimates for the velocity variations in symmetry planes
of all symmetry systems, but not in general for off-symmetry
planes. These equations are linear in the elastic constants, and
provide a convenient link between velocity variations and elastic
constants, if used judiciously. The behaviour of shear waves in
off-symmetry directions is complicated by pinches, caused by the
proximity of shear-wave singularities, where the two shear-waves
exchange polarizations. Despite the restrictions to their use, the
equations are the fundamental relationship for a number of model-
ling studies.

Key words: Anisotropic symmetry — Velocity variations — Approxi-
mate anisotropic velocities — Shear-wave singularities: Kisses,
Intersections and Point singularities.

Introduction

Azimuthal velocity variations of Prn waves have now been observed
in a variety of tectonic regimes: in lithosphere formed at oceanic
ridges (Hess 1964; Raitt et al. 1969; and many others); beneath
the Rhinegraben (Bamford 1977); and beneath the Western USA
(Bamford et al. 1979). Upper-mantle velocity-anisotropy beneath
much of Eurasia is also implied by the polarization of higher-mode
surface-waves (Crampin and King 1977), and beneath much of
the Pacific Ocean by the polarization of fundamental-mode sur-
face-waves (Kirkwood and Crampin in press 1980b). Azimuthal
anisotropy throughout the whole of the oceanic lithosphere be-
neath the NAZCA plate is suggested by the velocity variations
of fundamental-mode surface-waves (Forsyth 1975). Most of these
observations are equivalent to measuring the velocity variations
in a single plane-section of the anisotropic material, and place
little constraint on the choice of symmetry-system or the three
dimensional nature of the velocity variations in the upper mantle.

This system is usually taken to be some orthorhombic orientation,
since crystalline olivine, the supposed major anisotropic constitu-
ent, has orthorhombic symmetry.

In the crust, exploration seismologists have long recognised
that regular sequences of thin sedimentary beds may simulate
a homogeneous transversely-isotropic material, and hence have
hexagonal symmetry (Postma 1955; Backus 1962; Levin 1978).
However, it appears that very little direct evidence for transverse
isotropy has yet been found. Crack anisotropy (Crampin 1978)
also suggests a number of potential sources of anisotropy in the
crust, with a variety of possible symmetry-systems, although only
one has yet been observed (monoclinic symmetry. Crampin et al.
1980).

We see that anisotropy in the Earth is still in a largely descrip-
tive stage of investigation, although the theoretical and numerical
development is now quite advanced. Clearly, inversion of in situ
anisotropy is important for the information it may contain on
material composition, lithology, three-dimensional velocity-struc-
ture, and tectonics (by identifying the stress field) (Crampin 1977b;
Crampin and Bamford 1977; Crampin et al. 1980; Kirk-
wood and Crampin in press 1980a and b). However, the larger
number of elastic constants to be specified make it more difficult
to invert anisotropic than isotropic structures (Crampin 1976;
Crampin 1977a; Kirkwood 1978).

One further complication in anisotropic media is that the direc-
tion of the ray-, wave-, or group-velocity vector deviates from
the phase-propagation vector for both body and surface waves.
It is the phase-velocity which appears explicitly in most analytical
expressions, whereas it is the group-velocity arrival which is usually
observed on seismograms.

The phase-velocities of the three orthogonally-polarized body-
waves that propagate in anisotropic media ( a quasi P-wave, ¢P, and
two quasi shear-waves, ¢SI and ¢S2, or ¢SH and ¢SV where appro-
priate) are solutions of the Kelvin-Christoffel equations (Musgrave
1970; Auld 1973). These solutions are rational functions of the
elastic constants and direction cosines, depend on the particular
symmetry-system, and are sufficiently complicated to make it diffi-
cult to estimate the constants from observations of velocity, even
when the particular symmetry-system can be identified. Conse-
quently, we make use of the approximate equations of Backus
(1965) and Crampin (1977 a), which are much easier to manipulate.

There are many references to anisotropic symmetry in crystallo-
graphic literature (Nye 1957; Musgrave 1970; Auld 1973). Perhaps
the major reference in geophysics is Backus (1970), which gives
a strictly mathematical background to symmetry-systems. The nu-
merical techniques used in the present paper are applicable general-
ly and do not depend on the particular symmetry-system. The
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paper discusses the velocity variations in six of the seven systems
of anisotropic symmetry, five of which are possible configurations
within the Earth (Table 1), and focuses attention on several aspects
of particular importance to seismologists, which are not adequately
treated elsewhere:

1. The relevance of the approximate equations of Backus (1965)
and Crampin (1977a) to particular symmetry-systems,

2. the importance of the 26 and 46 variations with direction
for understanding the behaviour of body-waves,

3. the significance of the singularities of shear-wave slowness-
sheets for the propagation and polarization of shear-waves (see
also Crampin and Yedlin 1980).

Approximate Equations for Variation
of Phase-Velocity

Backus (1965) determined approximate equations for the varia-
tions of gP velocity over a plane in a weakly anisotropic solid
in terms of linear combinations of the elastic constants, and cosines
and sines of the angle of azimuth. We shall demonstrate in subse-
quent sections that these equations are strictly applicable only
to velocity variations in planes of mirror symmetry, and, although
they may be good approximations in some off-symmetry planes,
they are not good in all such planes. Crampin (1977a) derived
similar expressions for shear-waves propagating in symmetry
planes. These equations of Backus and Crampin provide a simple
direct link between the velocities and the elastic constants, and
have proved very convenient for estimating anisotropic elastic
constants from velocity variations (Crampin and Bamford 1977;
Crampin 1978 ; Crampin et al. 1980).

The azimuthal variations in the velocities of body-waves propa-
gating in the x;=0 plane of mirror symmetry of a weakly an-
isotropic material can be written (Backus 1965; Crampin 1977a):

pVZp=A+ B.os 20+ Bsin 20+ C.cos 40+ Csin 40,
pViu=D+ E.cos 40+ Esin 40, and
pViy =F+G.cos 20+ G,sin 20, 0))
where A={3(c1111+¢2222) +2 (c1122+2¢1212)}/8,
B.=(c1111—¢2222)/2,
B;=(c3111+¢1222),
Ce={c1111+C2222—2 (1122 +2¢1212)}/8,
Cy=(c2111 —C1222)/2,
D={ci111+ 22202 (€1122—2¢1212)}/8
Ec= _Cc’
Es= _Cs,
F=(c1313+¢2323)/2,
G.=(c1313—C2323)/2,
G=cC3313,

p is the density, V,p is the velocity of the gP wave, V,sy and
V,sv are the velocities of the quasi shear-waves with polarizations
parallel (¢SH), and perpendicular (¢SV) to the plane of variation,
Cjumn are the moduli of the elastic tensor rotated so that the x;-axis
is normal to the plane of variation, and 6 is the azimuth of propa-
gation measured from the x,-axis. The x,, x,, and x3; axes are
not necessarily principal axes. If § is measured from a direction
of sagittal symmetry (x,=0, a plane of mirror symmetry), the
coefficients of the sine terms are identically zero in Eq. (1) leaving
the reduced equations in cos 26 and cos 46.

The shear-waves have polarizations strictly parallel and perpen-
dicular to the plane of variation only if the plane possesses mirror
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symmetry (this restriction, although obvious, has not been stated
explicitly in previous publications). The polarizations of the shear-
waves (¢S1 and ¢S2) are not parallel or perpendicular to generally
orientated planes of variation, and the coefficients of the expan-
sions in these cases are not simple combinations of elastic
constants. The expansion for ¢SI and ¢S2, even in solids with
weak anisotropy, cannot generally be expressed in terms of trigo-
nometric functions of 20 and 46, but also require 66 and higher
terms for their description. The approximations are the first five
terms of the Fourier Series expansion of the velocity variations
— the complete expansions for general orientations contain an
infinite number of terms. We find that the various restrictions
on the application of these approximations to modelling studies
present few problems in practice, because most symmetry-systems
have sufficient symmetry planes for the equations to be easily
applied.

Equations (1) are correct, with the restrictions given above,
to the first order of the differences between anisotropic and iso-
tropic elastic constants; the following figures demonstrate that
the equations are good approximations even for strong anisotropy.
It should be noted that the goodness of fit of the equations to
any anisotropic velocity variation depends on the particular sym-
metries and the particular elastic constants and cannot be general-
ized in terms of, say, the fit being good to a certain percentage
of velocity anisotropy.

Velocity Surfaces, Wave Surfaces,
and Shear-Wave Singularities

We display the variations of phase-velocity with direction in var-
ious structures for the several systems of anisotropic symmetry.
These curves are sections of what is sometimes called the velocity
surface. However, this velocity surface is not what is usually ob-
served in field or laboratory experiments. In anisotropic media,
energy propagates with a component (usually small) parallel to
the wave front. Thus the energy travels along a ray at an angle
to the propagation vector and propagates with the group-velocity.
The surface traced by this energy radiating along rays from a
point source in a given time is known as the wave surface, or
ray surface (Postma 1955; Musgrave 1970). This surface is the
envelope of the wave fronts (Synge 1957). Sections of the wave
surface cut by symmetry planes take a particularly simple form:
the wave or group-velocity is

Vw=(V2+(dV]de)*)'2,
in a direction 2
¢=tan"! [(Vsinf+(dV/dO)cosh)/(Vcosd —(dV/dB)sinb)],

where V(0) is the velocity in a direction # in a symmetry plane
(Postma 1955, first applied these equations to transversely-isotrop-
ic symmetry, but they are applicable generally, to symmetry planes
in any system of anisotropic symmetry). The wave surface is very
close to the velocity surface when the anisotropy is weak, and
near symmetry directions in stronger anisotropy. In geophysics,
where anisotropy is likely to weak (observed to be less than 8%
in the upper-mantle although possibly stronger in some crustal
rocks), velocity surfaces will generally be good approximations
to wave surfaces.

Sections of the wave surfaces and velocity surfaces for struc-
tures with hexagonal symmetry are compared in Fig. 3 below.



These hexagonal examples have much weaker velocity-anisotropies
(a maximum of 10% for ¢SH in zinc oxide, and 20% for gP
in the cracked structure) than those in the remaining figures, and
the wave surfaces and velocity surfaces are very close together.
The structures with large anisotropies in the other figures have
wave surfaces (not shown) which are substantially different from
the velocity surfaces and frequently display cusps. However, we
are using the siructures to demonstrate the form of the velocity
variations and the fit of the approximate equations for particular
symmetry conditions, and these forms will be retained in weaker
concentrations, where the wave and velocity surfaces do not differ
significantly.

Crampin and Yedlin (1980) draw attention to the singularities
of shear-wave velocities, where there are coincident roots. These
are most easily considered in the slowness surfaces; there are three
types of singularity; kiss singularities, where the two sheets touch
tangentially, either convexly or concavely, but do not intersect;
intersection singularities, where the two sheets intersect each other
(possible only with hexagonal symmetry); and point singularities,
where the two sheets have a common point at the vertex of two
cones on their surfaces. Intersections are comparatively straight-
forward and do not cause any particular complications in either
propagation or interpretation. Point singularities are places where
the inner and outer surfaces exchange polarizations at a point.
For variations in planes which pass near, but not through, such a
point the waves exchange polarities at a pinch without coming
into contact. When the pinch is tight, the approximations (1) for
shear-waves are particular inappropriate. Pinches may cause con-
siderable complications in some types of shear-wave propagation
Crampin and Yedlin (1980).

Table 1. Symmetry systems (referred to principal axes)

Velocity Variations in Symmetry-Systems

The classes of elastic symmetry are usually divided into the seven
named symmetry-systems listed in Table 1, which are described
by the fourth-rank elastic-tensors of Fig. 1 (Nye 1957, noting the
errors in Nye’s specification for trigonal symmetry). These named
systems encompass the full range of symmetry structures possible
in homogeneous anisotropic elastic solids, and possible applica-
tions in the Earth are listed for five of the seven systems in Table 1.
The triclinic system is omitted from the discussion: its description
requires 21 independent elastic constants (Nye 1957), and the ve-
locity variations are too general to be usefully summarized (con-
veniently, triclinic symmetry has not yet been suggested for any
Earth structures).

The following figures show the velocity variations in symmetry
planes and the orthogonal corner x=0, y=0, and z=0 (which
we specify as x-cut, y-cut, and z-cut) for a range of anisotropic
symmetry-structures. Since the amplitude and sign of each varia-
tion depends on the sum and difference of various combinations
of elastic constants, these amplitudes and signs can vary widely
from material to material even within the same symmetry system.
The materials illustrated were chosen to display particular varia-
tions; further examples of crack systems relevant to the Earth
can be found in Crampin (1978). The figures should be examined
in relation to the other parameters of symmetry systems given
in Tables 1 and 2, and in Fig. 1.

The velocity variations show a variety of different forms. The
only general constraint is the near equality, but opposite sign,
of the amplitudes of the 46 variations of the squared ¢gP and
qSH velocities in symmetry planes, as expected from (1).

Symmetry Number of  Number and specification of symmetry planes Possible symmetry structures in the Earth
system independent
elastic
constants
. 3 ¥dent§ca1: x a.m':l z-cuts (Flgi' Za.) Orthogonal triplanar-systems of cracks with
Cubic 3 9¢6 identical: planes joining opposite sides equal crack-densities (Fig. 5, Crampin 1978)
of cube (diagonal-cuts) (Fig. 2b) q g > P
z-cut (Figs. 3b, and 3d) thhologlf: ahgl}ments (Oil shale, Kaarsberg
a . L 1968); thin sedimentary sequences (Postma 1955;
Hexagonal 5 All planes through axis of cylindrical . . .
symmetry: z-axis (Figs. 3a and c) Backus 1962; Levin 1978); orientations of
Y ¥ 8s: ¢ olivine in upper mantle (Francis 1969)
. 3) 3 identical: sides of triangular prism;
T b { g p
rigonal 6(7) - (L, l/—O)) and (1, l/—0)) cuts (Fig. 42) None known
2 identical: sides of square prism; x-, and
y-cuts (Fig. 5a)
Tetragonal 6(7)° 54z-cut (Fig. 5b)

2 identical: planes joining edges of prism;
((1, 1, 0))-, and ((1, 1, 0))-cuts (Fig. 5¢)

-cut (Fig. 6a)
3¢ y-cut (Fig. 6b)
z-cut (Fig. 6¢)

Orthorhombic 9

Monoclinic 13 1{z-cut (Fig. 7¢)

Triclinic 21 None

equal crack-densities (Fig. 4, Crampin 1978)

Aligned olivine-crystals in the upper mantle
(Hess 1964 ; Avé Lallemant and Carter 1970;
Crampin and Bamford 1977)

Biplanar cracks with unequal crack-densities
(Crampin et al. 1980)

None known

] Orthogonal biplanar systems of cracks with
}

Systems with hexagonal symmetry are transversely isotropic when the symmetry axis is vertical

b

refer to the configuration with fewer constants

The name of the system refers to two possible configurations of constants. The identification of symmetry planes and possible Earth structures
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ISOTROPIC CUBIC HEXAGONAL
a ¢ ¢ a ¢ c . a c d
c a c c a c c a d
c c a c ¢ a d d b
X e e
X . e e
X e X
where where
x=(a=-2¢)/2 x = (a-2c)/2
TRIGONAL (1) TRIGONAL (2)* TETRAGONAL (1)
a ¢ 4 f a ¢ d f g . a c d .
c a d-f c a d-f-g . c a d
d d b d d b . . . d d b .
f -f e . f -f e z e
e vy g -8 . e e .
- y z y f
where where
x = (a-2c¢)/2, x = (a-2c¢)/2,
and y = f y =f, and z = -g
TETRAGONAL (2)* ORTHORHOMBIC MONOCLINIC
a c d g a d e a d e j
c ad . .-g d b £ . . . d b £ . k
d d b . e f ¢ . . . e f ¢
e .- . D - S . .« . 8 . m
e . .« . .+ h . j k1 . h
g-g . . . f 1 .. .om . i

Fig. 1. The form of the elastic tensors for the various systems

of elastic symmetry, with the conventional choice of axes. The
letters a-m represent independent quantities in each tensor, unless
otherwise specified. The tensor for the triclinic system is not
shown. The starred tensors are more complicated varieties of the
unstarred tensors and will not be discussed in this paper

In order to make the results more easily intelligible to those
unfamiliar with crystallographic notation, we specifiy, where nec-
essary, the direction of wave propagation and orientation of
planes, not in terms of Miller indices, but in terms of the direction
cosines of the normal referred to the conventional Cartesian coor-
dinate system of the elastic tensor. Thus, the plane specified, within
double parentheses, as the ((a, b, ¢))-cut is the plane normal to
the line with direction cosines proportional to a, b, and c.

The velocity variations are drawn in rectangular rather than
polar coordinates, which would have preserved the direction of
propagation, because rectangular coordinates show details of the
variations more clearly. The solid lines in the figures are the exact
velocities calculated by the eigenvalue techniques of Crampin
(1977a), and the dashed lines are the approximate velocity varia-
tions obtained by substituting the appropriate elastic constants
into (1).

Cubic

The velocity variations in the two types of symmetry plane of
cubic silicon, shown in Fig. 2, are typical of cubic structures.
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Fig. 2a and b. Cubic symmetry. Comparison of velocity variations of
the approximate equations with the exact phase-velocities of silicon (elas-
tic constants from McSkimin 1953), as a function of angle from a coordi-
nate axis, in the symmetry planes: a x-, y-, and z-cuts; and b the diagonal
cuts. In this and all following figures, the solid lines are the exact velocity
variations, and the dashed lines are from the approximate Eq. (1)

Table 2. Singularities of the shear-wave slowness-sheets. The figures in
brackets represent alternative but less-common configurations. The fig-
ures with asterisks represent point singularities on axes where symmetry
planes intersect (Crampin and Yedlin 1980)

Symmetry Kiss Intersection Point
system singularities singularities singularities
Cubic 6 0 8
Hexagonal 2 2, (0) 0
Trigonal 0 0 2*%4+6,(2*+18), etc.
Tetragonal 2 0 8
Orthorhombic 0 0 4, (12, as in
Fig. 6), etc.
Monoclinic 0 0 8, etc.

The velocity variations in the symmetry planes are very simple
and the approximations (1) are very close. The simplicity is decep-
tive. The shear-wave slowness-sheets have more singularities than
most other symmetry-systems (Table 2: there are six kisses, two
on each of the principal axes, and eight point singularities, one
in each solid quadrant at the intersection of the three diagonal
symmetry-planes. The shear-wave approximate equations (1) are
not good for off-symmetry directions, when there are so many
point singularities. The equations for P-waves are also not good
approximations in many off-symmetry directions: the ((1, 1, 1))-cut
has small 60 variations which clearly cannot be modelled by
the 260 and 460 variations of (1).
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Fig. 3a—d. Hexagonal symmetry. Comparison of approximate velocities, with phase and wave velocities of zinc oxide (Bateman 1962), in the
symmetry planes: a through the axis of symmetry; and b perpendicular to the axis of symmetry. Velocity variations of a structure GKFFI
with small dry parallel-cracks (Crampin 1978), in the symmetry planes: ¢ through the axis of symmetry (the normal to the cracks); and d perpendicular
to the axis of symmetry. The fine-dashed lines are sections of the wave velocity-surface calculated by Postma’s (1955) equations

Hexagonal

Figure 3 shows the velocity variations in crystalline zinc-oxide,
where the P-wave variation has a largely 46 variation, and in
dry parallel cracks (GKFF1, Crampin 1978), where the P-wave
has a largely 20 variation. Most hexagonal structures have shear-
wave slowness-sheets intersecting as they do in both structures
in Fig. 3. However, this is not always the case; randomly oriented
cracks with co-planar normals may have shear-wave slowness-
sheets with only two kiss singularities.

The reduced equations are good approximations to the phase-
velocities, and the variations of ¢P and ¢SV in any plane through
the axis determine all five elastic constants. Figure 3 also compares
the wave-and velocity-surfaces. As discussed previously, there is
very little difference between the two velocities for these compara-
tively weak anisotropies.

Earth structures in which the velocities of body-waves are in-
varient in horizontal directions are called transversely isotropic
by seismologists. Structures with hexagonal symmetry are trans-
versely isotropic perpendicular to the symmetry axis, and the term
“transverse isotropy”’ is sometimes used as if it were synonymous
with hexagonal symmetry. Strictly speaking, however, transverse
isotropic refers only to cylindrical symmetry, and structures will
possess hexagonal symmetry only if the average properties are
constant over depth intervals greater than a seismic wavelength.
Postma (1955) and Backus (1962) present techniques for deriving
the hexagonal elastic constants of structures made up of regular
laminations of thin isotropic beds.

Trigonal

Apart from the constraints on the 46 variations of ¢P and ¢SH
in the symmetry planes, wide variations of sign and amplitude
are possible for different trigonal structures.

The approximate Eq. (1) model the velocity variations of alpha-
quartz reasonably well in the symmetry planes (Fig. 4a), although
they cannot model the rapid changes in direction of ¢P and ¢SH
at some 75° from the z axis. The y- and z-cuts are not planes
of symmetry, and the shear-waves display pinches due to the prox-
imity of point intersections on the planes of symmetry. Conse-
quently, the shear-wave Eq. (1) are poor approximations in these
and other off-symmetry planes. The z-cut demonstrates the lack
of generality of the Backus (1965) P-wave approximations.

Tetragonal

The approximate Eq. (1) follow the main trends of the velocity
variations in the three types of symmetry plane of tetragonal rutile
(Fig. 5) but are not particularly close estimates, because rutile
has large velocity-anisotropy (50% for gSH wave in the z-cut)
with a marked 80 contribution. Apart from the constraints on
the 46 variations, the signs and amplitudes of the variations may
vary widely between different tetragonal structures. The shear-wave
equations are often poor approximations in the off-symmetry
directions due to the proximity of point singularities.

Orthorhombic

A comparison of the approximate velocities and the phase-veloci-
ties in the three symmetry planes of orthopyroxene-bronzite are
shown in Fig. 6. Except for the constraints on the 46 variations
of ¢P and ¢SH, all combinations of sign and amplitude variation
are possible for structures with orthorhombic symmetry. The re-
duced equations are good approximations in all three symmetry
planes. A variety of possible configurations of shear-wave singular-
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ities in other orthorhombic materials make the equations poor
approximations in many off-symmetry planes.

Olivine and many of the possible upper-mantle pyroxenes take
orthorhombic symmetry with comparatively minor differences of
sign and amplitude of the velocity variations. We note here that
the sign of the 46 variation of the P-wave in z-cut olivine is positive
(Crampin 1976), whereas the corresponding sign in orthopyroxene
is negative in Fig. 6¢c. Crampin and Bamford (1977) suggested
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that the sign and amplitude of the 40 variations in observed gP
velocity-anisotropy may be important as a structural discriminant.
Crampin and Bamford could fit observed oceanic velocity-an-
isotropy very well with mixtures of olivine and isotropic media,
whereas the velocity-anisotropy beneath the continental Rhinegra-
ben displayed negative 460 variations, and could not be directly
fitted by olivine mixtures. It is possible that the negative sign
of the observed velocity-anisotropy may be due to a higher pyrox-
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Comparison of approximate velicities with
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Fig. 7a—c. Monoclinic symmetry. Comparison of approximate velocities with phase velocities of BIPHQP, a structure with a biplanar system
of cracks (Crampin et al. 1980), in the planes: a x-cut, not a symmetry plane; b y-cut, not a symmetry plane; and ¢ z-cut symmetry

plane

ene content in the upper-mantle beneath continents, although,
as the velocities of pyroxene are generally lower than the usual
sub-Moho velocities, the pyroxene would have to be mixed with
higher-velocity isotropic media to produce typical upper-mantle
velocities.

Monoclinic

The approximate velocities and phase-velocities for the monoclinic
structure BIPHPQ observed by Crampin et al. (1980) are
shown in Figure 7. The shear-waves in off-symmetry planes
do not in general have polarizations parallel or perpendicular
to the planes, however, by chance, the shear wave polarizations

in the y-cut for this particular system are nearly parallel and
perpendicular to the plane. Except for the constraints on the 46
variations of ¢P and ¢SH in the symmetry plane, there are wide
variations of velocity and shear-wave singularity configurations
possible in monoclinic structures. The approximate equations are
very good approximations in the symmetry plane (z-cut) and the
y-cut in Fig. 7, but not in the x-cut, which demonstrates shear-
wave pinching: the ¢SI wave has nearly SV polarization, except
between the pinches at 20° and 60°, where the polarization is
nearly SH; similarly, ¢S2 has SH motion except for SV polariza-
tion between 20° and 60°.

BIPHPQ is derived from an observed P-wave velocity an-
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isotropy in Carboniferous limestone (Bamford and Nunn 1979)
due to a biplanar system of joints and fractures. The assumption
of cracks enables the P-wave anisotropy to be inverted to give
the full parameters of the cracks and the equivalent anisotropic
structure BIPHQP (Crampin et al. 1980).

Conclusions

The velocities in Figs. 2-7 display wide variations in amplitude
and phase for different symmetry-systems. Wide variations are
possible for different materials within the same symmetry-system,
particularly in the behaviour of shear-waves for variations in off-
symmetry planes, where the two shear-waves may pinch together
and exchange polarization characteristics due to the proximity
of singularities in nearby planes.

The approximate expressions of Backus (1965) for P-waves,
and Crampin (1977a) for shear-waves, are good estimates for
the velocity variations in symmetry planes, and provide a direct
link between velocities and constants in these planes. In off-sym-
metry planes, the approximate equations may be very poor esti-
mates of both P and shear-wave velocities. However, despite these
limitations to the use of approximate equations, they are very
valuable in practice for transforming from velocities to constants
(Crampin 1978; Crampin and Bamford 1977; Crampin et al.
1980). Systems of symmetry have a number of symmetry
planes (Table 1), and the equations may be used by judicious
choice of origin and plane of variation.

It is interesting to note that it is difficult to place the systems
of anisotropic symmetry in any sequential order. It seems that
any particular parameter used for ordering — number of elastic
constants, number of planes of symmetry, number of shear-wave
singularities — leads to a different order. Each symmetry system
is unique and has unique features.

Anisotropic velocity variations take a number of significantly
different forms, which are difficult to classify in any simple way.
The percentage of velocity variation ((Vmax — Vmin)/Vmax), usually
of the P-wave, in any given plane is sometimes called the coefficient
of anisotropy. It is clearly a very uninformative description: it
contains no information about the symmetry, the velocities of
the other body-waves in the given plane, or the velocities of any
waves in other planes, and we suggest it is not used in future.
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