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Abstract. The principle of conservation of energy, in the form of the equation
of radiative transfer, is used to treat the case of strong scattering of elastic
waves. If the medium is isotropic, if all the energy present has been scattered
many times, and if the time and distance scales of the problem are long
compared to the time and distance scales of the scattering process, then the
average flow of energy is described by the diffusion equation with an
additional term representing linear dissipation to heat. Model seismic experi-
ments using holes drilled in aluminum plates as scatterers confirm the applica-
bility of the formalism. The diffusion formalism has been successfully applied
to lunar seismograms and to some earth data. The results of studies of lunar
seismograms show that the zone of strong scattering on the moon is confined
to a near surface zone.
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Introduction

In an elastic medium with a simple, deterministic structure, the transmission of
energy within the medium may be described by the propagation of various types
of elastic waves. The classical theory of seismology as applied to the earth uses
this description. However, any real medium, such as the earth, contains many
heterogeneities that can only be described in a statistical way. The effect of these
heterogeneities is to produce a random, scattered wave field which must be
included with the deterministic field in a complete description of the elastic
energy distribution.

If the effect of the heterogeneities is small, the scattered field may be treated
as a perturbation of the deterministic field (Chernov, 1960; Knopoff and
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Hudson, 1964). In the earth, such is frequently the case (Aki, 1973; Cleary and
Haddon, 1972; Aki and Chouet, 1975). The first seismograms returned from the
moon, however, showed that conditions there were somewhat different from
earth. Extremely small first arrivals were followed by a long, complex train of
waves whose amplitude slowly increased to a maximum after several minutes
and then gradually decayed over a period of an hour or more (Latham et al.,
1970). The clear body phases and dispersed surface waves so characteristic of
earth seismograms are not present, indicating that this coda consists of scattered
waves. The extremely strong scattering this implies is due to the absence of
water on the moon, which prevents cracks from annealing under moderate
pressures. The long duration of the coda is due to low attenuation, again a result
of the absence of water (Tittman et al., 1975).

To understand and model the lunar case of extremely strong scattering, some
other formalism than the perturbation method is needed. A fruitful approach
has been the use of the diffusion equation with linear dissipation (Nakamura et
al., 1970; Berckhemer, 1970; Latham et al., 1970, 1972; Dainty et al., 1974;
Toksoz et al., 1974; Nakamura, 1976; Wesley, 1965). In this paper we will first
discuss the theoretical basis for the use of the diffusion equation, then the result
of ultrasonic experiments designed to test the theory will be presented, and
finally some mention will be made of the applications, both lunar and terrestrial,
of the theory.

Theory

A situation is envisaged in which the effect of scattering is so strong that all
energy is scattered energy. The acoustic case will be presented, and then the
extension to the elastic case will be discussed. In our derivation the principle of
conservation of energy is applied to the wave field, together with physical ideas
about waves. The force equation usually used in elastic problems has not been
solved for this case of strong scattering.

We regard the acoustic wave field as being made up of plane monochromatic
waves of frequency f, travelling in all directions with random phases—thus,
energies are additive, not amplitudes. If we define direction by polar angles 6, ¢,
and e(R, 1,0, ¢) as the energy density at K, t of waves propagating in direction
0, ¢, then

E(R,tH)=[e(R,t,0,¢)dw

where dw is an element of solid angle and the integration is over all solid angles.
E(R, 1) is the total energy density. We consider the medium through which the
waves are propagating as having a wave velocity ¢, and p scatterers/unit volume.
The scatterers each have a total scattering cross-section of ¢ and a differential
scattering cross section (@), taken to be a function of scattering angle © only.
Then

s=[Q(0)dw.
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Note that ¢ and Q are generally strong functions of frequency. We consider
an elemental volume 6V, and waves travelling in direction 6,¢. Then the
conservation of energy states:

%%6V= —[F-hdZ + 6V[[pce@,¢)QO)dw'
z s
—fp

ce(0,d)Q(O)dw' —ae] (1)

The first term on the right in (1) is the net flux across the surface X of § V, with
normal 7, the second term represents energy scattered into direction 6, ¢ from
all other directions &, ¢’, the third term represents energy scattered out of 6, ¢
into all other directions, and the fourth term represents energy dissipated into
heat. The dissipation constant a=27f/Q, where Q is the seismic quality factor.
For the flux F we use the expression for a travelling wave,

- -

F=cke

where k is a unit vector in the direction of propagation of the wave.
Applying Gauss’s theorem to the second term in (1), we obtain

de

5t V.cketae=[pcQ(O)[e@, ¢')—e(6 ¢)]dw. )

This is the time-dependent equation of radiative transfer (Chandrasekhar, 1960).
In deriving (1) and (2) we have assumed it is possible to define a volume 6V
sufficiently small that multiple scattering may be ignored within o V.

We next wish to parameterize the scattering medium in terms of a scale
length. To do this, we consider a wave field consisting of a plane wave travelling
in some particular direction 6, ¢, at t=0

e(Ra ta 05 ¢)=6(6—00)5(¢—¢0)€(R, t)' at t=0'

As time increases, energy will be scattered into other directions, and eventually,
via multiple scattering, back into direction 8, ¢,. We shall, however, tem-
porarily ignore this latter effect in deriving (4) below, i.e., we will ignore the first
term in square brackets on the right hand side of (2). We will also ignore
anelastic attenuation, and choose the x-axis of rectangular coordinates to lie
along the direction 6,, ¢,. (We will not ignore these two effects subsequent to
Equation (4).) Then (2) becomes

. . .0 0 d L .
Using the Lagrangian relation E-H: 3% Cds where s is distance travelled with
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a particular wavefront, we have

de

1= Poe

e=ey-exp(—pas)=ey-exp(—s/A) 3)
where

A=1/po=mean free path. 4

The mean free path defined above is the average distance energy travels
before it is scattered, and is the characteristic scale length of the scattering
process. In the formalism we will develop, all the complexities of the scattering
medium are described by the parameter 1. This will only be possible if the time
and distance scales over which the average energy density changes are long
compared to A/c and A respectively. Since o is a function of frequency, so is 4; 4
may be greatly different for waves of different frequencies.

We return now to the case of a random wave field with energy travelling in
all directions. The terms on the right hand side of Equation (2) represent the
exchange of energy through the scattering process between waves travelling in
various directions. If the scattering is strong, however, and a time long com-
pared with A/c has passed, a radiation balance will be set up such that

[Q(O)[e(R, 1,0, ¢)—e(R,t,0,¢$)]do —0. (5)

Relation (5) demands that all of the energy be scattered energy. Equation (2)
may be further modified by noting that it is written in terms of e(R, 1,0, ¢),
which is not a measurable quantity if waves travelling in different directions
cannot be separated. Integrating over all angles will yield E(R,t), which is
measurable. Performing the integration

JE . L
—a—t—+l7.cjke(R,t,H,qb)da)-}-aE:O. (6)

To evaluate the second integral in (6), additional assumptions must be made. We
will assume that at any point in the medium, under the influence of strong
scattering, radiation is isotropic to zeroth order. This is reasonable if all the
energy is scattered energy, and if in addition the medium has no “grain”, or
preferred direction. Then

E(R,t)=[e(R,t,0,p)dw=4ne(R,1). (7

However, since energy travels a finite distance A before being scattered, the
energy field cannot be completely isotropic unless the energy field is also
homogeneous. If a gradient of energy is present, slightly more energy will come
from the up gradient direction than from the down gradient direction, because
there is more energy present at a distance A in the up gradient direction. Using
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(7), then, we write
, 1 R Lo
e(R, 1,0, )= (E(R, )+ 47 VE(R, 1) ®)

(8) states that the energy seen at R has come from the surface of a sphere of
radius A centered about R. 7 in (8) is a unit vector from R pointing in the
direction 180—6, 180+¢. Thus k= —# The remammg integral in (6) now
becomes two integrals, the first of which is

1 . E(R,1)
—— (FE =— Fdw=0.
4n£r (R, t)dw y {rdw 0 )
The second integral is
_A F[#-VE(R, t)]do= 2 VE(R, 1) 10
4r ’ T3 > (10)

(10) is most easily derived by setting up a rectangular coordinate system with
one axis, x, say, along the direction of VE (R, t). Contributions along the y and z
axes then cancel by symmetry in the integration over the sphere. Substituting (9)
and (10) in (6) we obtain

5E cl

The parameter E; will be written as &, and is known as the diffusivity. The

parameter a=2nf/Q, as previously stated; note that Q is in general a function of
frequency. If different regions through which the energy travels have different
Q's, the average of 1/Q weighted by the residence times in the various regions
must be used (Wesley, 1965, Eq. (4)).

This derivation is similar to that used in the kinetic theory of gases (Jeans,
1925, p.307-310). We have discussed the three-dimensional case. For the two-
dimensional case, a similar discussion leads to

cA

&= 7 (12)

The discussion above was for the acoustic case. In a homogeneous elastic
medium, two types of waves, compressional and shear, exist. If there is strong
scattering, however, the two types will be coupled, and if the coupling is strong
enough they will be locked into a radiation balance which depends only on the
properties of the scattering medium, provided that the time and distance scales
of the problem are much longer than the corresponding scales for the scattering
process. Thus the diffusion equation should still apply, provided the correct
value of the diffusivity is used. Since the diffusivity is the coefficient of the flux
term in (11), and since fluxes are additive and proportional to the energy, the
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Since the scattering zone is confined near the surface, it is modelled by a
diffusing layer over a half space within which seismic energy propagates as
waves without scattering.

The solution of (11) for an anisotropically diffusing layer over a half-space
has been given by Dainty et al. (1974). In their treatment, the diffusivities in the
vertical direction (£,) and the horizontal direction (£5) are different, to model the
vertical heteorgeneity commonly found in nature. The solution for a point
impulse at the origin of cylindrical coordinates r, z, is

1 r @ b,cos (b,z/h) —t&,b?
T Rroratl] I el B (16
where the b, are the positive roots of
|4
b- tanb=h (17)

v

starting with the numerically smallest. A is the thickness of the layer, and V is
the velocity of propagation of waves in the half-space. Note in (17) that if the
right hand side is large, then the low order b, are not a strong function of V; the
‘low order terms are the ones which will dominate in (16) for large ¢t. From (16)
and the principle of reciprocity we may also derive the case of a plane impulsive
source on either surface of the layer as observed at the other surface by
integrating over all r:

© 2
b,cosb, ex [_téubn]‘ (18)

— —at
E=[4/h]e ,,; 2b,+sin2b, h?

To compare the diffusion formalism, which refers to seismic energy in a
narrow frequency band, with lunar seismograms, we form the energy envelope of
the seismograms by Fourier transforming a moving window 51.2 s long over the
seismogram to obtain the power spectrum and plotting the power in a narrow
band as a function of time. This envelope may be compared directly with
Equations (16) and (18). An example of this comparison is shown in Figure 6,
which uses data from two close-in artificial impacts on the moon (Toksdz et al.,
1974). The fits shown from Equation (16) use ;=2 km?/s, implying a mean free
path of between 1 and 10km, depending on the wave velocity used. The
thickness of the surface scattering zone is between 1 and 20 km (Toksoz et al.,
1974). Q is 5000.

The example in Figure 6 is for a close surface event. If we assume that the
effect of scattering near the source is the same as scattering near the receiver,
and if the time spent in the non-scattering interior of the moon is short
compared with the time spent in the scattering zone, then there is a con-
volutional relationship (Dainty et al., 1974) between the energy envelope f(t) of
the far surface events and the energy envelope m(t) of deep focus events, namely:

f@)=A-m(t)*m(t) (19)






Elastic Wave Scattering — A Diffusion Approach 387

where A is a multiplicative constant which depends on range and * indicates
convolution: (19) is illustrated in Figure 7, which shows envelopes for a far
impact and a deep focus moonquake. Two theoretical fits to the deep focus
energy envelope are shown—one derived from the far impact envelope using
(19), one a theoretical fit using (18) and the same model as for Figure 6.

Diffusion theory has also been applied to the coda of local earthquakes (Aki
and Chouet, 1975, with references to earlier work). These authors find that at
frequencies around 1 Hz most of the coda is scattered surface waves, whilst at
frequencies of about 10 Hz and higher scattered body waves predominate. The
mean free path for 1 Hz energy (surface waves) was comparable to that found on
the moon but the mean free path at 10 Hz (body waves) was at least an order of
magnitude larger. @ was much lower (100-1000) than the lunar case, reflecting
the presence of water.

Conclusions

In the case of strong scattering of seismic waves, the average energy density as a
function of time and space may be described by the diffusion equation with
linear dissipation, provided that all the energy present has been scattered many
times, and the time and distance scale of the problem are long compared to the
scales that correspond to the scattering process. Ultrasonic experiments in the
laboratory confirm the applicability of the formalism. The theory may be used
to explain the characteristics of seismograms returned from the moon. In certain
cases the theory may also be used to explain seismic observations on the earth,
particularly the high frequency coda of local earthquakes.
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